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Modeling of real-world systems with Petri nets allows to benefit from their generic concepts of
parallelism, synchronisation and conflict, and obtain a concise yet expressive system representation.
Algorithms for synthesis of a net from a sequential specification enable the well-developed theory
of Petri nets to be applied for the system analysis through a net model. The problem of τ-synthesis
consists in deciding whether a given directed labeled graph A is isomorphic to the reachability graph
of a Boolean Petri net N of type τ . In case of a positive decision, N should be constructed. For
many Boolean types of nets, the problem is NP-complete. This paper deals with a special variant
of τ-synthesis that imposes restrictions for the target net N: we investigate dependency d-restricted
τ-synthesis (DRτS) where each place of N can influence and be influenced by at most d transitions.
For a type τ , if τ-synthesis is NP-complete then DRτS is also NP-complete. In this paper, we show
that DRτS parameterized by d is in XP. Furthermore, we prove that it is W [2]-hard, for many Boolean
types that allow unconditional interactions set and reset.

1 Introduction

Petri nets are widely used for modeling of parallel processes and distributed systems due to their ability
to express the relations of causal dependency, conflict and concurrency between system actions. In
system analysis, one aims to check behavioral properties of such models, and many of these properties
are decidable [12] for Petri nets and their reachability graphs which represent systems’ behaviors. The
task of system synthesis is opposite: A system model has to be constructed from a given specification
of the desired behavior. Labeled transition systems serve as a convenient formalism for the behavioral
specification, and the goal is then to construct a Petri net whose reachability graph is isomorphic to the
input transition system. The relevance of the interest to the synthesis is justified in several ways. In
comparison to the sequential description of the system given by a transition system, the presence of
concurrency/parallelism in a Petri net on a fine-grained level allows to encompass the full interleaving
in the behavior in a concise yet clear way. As a result, this yields a usually much more compact system
model without loss of the expressiveness, as long as the synthesis terminates successfully. Besides, the
alorithms of automatic synthesis ensure that the constructed model is correct-by-design, and hence it
does not require any further verification. Moreover, the well-developed theory of Petri nets [12, 13]
suggests a wide range of methods and techniques for behavioral and structural analysis of the synthesised
model, supporting possible improvements and optimization purposes in the initial system. Altogether,
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these allow many areas to benefit from Petri net synthesis, e.g., extracting concurrency from sequential
specifications like TS and languages [4], process discovery [1], supervisory control [13] or the synthesis
of speed independent circuits [8].

The complexity of Petri net synthesis significantly depends on the restrictions which are implied by
the specification, or imposed on the target system model, or both, and ranges from undecidable [16] via
NP-complete [24, 25] down to polynomial [10, 17].

In this work, we study the complexity of synthesis for Boolean nets [3, pp. 139-152], where each
place contains at most one token, for any reachable marking. A place of such a net is often considered as
a Boolean condition which is true if the place is marked and false otherwise. In a Boolean Petri net, a
place p and a transition t are related by one of the Boolean interactions: no operation (nop), input (inp),
output (out), unconditionally set to true (set), unconditionally reset to false (res), inverting (swap), test if
true (used), and test if false (free). These interactions define in which way p and t influence each other:
The interaction inp (out) defines that p must be true (false) before and false (true) after t’s firing; free
(used) implies that t’s firing proves that p is false (true); nop means that p and t do not affect each other
at all; res (set) implies that p may initially be both false or true but after t’s firing it is false (true); swap
means that t inverts p’s current Boolean value.

Boolean Petri nets are classified by the sets of interactions between places and transitions that can be
applied. A set τ of Boolean interactions is called a type of net. A net N is of type τ (a τ-net) if it applies
at most the interactions of τ . For a type τ , the τ-synthesis problem consists in deciding whether a given
transition system A is isomorphic to the reachability graph of some τ-net N, and in constructing N if it
exists. The complexity of synthesis strongly depends on the target Boolean type of nets. Thus, while
τ-synthesis for elementary net systems (the case of τ = {nop, inp,out}) is shown to be NP-complete [2],
the same problem for flip-flop nets (τ = {nop, inp,out,swap}) is polynomial [17].

This paper addresses the computational complexity of a special instance of τ-synthesis called De-
pendency d-Restricted τ-Synthesis (DRτS), which sets a limitation for the number of connections of a
place. This synthesis setting targets to those τ-nets in which every place must be in relation nop with all
but at most d transitions of the net, while the synthesis input is not confined. In system modeling [15],
places of Petri nets are usually meant as conditions or resources, while transitions are meant as actions or
agents. Hence, the formulation of d-restricted synthesis takes into consideration not only the concurrency
perspective but also possible a priori limitations on the number of agents which compete for the access
to some resource in the modeled system. From the theoretical perspective, the problem of synthesis
has been extensively studied in the literature for the conventional Petri nets and their subclasses, which
are often defined via various structural restrictions: Recently, improvements of the existing synthesis
techniques have been suggested for choice-free (transitions cannot share incoming places) [7], weighted
marked graphs (each place has at most one input and one output transition) [10, 11], fork-attribution
(choice-free and at most one input for each transition) [27] and other net classes [6, 26]. In these works,
the limitations were mainly subject to the quantity of connections between places and transitions. On
the other hand, the results on synthesis of k-bounded (never more than k tokens on a place) [20], safe
(1-bounded) and elementary nets [3] investigate classes which are defined through behavioral restrictions.
Further, generalized settings of the synthesis problem for these and some other classes were studied [21],
and NP-completeness results for many of them were presented. In contrast to this multitude of P/T net
classes, for Boolean nets, only the constrains for the set of interactions have appeared in the literature,
deriving for instance flip-flop nets [17], trace nets [5], inhibitor nets [14]. This kind of constrain can be
considered as behavioral limitation, leaving out the question of synthesis of possible structurally defined
subclasses of Boolean nets. The present paper aims to piece out the shortage by investigating the notion
of d-restriction which limits the amount of connections between a place and transitions. The notion was
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initially introduced in [22], where the complexity of d-restricted synthesis has been studied for a number
of Boolean types, and the W[1]-hardness of this problem has been proven. The current paper extends
the previous work and tackles the problem for many types that necessarily include interactions res and
set. We demonstrate the W[2]-hardness of d-restricted synthesis for these types, which makes a clear
distinction to the earlier results.

The paper is organized as follows. After introducing of the necessary definitions in Section 2, the
main contributions on W[2]-hardness of DRτS are presented in Section 3. Section 4 suggests an outlook
of the further research directions. Due to space restrictions, we omit some proofs, which can all be found
in the technical report [23].

2 Preliminaries

In this section, we introduce the notions used throughout the paper and support them by examples.
Parameterized Complexity. Due to space restrictions, we only give the basic notions of Parame-

terized complexity (used in this paper) and refer to [9] for further related definitions. A parameterized
problem is a language L⊆ Σ∗×N, where Σ is a fixed alphabet and N is the set of natural numbers. For an
input (x,k) ∈ Σ∗×N, k is called the parameter. We define the size of an instance (x,k), denoted by |(x,k)|,
as |x|+k, that is, k is encoded in unary. Let f ,g : N→N be two computable functions. The parameterized
language L is slice-wise polynomial (XP), if there exists an algorithm A such that, for all (x,k) ∈ Σ∗×N,
algorithm A decides whether (x,k) ∈ L in time bounded by f (k) · |(x,k)|g(k); if the runtime of A is even
bounded by f (k) · |(x,k)|O(1), then L is called fixed-parameter tractable (FPT). In order to classify param-
eterized problems as being FPT or not, the W-hierarchy FPT ⊆W [1] ⊆W [2] ⊆ ·· · ⊆ XP is defined [9,
p. 435]. It is believed that all the sub-relations in this sequence are strict and that a problem is not FPT
if it is W [i]-hard for some i≥ 1. Let L1,L2 ⊆ Σ∗×N be two parameterized problems. A parameterized
reduction from L1 to L2 is an algorithm that given an instance (x,k) of L1, outputs an instance (x′,k′) of
L2 in time f (k) · |x|O(1) for some computable function f such that (x,k) is a yes-instance of L1 if and only
if (x′,k′) is a yes-instance of L2 and k′ ≤ g(k) for some computable function g. If L1 is W [i]-hard and
there is a parameterized reduction from L1 to L2, then L2 is W [i]-hard, too.

Transition Systems. A (deterministic) transition system (TS, for short) A = (S,E,δ ) is a directed
labeled graph with the set of nodes S (called states), the set of labels E (called events) and partial transition
function δ : S×E −→ S. If δ (s,e) is defined, we say that event e occurs at state s, denoted by s e . An
initialized TS A = (S,E,δ , ι) is a TS with a distinct initial state ι ∈ S where every state s ∈ S is reachable
from ι by a directed labeled path.

Boolean Types of Nets [3]. The following notion of Boolean types of nets allows to capture all
Boolean Petri nets in a uniform way. A Boolean type of net τ = ({0,1},Eτ ,δτ) is a TS such that Eτ is a
subset of the Boolean interactions: Eτ ⊆ I = {nop, inp,out,set, res,swap,used, free}. Each interaction
i ∈ I is a binary partial function i : {0,1}→ {0,1} as defined in Figure 1. For all x ∈ {0,1} and all i ∈ Eτ ,
the transition function of τ is defined by δτ(x, i) = i(x). Since a type τ is completely determined by Eτ ,
we often identify τ with Eτ .

τ-Nets. Let τ ⊆ I. A Boolean Petri net N = (P,T, f ,M0) of type τ (a τ-net) is given by finite disjoint
sets P of places and T of transitions, a (total) flow function f : P× T → τ , and an initial marking
M0 : P−→ {0,1}. A transition t ∈ T can fire in a marking M : P−→{0,1} if δτ(M(p), f (p, t)) is defined
for all p ∈ P. By firing, t produces the marking M′ : P−→ {0,1} where M′(p) = δτ(M(p), f (p, t)) for
all p ∈ P, denoted by M t M′. The behavior of τ-net N is captured by a transition system AN , called the
reachability graph of N. The states set RS(N) of AN consists of all markings that can be reached from
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initial state M0 by sequences of transition firings. The dependency number dp = |{t ∈ T | f (p, t) 6= nop}|
of a place p of N is the number of transitions whose firing can possibly influence p or be influenced by the
marking of p. The dependency number dN of a τ-net N is defined as dN = max{dp | p ∈ P}. For d ∈ N, a
τ-net is called (dependency) d-restricted if dN ≤ d.

Example 1. Figure 2 shows the type τ = {nop, inp,swap} and the 2-restricted τ-net
N = ({R1,R2},{a,b}, f ,M0) with places R1,R2, flow-function f (R1,a) = f (R2,b) = inp, f (R1,b) = nop,

f (R2,a) = swap and initial marking M0 = (M0(R1),M0(R2)) = (1,0). Since 1 inp 0∈ τ and 0 swap 1∈ τ ,
the transition a can fire in M0, which leads to the marking M = (M(R1),M(R2)) = (0,1). After that, b
can fire, which results in the marking M′ = (M′(R1),M′(R2)) = (0,0). The reachability graph AN of N is
depicted on the right hand side of Figure 2.

τ-Regions. Let τ ⊆ I. If an input A of τ-synthesis allows a positive decision, we want to construct
a corresponding τ-net N. TS represents the behavior of a modeled system by means of global states
(states of TS) and transitions between them (events). Dealing with a Petri net, we operate with local states
(places) and their changing (transitions), while the global states of a net are markings, i.e., combinations
of local states. Since A and AN must be isomorphic, N’s transitions correspond to A’s events. The
connection between global states in TS and local states in the sought net is given by regions of TS that
mimic places: A τ-region R = (sup,sig) of A = (S,E,δ , ι) consists of the support sup : S→ {0,1}

and the signature sig : E → Eτ where every edge s e s′ of A leads to an edge sup(s) sig(e) sup(s′) of

type τ . If P = q0
e1 . . . en qn is a path in A, then PR = sup(q0)

sig(e1) . . . sig(en) sup(qn) is a path in
τ . We say PR is the image of P (under R). Notice that R is implicitly defined by sup(ι) and sig: Since
A is reachable, for every state s ∈ S(A), there is a path ι e1 . . . en sn such that s = sn. Thus, since τ is
deterministic, we inductively obtain sup(si+1) by sup(si)

ei sup(si+1) for all i∈ {0, . . . ,n−1} and s0 = ι .
Consequently, we can compute sup and, thus, R purely from sup(ι) and sig, cf. Figure 5 and Example 3.
A region (sup,sig) models a place p and the associated part of the flow function f . In particular,
f (p,e) = sig(e) and M(p) = sup(s), for marking M ∈ RS(N) that corresponds to s ∈ S(A). Every set
R of τ-regions of A defines the synthesized τ-net NR

A = (R,E, f ,M0) with f ((sup,sig),e) = sig(e) and
M0((sup,sig)) = sup(ι) for all (sup,sig) ∈R,e ∈ E.

State and Event Separation. To ensure that the input behavior is captured by the synthesized net,
we have to distinguish global states, and prevent the firings of transitions when their corresponding

x nop(x) inp(x) out(x) set(x) res(x) swap(x) used(x) free(x)
0 0 1 1 0 1 0
1 1 0 1 0 0 1

Figure 1: All interactions i of I. If a cell is empty, then i is undefined on the respective x.
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Figure 2: The type τ = {nop, inp,swap} and a τ-net N and its reachability graph AN .
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Figure 3: The type τ0 = {nop, inp, free}, the TSs A1 and A2 and the type τ1 = {nop,swap,used,set}.
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N AN
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Figure 4: The 1-restricted τ1-net N, where τ1 is defined according to Figure 3 and N = NR
A1

according to
Example 2, and its reachability graph AN .

A3

ι s1 s2 s3
a b c

AR
3

1 1 10
used swap set

Figure 5: The TS A3, a simple directed path and its image AR
3 under R, with R from Example 3.

events are not present in TS. This is stated as so called separation atoms and problems. A pair (s,s′) of
distinct states of A defines a states separation atom (SSP atom). A τ-region R = (sup,sig) solves (s,s′) if
sup(s) 6= sup(s′). If every SSP atom of A is τ-solvable then A has the τ-states separation property (τ-SSP,
for short). A pair (e,s) of event e ∈ E and state s ∈ S where e does not occur, that is ¬s e , defines an
event/state separation atom (ESSP atom). A τ-region R = (sup,sig) solves (e,s) if sig(e) is not defined

on sup(s) in τ , that is, ¬sup(s) sig(e) . If every ESSP atom of A is τ-solvable then A has the τ-event/state
separation property (τ-ESSP, for short). A set R of τ-regions of A is called τ-admissible if for each SSP
and ESSP atom there is a τ-region R in R that solves it. We say that A is τ-solvable if it has a τ-admissible
set. The next lemma establishes the connection between the existence of τ-admissible sets of A and the
existence of a τ-net N that solves A:

Lemma 1 ([3]). A TS A is isomorphic to the reachability graph of a τ-net N if and only if there is a
τ-admissible set R of A such that N = NR

A .

Example 2. Let τ0, τ1, A1 and A2 be defined in accordance to Figure 3. The TS A1 has no ESSP
atoms. Hence, it has the τ0-ESSP and τ1-ESSP. The only SSP atom of A1 is (s0,s1). It is τ1-solvable by
R1 = (sup1,sig1) with sup1(s0) = 0, sup1(s1) = 1, sig1(a) = swap. Thus, A1 has the τ1-admissible set
R = {R1}, and the τ1-net N = NR

A = ({R1},{a}, f ,M0) with M0(R1) = sup1(s0) and f (R1,a) = sig1(a)
solves A1. Figure 4 depicts N (left) and its reachability graph AN (right). The SSP atom (s0,s1) is not
τ0-solvable, thus, neither is A1. TS A2 has ESSP atoms (b,r1) and (c,r0), which are both τ1-unsolvable.
The only SSP atom (r0,r1) in A2 can be solved by the τ1-region R2 = (sup2,sig2) with sup2(r0) = 0,
sup2(r1) = 1, sig2(b) = set, sig2(c) = swap. Thus, A2 has the τ1-SSP, but not the τ1-ESSP. None of the
(E)SSP atoms of A2 can be solved by any τ0-region. Notice that the τ1-region R2 maps two events to a
signature different from nop. Thus, in case of d-restricted τ1-synthesis, R2 would not be valid for d = 1.
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Example 3. Let A3 be defined in accordance to Figure 5 and τ1 according to Figure 3. It defines
sup(ι) = 1, sig(a) = used, sig(b) = swap and sig(c) = set implicitly a τ1-region R = (sup,sig) of A3 as
follows: sup(s1) = δτ1(1,used) = 1, sup(s2) = δτ1(1,swap) = 0 and sup(s3) = δτ1(0,set) = 1. The image
AR

3 of A3 (under R) is depicted on the right hand side of Figure 5. One easily verifies that δA3(s,e) = s′

implies δτ1(sup(s),sig(e)) = sup(s′), cf. Figure 3.

By Lemma 1, every τ-admissible set R implies that NR
A τ-solves A. In this paper, we investigate the

complexity of synthesising a solving τ-net N whose dependency number dN does not exceed a natural
number d. Recall that if R is a set of A’s regions, then R’s regions model places of the synthesized net NR

A .
Thus, dNR

A
≤ d if and only if R is d-restricted, that is, every region R = (sup,sig) of R is d-restricted:

|{e ∈ E | sig(e) 6= nop}| ≤ d. By Lemma 1, this implies that there is a d-restricted τ-net N if and only if
there is a d-restricted τ-admissible set R. This finally leads to the following parameterized problem that
is the main subject of this paper:
Dependency Restricted τ-Synthesis (DRτS)
Input: a finite, reachable TS A, a natural number d.

Parameter: d

Decide: whether there exists a d-restricted τ-admissible set R of A.

3 Dependency d-Restricted τ-Synthesis

For a start, we observe that, similar to (unrestricted) τ-synthesis [19], DRτS is in NP. Moreover, there
is a trivial reduction from τ-synthesis to DRτS: Since a τ-region can map at most all events of a TS
A = (S,E,δ , ι) not to nop, A is τ-solvable if and only if A is τ-solvable by |E|-restricted τ-regions. Thus,
if τ-synthesis is NP-complete, then DRτS is also NP-complete.

Let’s argue that DRτS belongs to the complexity class XP. Let A = (S,E,δ , ι) be a TS, d ∈ N and let
|A| be the maximum number of edges that A possibly has, that is, |A|= |S|2|E|. A τ-region R = (sup,sig)
is implicitly defined by sup(ι) and sig. We are interested in regions of A for which there is an i∈ {0, . . . ,d}
such that |{e ∈ E | sig(e) 6= nop}| = i. For every event e ∈ E, we have at most |τ|−1 ≤ 7 interactions
that are different from nop. Since sup(ι) ∈ {0,1}, we have to consider at most 2 ·7d ·∑d

i=0
(|E|

i

)
regions at

all, which can be estimated by O(7d |A|d)
To check if the chosen signature actually implies regions of A and to solve the (E)SSP atoms of A, we

need to construct the regions explicitly, that is, we have to compute sup. To do so, we firstly compute a
spanning tree A′ of A, which is doable in time O(|A|2) by the algorithm of Tarjan [18] and needs to be
done only once. In A′, there is exactly one path from ι to s for all s ∈ S, and A′ has |S|−1 edges. Thus,
having a spanning tree, sup(ι) and sig, it costs time at most O(|A|) to compute sup. The effort to compute
all potentially interesting regions explicitly is thus at most O(7d |A|d+1). After that, we check for any fixed

potential region if it is actually a well-defined region, that is, whether s e s′ implies sup(s) sig(e) sup(s′).
For a fixed region, this is doable in time O(|A|). Thus the effort to compute all interesting regions of A is
O(7d |A|d+2).

For a fixed separation atom (s,s′) or (e,s) we simply have to check if sup(s) 6= sup(s′) or if
δτ(sup(s),sig(e)) is not defined, respectively, which is doable in time O(|A|). Since we have at most
O(|A|2) separation atoms and at most O(7d |A|d) regions, the check for the (E)SSP is doable in time
O(7d |A|d+2). Finally, if we add up the effort to get all interesting regions and the effort to check whether
these regions witness the (E)SSP of A, then we obtain that the effort of the problem is bounded by
O(7d |A|d+2).
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On the other hand, in this section, we argue that DRτS is W [2]-hard for a range of Boolean types. The
following theorem presents the result through the enumeration of these types.

Theorem 1. Dependency d-Restricted τ-Synthesis is W [2]-hard if

1. τ ⊇ {nop, inp,set} or τ ⊇ {nop,out, res},
2. τ = {nop,set, res}∪ω or τ = {nop,set, res,swap}∪ω and /0 6= ω ⊆ {free,used},
3. τ = {nop,set,swap}∪ω , τ = {nop,out,set,swap}∪ω , τ = {nop, res,swap}∪ω or

τ = {nop, inp, res,swap}∪ω and /0 6= ω ⊆ {free,used},
4. τ = {nop, inp, res,swap} or τ = {nop,out,set,swap},
Notice that, by the discussion above, for the types of Theorem 1, NP-completeness of DRτS follows

by the NP-completeness of τ-synthesis [19, p. 3]. The proof of Theorem 1 bases on parameterized
reductions of the problem Hitting Set, which is known to be W [2]-complete (see e.g. [9]). The problem
Hitting Set is defined as follows:
Hitting Set (HS)
Input: a finite set U, a set M = {M1, . . . ,Mm} of subsets of U with Mi = {Xi1 , . . . ,Ximi

}
and i1 < · · ·< imi for all i ∈ {1, . . . ,m}, a natural number κ .

Parameter: κ

Decide: whether there is a set S⊆ U such that |S| ≤ κ and S∩Mi 6= /0 for every i ∈ {1, . . . ,m}.
The General Reduction Idea. An input I = (U,M,κ) of HS, where M = {M1, . . . ,Mm}, is reduced to

an instance (Aτ
I ,d) of DRτS with TS Aτ

I and d = f (κ), for some linear function f . For every i∈ {1, . . . ,m},
the TS Aτ

I has a directed labeled path

Pi = si,0 . . . si,i`−1 si,i` . . . si,imi

Xi1 Xi`−1 Xi` Xi`+1
Ximi

that represents the set Mi = {Xi1 , . . . ,Ximi
} and uses its elements as events. The TS Aτ

I is then composed
in such a way that for some ESSP atom α of Aτ

I the following is satisfied: If R = (sup,sig) is a d-
restricted τ-region that solves α , then sup(si,0) 6= sup(si,imi

) for all i ∈ {1, . . . ,m}. Since the image PR
i

of Pi is a directed path in τ , by sup(si,0) 6= sup(si,imi
), there has to be an element X ∈ Mi such that

s X s′ ∈ Pi implies sup(s) 6= sup(s′). That is, the image sig(X) of X causes a state change on PR
i in τ .

In particular, this implies sig(X) 6= nop. The following visualisation of PR
i sketches the situation for a

region R = (sup,sig), where sup(si,0) = · · · = sup(si,i`−1) = 0 and sup(si,i`) = · · · = sup(si,imi
) = 1 and

sig(Xi`) = set and sig(Xik) = nop for all k ∈ {1, . . . ,mi}\{`}:

PR
i = sup(si,0) . . . sup(si,i`−1) sup(si,i`) . . . sup(si,imi

)
sig(Xi1) sig(Xi`−1) sig(Xi`) sig(Xi`+1) sig(Ximi

)

0 0 1 1nop nop nop nopset

It is simultaneously true for all paths P1, . . . ,Pm representing the sets M1, . . . ,Mm, that on each path
there is a (not necessarily unique) X satisfying sig(X) 6= nop. Moreover, the reduction ensures that
|{X ∈ U | sig(X) 6= nop}| ≤ κ . In other words, S = {X ∈ U | sig(X) 6= nop} defines a sought hitting set
of I. Thus, if (Aτ

I ,d) is a yes-instance of DRτS, implying the solvability of α , then I = (U,M,κ) is a
yes-instance of HS.

Conversely, if I = (U,M,κ) is a yes-instance, then there is a fitting τ-region of Aτ
I that solves α . The

reduction ensures that the d-restricted τ-solvability of α implies that all (E)SSP atoms of Aτ
I are solvable

by d-restricted τ-regions. Thus, (Aτ
I ,d) is a yes-instance, too.
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⊥1 t1,0 t1,1 t1,2 t1,3 t1,4 t1,5
w1 k X1 X2 z k

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4 t2,5
w2 k X2 X3 z k

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4 t3,5
w3 k X1 X4 z k

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4 t4,5 t4,6
w4 k X1 X3 X4 z k

⊥5 h0 h1 h2 h3 h4
w5 k z o k

	1

	2

	3

	4

Figure 6: The TS Aτ
I , where τ ⊇ {nop, inp,set} and I originates from Example 4. The green colored area

sketches the states that are mapped to 1 by the region RX ,2
3,2 solving (X4,s) for all s ∈ {⊥3, t3,0, t3,1}.

In the following, we present the corresponding reductions and show that the solvability of α implies
the existence of a sought-for hitting set. Moreover, we argue that the existence of a sought set implies the
τ-solvability of α and, finally, the τ-solvability of Aτ

I .
As an instance, the following (running) example serves for all concrete reductions that we present, to

simplify the understanding of the reductions’ formal descriptions.

Example 4. The input I = (U,M,κ) is defined by U= {X1,X2,X3,X4} and M = {M1,M2,M3,M4}, where
M1 = {X1,X2}, M2 = {X2,X3}, M3 = {X1,X4} and M4 = {X1,X3,X4}, and κ = 2. A fitting hitting set of
M is given by S = {X1,X3}.

3.1 The Proof of Theorem 1.1

Theorem 1.1: The Reduction. In accordance to our general approach, we first define d = κ +2. Next,
we introduce the TS Aτ

I . Figure 6 provides a concrete example of Aτ
I , where I corresponds to Example 4.

The TS Aτ
I has the following gadget H that applies the events k,z and o and provides the atom α = (k,h2):

⊥m+1 h0 h1 h2 h3 h4
wm+1 k z o k

For all i ∈ {1, . . . ,m}, the TS Aτ
I has the following gadget Ti that applies wi,k,z and the elements of

Mi = {Xi1 , . . . ,Ximi
} as events:

⊥i ti,0 ti,1 . . . ti,mi+1 ti,mi+2 ti,mi+3
wi k Xi1 Ximi z k

The TS Aτ
I has the events 	1, . . . ,	m to connect the gadgets T1, . . . ,Tm and H by ⊥1

	1 . . . 	m ⊥m+1.
The initial state of Aτ

I is ⊥1.
Theorem 1.1: The Solvability of α Implies a Hitting Set. We argue for τ ⊇ {nop, inp,set}, the

hardness of the other types follows by symmetry. In the following, we argue that if there is a d-restricted
τ-region R = (sup,sig) that solves α , then I has a hitting set of size at most κ . Let R = (sup,sig) be such
a τ-region. Since R solves α , we have either sig(k) ∈ {inp,used} and sup(h2) = 0 or sig(k) ∈ {out, free}
and sup(h2) = 1. In what follows, we consider to the former case. The proof for the latter case is
symmetrical.
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If sig(k) = inp and sup(h2) = 0, then s k s′ implies sup(s) = 1 and sup(s′) = 0. By sup(h2) = 0
and sup(h3) = 1, we get sig(o) ∈ {out,set,swap}. In particular, since R is d-restricted, there are at
most κ events left that have a signature different from nop. By sup(h1) = sup(h2) = 0 and h1

z h2,
we have sig(z) ∈ {nop, res, free}. Moreover, by sup(ti,mi+2) = 1 and z ti,mi+2, we have sig(z) = nop.
By sig(k) = inp and sig(z) = nop, we conclude sup(ti,1) = 0 and sup(ti,mi+1) = 1 for all i ∈ {1, . . . ,m}.
Consequently, for every i ∈ {1, . . . ,m}, there is X ∈Mi such that sig(X) ∈ {out,set,swap}. Otherwise a
state change from 0 to 1 would not be possible. Since R is d-restricted and sig(k) 6= nop 6= sig(o), we get
|{X ∈ U | sig(X) 6= nop}| ≤ κ . This implies that S = {X ∈ U | sig(X) 6= nop} is a fitting hitting set of I.

If sig(k) = used and sup(h2) = 0, then s k s′ implies sup(s) = sup(s′) = 1. By sup(h1) = sup(h3) =
1 and sup(h2) = 0, we get sig(z) ∈ {inp, res,swap} and sig(o) ∈ {out,set,swap}. By sup(ti,mi+2) = 1
and z ti,mi+2, we get sig(z) = swap. Since R is d-restricted, there are at most κ−1 events left whose
signature is different from nop. Moreover, by sig(k) = used and sig(z) = swap, we have sup(ti,1) = 1 and
sup(ti,mi+1) = 0 for all i ∈ {1, . . . ,m}. Just like before, we conclude that S = {X ∈ U | sig(X) 6= nop} is a
sought hitting set of I.

Conversely, a κ-HS of (U,M,κ) implies the τ-solvability of Aτ
I , which is the statement of the following

lemma. Due to space restrictions, we omit the proof which can be found in [23].

Lemma 2. Let τ be a type of nets in correspondence of Theorem 1.1. If (U,M,κ) has a κ-HS, then there
is a d-restricted admissible set of AI

τ .

3.2 The Proof of Theorem 1.2

Theorem 1.2: The Reduction. Let τ be a type of Theorem 1.2. According to our general approach,
we first define d = κ +4. Next we introduce the TS Aτ

I . Figure 7 provides an example of Aτ
I , where I

corresponds to Example 4. The TS Aτ
I has the following gadget H1 that provides the atom α = (k,h1,2):

⊥m+1 h1,0 h1,1 h1,2 h1,3 h1,4

wm+1 k o1 o2 k

wm+1 k o1 o2 k

Moreover, the TS Aτ
I has the following gadgets H2 and H3:

H2 = ⊥m+2 h2,0 h2,1 h2,2

wm+2 k z1,o1

wm+2 k z1 H3 = ⊥m+3 h3,0

wm+3,o1,z2

wm+3

For all i ∈ {1, . . . ,m}, TS Aτ
I has the following gadget Ti that applies wi,k,z1,z2 and the elements of

Mi = {Xi1 , . . . ,Ximi
} as events:

⊥i ti,0 ti,1 ti,2 . . . ti,mi+2 ti,mi+3 ti,mi+4

wi k z1 Xi1
Ximi z2 k

wi k z1 Xi1 Ximi z2 k

Finally, the TS Aτ
I uses the events 	1, . . . ,	m+2 and applies for all i ∈ {1, . . . ,m} the edges ⊥i

	i ⊥i+1

and ⊥i+1
	i ⊥i+1 to join the gadgets T1, . . . ,Tm and H1, H2, H3.

Theorem 1.2: The τ-solvability of α Implies a Hitting Set. Let R = (sup,sig) be a τ-region that
solves α , that is, either sig(k) = used and sup(h1,2) = 0 or sig(k) = free and sup(h1,2) = 1. In the
following, we assume that sig(k) = used and sup(h1,2) = 0. The arguments for the case sig(k) = free
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⊥1 t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6

w1 k z1 X1 X2 z2 k

w1 k z1 X1 X2 z2 k

⊥1 t2,0 t2,1 t2,2 t2,3 t2,4 t2,5 t2,6

w2 k z1 X2 X3 z2 k

w2 k z1 X2 X3 z2 k

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6

w3 k z1 X1 X4 z2 k

w3 k z1 X1 X4 z2 k

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6 t3,7

w4 k z1 X1 X3 X4 z2 k

w4 k z1 X1 X3 X4 z2 k

⊥5 h1,0 h1,1 h1,2 h1,3 h1,4

w5 k o1 o2 k

w5 k o1 o2 k

⊥6 h2,0 h2,1 h2,2

w6 k z1,o1

w6 k z1

⊥7 h3,0

w7,o1,z2

w7

	1

	2

	3

	4

	5

	6

	1

	2

	3

	4

	5

	6

Figure 7: The TS Aτ
I where τ corresponds to Theorem 1.2 and I to Example 4 with the HS S = {X1,X3}.

The green colored area sketches the τ-region R = (sup,sig) that solves α , where, for all e ∈ E(Aτ
I ),

if e = k, then sig(e) = used; if e ∈ {o2}∪ S, then sig(e) = set; if e ∈ {o1,z1,	6}, then sig(e) = res;
otherwise sig(e) = nop.

and sup(h1,2) = 1 are symmetrical. Notice that if s e s′ ∈ Aτ
I , then s′ e s′ ∈ Aτ

I . Thus, for all e ∈ E(Aτ
I )

holds sig(e) 6= swap.

Since sig(k) = used, if s k s′, then sup(s) = sup(s′) = 1. In particular, we have sup(ti,mi+3) = 1 for
all i∈ {1, . . . ,m}. Moreover, by sup(h1,1) = 1 and sup(h1,2) = 0, we have sig(o1) = res and sig(o2) = set.
This implies sup(h2,2) = sup(h3,0) = 0. By sup(h2,1) = 1 and sup(h2,2) = 0, we get sig(z1) = res; by
sup(h3,0) = 0 and sup(t1,mi+3) = 1, we get sig(z2) = nop. Thus, by sig(z1) = res and sig(z2) = nop, we
get sup(ti,2) = 0 and sup(ti,mi+2) = 1 for all i ∈ {1, . . . ,m}. Consequently, for all i ∈ {1, . . . ,m}, there is
X ∈Mi such that sig(X) = set. Since sig(e) 6= nop for all e ∈ {k,o1,o2,z1} and R is d-restricted, it holds
|{X ∈ U | sig(X) 6= nop}| ≤ κ . This implies that S = {X ∈ U | sig(X) 6= nop} is a sought-for hitting set
of I.

In return, if (U,M,κ) has a κ-HS, then AI
τ is τ-solvable, which is the statement of the following

lemma. Due to space restrictions, we omit the proof which can be found in [23].

Lemma 3. Let τ be a type of nets in correspondence of Theorem 1.2. If (U,M,κ) has a κ-HS, then there
is a d-restricted admissible set of AI

τ .
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3.3 Proof of Theorem 1.3

Theorem 1.3: The Reduction. We restrict ourselves to the case where τ = {nop,set,swap}∪ω or
τ = {nop,out,set,swap}∪ω and /0 6= ω ⊆ {free,used}. The hardness for the other types follows by
symmetry. First, we define d = κ +4. Next, we introduce the TS Aτ

I . Figure 8 provides a full example of
Aτ

I where I corresponds to Example 4.
The TS Aτ

I has the following gadgets H0 and H1 that provide the atom α = (k,h0,3):

H0 = ⊥m+1 h0,1 h0,2 h0,3 h0,4 h0,5
wm+1 k o1 o2 k

H1 = ⊥m+2 h1,1 h1,2 h1,3 h1,4 h1,5 h1,6
wm+2 k z1 o1 z2 k

Moreover, for every i ∈ {1, . . . ,m}, the TS Aτ
I has the following gadget Ti that has the elements of

Mi = {Xi1 , . . . ,Ximi
} as events:

⊥i ti,0 ti,1 ti,2 ti,3 ti,4 ti,5 ti,6

...
ti,4mi−2ti,4mi−1ti,4miti,4mi+1ti,4mi+2ti,4mi+3ti,4mi+4

wi k z1 ai,1 Xi1 Xi1 ai,1

ai,mi
Ximi

Ximiai,miz2k

Notice that, for all ` ∈ {1, . . . ,mi}, the event ai,` that encompasses the event Xi` of Mi is bounded to the
occurrence of Xi` in Ti. In particular, if two distinct sets Mi and M j share an event X ∈ U, that is, there are
indices ` ∈ {1, . . . ,mi} and n ∈ {1, . . . ,m j} such that X = Xi` = X jn , then ai,` embraces X in Ti and a j,n

embraces X in Tj but ai,` and a j,n are distinct. Finally, to obtain Aτ
I , we use fresh events 	1, . . . ,	m+1

and connect T1, . . . ,Tm,H0 and H1 by ⊥1
	1 . . . 	m+1 ⊥m+2. The initial state of Aτ

I is ⊥1. Notice that
for every region R of Aτ

I , holds that s e s′ ∈ Aτ
I and sup(s) 6= sup(s′) implies sig(e) = swap. Moreover,

if s e s′ ∈ Aτ
I , then, by construction, s′ e . By the definition of out, this implies sig(e) 6= out for all

e ∈ E(Aτ
I ).

Theorem 1.3: The τ-Solvability of α Implies a Hitting Set. Let R = (sup,sig) be a τ-region
that solves α . Since R solves α , we have either sig(k) = used and sup(h0,3) = 0 or sig(k) = free
and sup(h0,3) = 1. In the following, we consider the former case, the arguments for the latter are
symmetrical. Please note Figure 8 during the following considerations. By sig(k) = used, we have

that sup(s) = sup(s′) = 1 for all s k s′ ∈ Aτ
I . In particular, we have sup(h0,2) = sup(h0,4) = 1 which,

by sup(h0,3) = 0, implies sig(o1) = sig(o2) = swap. Moreover, we have sup(h1,2) = sup(h1,5) = 1.
Consequently, the number of state changes on the image PR of the path P = h1,2

z1 . . . z2 h1,5 is even.
Since sig(o1) = swap, this implies that there is exactly one event e ∈ {z1,z2} such that sig(e) = swap. We
consider the case sig(z1) = swap. The arguments for the case sig(z2) = swap are similar. The region R is
d-restricted, and k,o1,o2,z1 have signatures different from nop. There are at most κ events left whose
signatures are not nop.

Let i ∈ {1, . . . ,m} be arbitrary but fixed. By sig(k) = used, we have sup(ti,1) = sup(ti,4mi+3) = 1. By
sig(z1) = swap and sig(z2) 6= swap, this implies sup(ti,2) = 0 and sup(ti,mi+2) = 1. Hence the image PR

of the path P =

ti,2 ti,3 ti,4 ti,5 ti,6 . . . ti,4mi−2 ti,4mi−1 ti,4mi ti,4mi+1 ti,4mi+2
ai,1 Xi1 Xi1 ai,1 ai,mi

Ximi
Ximi ai,mi

is a path from 0 to 1 in τ . Thus, there is an event e∈{Xi1 , . . . ,Ximi
}∪{ai,1, . . . ,ai,mi}whose signature causes

the state change from 0 to 1. This implies sig(e) 6= nop. Assume, for a contradiction, that sig(e) = nop for
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⊥1 t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7

t1,8t1,9t1,10t1,11t1,12

w1 k z1 a1,1 X1 X1 a1,1 a1,2

X2

X2a1,2z2k

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4 t2,5 t2,6 t2,7

t2,8t2,9t2,10t2,11t2,12

w2 k z1 a2,1 X2 X2 a2,1 a2,2

X3

X3a2,2z2k

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6 t3,7

t3,8t3,9t3,10t3,11t3,12

w3 k z1 a3,1 X1 X1 a3,1 a3,2

X4

X4a3,2z2k

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4 t4,5 t4,6 t4,7 t4,8

t4,9t4,10t4,11t4,12t4,13t4,14t4,15t4,16

w4 k z1 a4,1 X1 X1 a4,1 a4,2 X3

X3

a4,2a4,3X4X4a4,3z2k

h0,0 h0,1 h0,2 h0,3 h0,4⊥5
w5 k o1 o2 k

h1,0 h1,1 h1,2 h1,3 h1,4 h1,5⊥6
w6 k z1 o1 z2 k

	1

	2

	3

	4

	5

Figure 8: A full example of Aτ
I , where τ belongs to the types of Theorem 1.3 and I originates from

Example 4. Green colored area: A sketch of the {nop,set,swap,used}-region Rk = (sup,sig), based on
the HS S = {X1,X3}, that satisfies sig(k) = used and sup(h0,2) = 0 and solves α .

all e ∈ {Xi1 , . . . ,Ximi
}. Let ` ∈ {1, . . . ,mi} be arbitrary but fixed. By sig(X`) = nop, we get sup(ti,4`−1) =

sup(ti,4`) = sup(ti,4`+1). Recall that sup(s) 6= sup(s′) implies sig(e) = swap for all s e s′ ∈ Aτ
I . Thus, if

sig(ai,`) 6= swap, then sup(ti,4`−2) = sup(ti,4`−1) = sup(ti,4`) = sup(ti,4`+1) = sup(ti,4`+2). Otherwise, if
sig(ai,`) = swap, then sup(ti,4`−2) 6= sup(ti,4`−1) = sup(ti,4`) = sup(ti,4`+1) 6= sup(ti,4`+2). Consequently,
both cases imply sup(ti,4`−2) = sup(ti,4`+2). Since ` was arbitrary, this implies sup(ti,2) = sup(ti,4mi+2), a
contradiction. Hence, there is an event e ∈ {Xi1 , . . . ,Ximi

} such that sig(e) 6= nop. Since i was arbitrary,
this is simultaneously true for all T1, . . . ,Tm. Moreover, since R respects the parameter, the cardinality of
S = {X ∈ U | sig(X) 6= nop} is at most κ . Thus, S is a fitting hitting set of I.

The next lemma completes the proof of Theorem 1.3 and states that a sought HS of I implies a
d-restricted admissible set of Aτ

I . Due to space restrictions, its proof can be found in [23].

Lemma 4. Let τ be a type of net corresponding to Theorem 1.3. If I = (U,M,κ) has a fitting HS, then Aτ
I

has a d-restricted admissible set.
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3.4 The Proof of Theorem 1.4

Theorem 1.4: The Reduction In the following, we argue for τ = {nop, inp, res,swap}. The hardness for
τ = {nop,out,set,swap} then follows by symmetry. For a start, we define d = κ +4. The TS Aτ

I has the
following gadgets H0, . . . ,H4 that provide the atom α = (k,h0,2):

H0 = ⊥m+1 h0,0 h0,1 h0,2 h0,3 h0,4
wm+1 k o1 o2 k

H1 = ⊥m+2 h1,0 h1,1 h1,2 h1,3 h1,4
wm+2 k z1 o2 k

H2 = ⊥m+3 h2,0 h2,1 h2,2 h2,3 h2,4
wm+3 k z2 o2 k

H3 = ⊥m+4 h3,0 h3,1 h3,2 h3,3 h3,4 h3,5
wm+4 k z1 z3 z2 k

H4 = ⊥m+5 h4,0 h4,1 h4,2 h4,3 h4,4 h4,5
wm+5 k z1 z4 z2 k

Moreover, for every i ∈ {1, . . . ,m}, the TS Aτ
I has the following gadget Ti that uses the elements of

Mi = {Xi1 , . . . ,Ximi
} as events:

ti,0 ti,1 ti,2 . . . ti,mi+2 ti,mi+3 ti,mi+4
k z3 Xi1 Ximi z4 k

The Joining of Aτ
I by Relevant Paths. Similar to the previous reductions, we essentially want to connect

all gadgets by a simple directed path on which every event occurs exactly once. However, since we want to
ensure that if α is τ-solvable then all (E)SSP atoms of Aτ

I are also τ-solvable (by d-restricted regions), this
is not directly possible for the gadgets T1, . . . ,Tm. Instead, we complete the construction of Aτ

I through two
further steps. Firstly, for all i ∈ {1, . . . ,m}, we extend the gadget Ti to a (path-) gadget Gi =⊥i Ti

with starting state ⊥i. Secondly, we use the events 	1, . . . ,	m+4 and connect the gadgets G1, . . . ,Gm and
H0, . . . ,H4 by ⊥1

	1 ⊥2
	2 . . . 	m+4 ⊥m+5. The resulting TS is Aτ

I , and its initial state is ⊥1. Before we
introduce the definition of Gi, in the following, we briefly outline which obstacles arise and, in order to
overcome them, in which way they lead to Gi.

Let i ∈ {1, . . . ,m} and ` ∈ {1, . . . ,mi} be arbitrary but fixed. Similar to the approach of region RX ,2
i,` of

Theorem 1.1, which is sketched for i = 3 and `= 2 by Figure 6, our aim is to solve Xi` “gadget-wise”.
In particular, to solve (Xi` ,s) for all predecessor states s of ti,`+1 in Gi, that is, ⊥i, . . . , ti,`, we want to
construct a region R = (sup,sig) such that as few events as possible are not mapped to nop. (Independent
of Aτ

I ’s size, the region R2,X
i,` of Theorem 1.1 maps four events not to nop.) First of all, look at the following

definition: sup(⊥1) = 0; for all e ∈ E(Aτ
I ), if e = Xi` , then sig(e) = inp; if e is Xi`’s direct predecessor,

that is, e ti,`+1, then sig(e) = swap; otherwise sig(e) = nop. In Figure 9, the red colored area sketches
this region for X11 = X1 and its direct predecessor z3; the green colored area sketches this region for
X32 = X4 and its direct predecessor X1. Actually, R is always well defined if Xi` ∈ E(Tj) implies that
Xi`’s direct predecessor e ti,`+1 also belongs to E(Tj). This is not true if there is an occurrence of Xi`
in a gadget Tj, say at t j,`′ , such that Xi`’s predecessor does not belong to Tj’s event set. For example,
consider in Figure 9 the event X42 = X3 of T4 that occurs as X22 in T2. In T4, X3 is directly preceded by
X1, but X1 does not occur in T2. The following problem arises. Since sig(Xi`) = inp, there has to be
an event e on the unambiguous path ⊥1 . . . t j,`′ such that sig(e) = swap. Otherwise, Xi`’s source
ti,`′ in Tj would not satisfy sup(ti,`′) = 1. At first glance, a possible solution might be to implement an
additional (unique) event y j on the path ⊥ j t j,0 for all j ∈ {1, . . . ,m} where Xi` belongs to E(Tj)
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⊥1 t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6
k z3 X1 X2 z4 k

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4 t2,5 t2,6
k z3 X2 X3 z4 k

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6
k z3 X1 X4 z4 k

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4 t4,5 t4,6 t4,7
k z3 X1 X3 X4 z4 k

⊥5 ⊥6 ⊥7 ⊥8 ⊥9...
...

...
...

...

	1

	2

	3

	4
	5 	6 	7 	8

Figure 9: A snippet of Aτ
I (τ = {nop, inp, res,swap}) built from Example 4 and showing the gadgets

T1, . . . ,T4. Red colored area: the region R = (sup,sig) where sup(⊥1) = 0; sig(X1) = inp; sig(z3) = swap;
sig(e)= nop for all e∈E(Aτ

I )\{z3,X1}. Green colored area: the region R=(sup,sig) where sup(⊥1)= 0;
sig(X4) = inp; sig(X1) = swap; sig(e) = nop for all e ∈ E(Aτ

I )\{X1,X4}.

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4 t1,5 t1,6
k z3 X1 X2 z4 k

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4 t2,5 t2,6
y2 k z3 X2 X3 z4 k

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6
k z3 X1 X4 z4 k

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4 t4,5 t4,6 t4,7
k z3 X1 X3 X4 z4 k

	1

	2

	3

Figure 10: A sketch of the “first-glance” solution for Aτ
I (τ = {nop, inp, res,swap}), where I corresponds

to Example 4. Green colored area: the region R = (sup,sig) where sup(⊥1) = 0; sig(X3) = inp; sig(X1) =
sig(y2) = swap; sig(e) = nop for all e ∈ E(Aτ

I )\{X1,X3,y2}.
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Figure 11: The pyramidal approach of the relevant paths ensures that ⊕-events are solvable by regions
independent of the size of (U,M,κ). Green colored area: a region R = (sup,sig) solving (⊕i, j

1 ,s) for all
relevant s ∈ S(Aτ

I ): sup(⊥1) = 0; for all e ∈ E(Aτ
I ), if e =⊕i, j

1 , then sig(e) = inp; if e ∈ {vi, j
1 ,⊕i, j

2 }, then
sig(e) = swap; otherwise sig(e) = nop. Blue colored area: a corresponding region solving ⊕i, j

2 . These
regions are independent from the positions of Gi1 , . . . ,Gi` in Aτ

I or Pin in Gin , where n ∈ {1, . . . , `}.
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but Xi`’s direct predecessor event does not. Then we would modify the region R = (sup,sig) in a way, that
sig(y j) = swap for all relevant j. Figure 10 sketches the situation for y2.

Unfortunately, for this construction and the sketched region, |{e ∈ E(Aτ
I ) | sig(e) 6= nop}| ≥ n+ 2

holds, where n is the number of gadgets in which Xi` occurs but its predecessor does not. Since Xi` could
occur in numerous sets, in general, n depends on the size of M and does not necessarily respect the
parameter d. Thus, this approach yields not a parameterized reduction. The next inelaborate solution to
overcome this obstacle is to ensure that there is the same event, say y, on every path ⊥ j t j,0 for all
j ∈ {1, . . . ,m}\{i} such that Xi` ∈ E(Tj) but Xi`’s predecessor is not in E(Tj). However, one has to ensure
that the already discussed difficulties are not transferred from Xi` to y. Our solution uses relevant paths to
realize a pyramidal approach that is sketched by Figure 11. Instead of one single event y (whose role is
played by ⊕i, j

1 in Figure 11), this approach implements for every corresponding Tj a unique directed path.
Let i ∈ {1, . . . ,m} be arbitrary but fixed. We extend the gadget Ti to Gi =⊥i

wi Pi
ui Ti with starting

state ⊥i and events wi,ui that embrace the path Pi, to be defined next. To be able to refer uniformly to
the events Xi1 , . . . ,Ximi

and z4, we define ei
1 = Xi1 , . . . ,e

i
mi

= Ximi
and ei

mi+1 = z4. Let j ∈ {2, . . . ,mi +1}
be arbitrary but fixed and let i1 < · · ·< i` ∈ {1, . . . ,m}\{i} be exactly the indices different from i such
that for the gadgets Ti1 , . . . ,Ti` we have ei

j ∈ E(Tin) and ei
j−1 6∈ E(Tin), for all n ∈ {1, . . . , `}. For all

n ∈ {1, . . . , `}, we say that ei
j is relevant for Gin and

Pi, j
in,n = si, j

in,0
vi, j

n si, j
in,1

⊕i, j
n si, j

in,2
⊕i, j

n−1 . . .
⊕i, j

1 si, j
in,n+1

is the relevant path of Gin that originates from ei
j.

Example 5. The event e1
3 = z4 of T1 of Figure 9 is preceded by e1

2 = X2. While the event z4 occurs in T2,T3
and T4, the event X2 occurs in T2 but not in T3 and not in T4. Thus, e1

3 is (only) relevant for T3 = Ti1 and
T4 = Ti2 , where i1 = 3 and i2 = 4. The corresponding relevant paths are

P1,3
3,1 = s1,3

3,0
v1,3

1 s1,3
3,1
⊕1,3

1 s1,3
3,2 and P1,3

4,2 = s1,3
4,0

v1,3
2 s1,3

4,1
⊕1,3

2 s1,3
4,2
⊕1,3

1 s1,3
4,3.

Equipped with these definitions, we are prepared to define the gadget Gi. If there are no relevant events
for Gi, then Gi = ⊥i

wi qi
ui Ti. In particular, Pi = qi. Otherwise, let ei1

j1 , . . . ,e
in
jn be the events that are

relevant for Gi where i1 ≤ i2 ≤ ·· · ≤ in and j1 ≤ j2 ≤ ·· · ≤ jn. Let Pi1, j1
i,`1

,Pi2, j2
i,`2

, . . . ,Pin, jn
i,`n

be the relevant
paths of Gi that origin from ei1

j1 , . . . ,e
in
jn , respectively. The path Pi then originates from Gi’s relevant paths:

Gi =⊥i
wi Pi1, j1

i,`1

ci
1 Pi2, j2

i,`2

ci
2 . . .

ci
n Pin, jn

i,`n

ui Ti

See [23] for a full example.
Theorem 1.4: The τ-Solvability of α Implies a Hitting Set. Let R = (sup,sig) be a d-restricted

τ-region of Aτ
I that solves α . Since R solves α , one easily finds that sig(k) = inp and sup(h0,2) = 0.

By sig(k) = inp, we have sup(h0,3) = 1; and sup(h0,2) = 0 implies sig(o2) = swap. Moreover, by
sig(k) = inp and sig(o2) = swap, we obtain that sup(h1,1) = sup(h1,2) = sup(h2,1) = sup(h2,2) = 0. This
implies sig(z1),sig(z2)∈ {nop, res}. By sig(k) = inp and sig(z1),sig(z2)∈ {nop, res}, we get sup(h3,2) =
sup(h4,2) = 0 and sup(h3,3) = sup(h4,3) = 1. This implies sig(z3) = sig(z4) = swap. Since d = κ +4 and
R is d-restricted, there are at most κ events left whose signature is different from nop. Let i ∈ {1, . . . ,m}
be arbitrary but fixed. By sig(k) = inp, we get sup(ti,1) = 0 and sup(ti,mi+3) = 1. Moreover, by sig(z3) =
sig(z4) = swap, we get sup(ti,2) = 1 and sup(ti,mi+2) = 0. Thus, there is an event X ∈ E(Ti) such that
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sig(X) ∈ {inp, res,swap}. Since i was arbitrary and R is d-restricted, the set S = {X ∈ U | sig(X) 6= nop}
is a sought-for HS of I.

Theorem 1.4: A Hitting Set Implies the τ-Solvability of Aτ
I . We argue for the τ-solvability of

k, implying the τ-solvability of α . The following d-restricted τ-region R = (sup,sig) solves α and
solves (k,s) for all relevant s ∈

⋃m
i=1 S(Hi)\{⊥m+1, . . . ,⊥m+5}, too: sup(⊥1) = 1; for all e ∈ E(Aτ

I ), if
e = k, then sig(e) = inp; if e ∈ {o2,z3,z4}, then sig(e) = swap; if e ∈ S, then sig(e) = res; otherwise,
sig(e) = nop.

Let i ∈ {1, . . . ,m} be arbitrary but fixed. The following region R = (sup,sig) solves (k,s) for all
relevant s ∈ S(Gi): If i = 1, then sup(⊥1) = 0, otherwise sup(⊥1) = 1; for all e ∈ E(Aτ

I ), if e ∈ {k,	i−1},
then sig(k) = inp; if e ∈ {	i,o1,z1,z2,z4}, then sig(e) = swap; if e = z3, then sig(e) = res; otherwise,
sig(e) = nop. It is easy to see that, for any s ∈ {⊥m+1, . . . ,⊥m+5}, this region can be modified to a
d-restricted region that solves (k,s).

Let i ∈ {1, . . . ,mi} be arbitrary but fixed. The separability of Xi1 , . . . ,Ximi
,z4 in Gi has already been

sketched in the explanation of the relevant paths. Clearly, these events are separable in the gadgets in
which they do not occur. Also the helper events of the relevant paths are separable. We omit the proofs for
the sake of readability.

4 Conclusion

In this paper, we investigate the parameterized complexity of DRτS parameterized by d and show W [2]-
hardness for a range of Boolean types. As a result, d is ruled out for fpt-approaches for the considered types
of nets. As future work, it remains to classify DRτS exactly in the W -hierarchy. Moreover, one may look
for other more promising parameters: If N = (P,T,M0, f ) is a Boolean net, p ∈ P and if the occupation
number op of p is defined by op = |{M ∈ RS(N) |M(p) = 1}| then the occupation number oN of N is
defined by oN = max{op | p ∈ P}. If R is a τ-admissible set (of a TS A) and R ∈R, then the support
of R determines the number of markings of NR

A that occupy R, that, is, oR = |{s ∈ S(A) | sup(s) = 1}|.
Thus, searching for a τ-net where oN ≤ n, n ∈ N, corresponds to searching for a τ-admissible set R
such that |{s ∈ S(A) | sup(s) = 1}| ≤ n for all R ∈R. As a result, for each (E)SSP atom α there are at
most O(

(|S|
oN

)
) fitting supports for τ-regions solving α . Thus, the corresponding problem oN-restricted

τ-synthesis parameterized by oN is in XP if, in a certain sense, τ-regions are fully determined by a given
support sup.
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