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In this work we design a narrative understanding tool TEXT2ALM. This tool uses an action lan-
guage ALM to perform inferences on complex interactions of events described in narratives. The
methodology used to implement the TEXT2ALM system was originally outlined by Lierler, Inclezan,
and Gelfond [13] via a manual process of converting a narrative to an ALM model. It relies on a con-
glomeration of resources and techniques from two distinct fields of artificial intelligence, namely, nat-
ural language processing and knowledge representation and reasoning. The effectiveness of system
TEXT2ALM is measured by its ability to correctly answer questions from the bAbI tasks published
by Facebook Research in 2015. This tool matched or exceeded the performance of state-of-the-art
machine learning methods in six of the seven tested tasks. We also illustrate that the TEXT2ALM
approach generalizes to a broader spectrum of narratives.

1 Introduction
The field of Information Extraction (IE) is concerned with gathering snippets of meaning from text and
storing the derived data in structured, machine interpretable form. Consider a sentence

BBDO South in Atlanta, which handles corporate advertising for Georgia-Pacific, will assume ad-
ditional duties for brands like Angel Soft, said Ken Haldin, a spokesman for Georgia-Pacific from
Atlanta.

A sample IE system that focuses on identifying organizations and their corporate locations may extract
the following predicates from this sentence:

locatedIn(BBDOSouth,Atlanta) locatedIn(GeorgiaPaci f ic,Atlanta)

These predicates can then be stored either in a relational database or a logic program, and queried ac-
cordingly by well-known methods in computer science. Thus, IE allows us to turn unstructured data
present in text into structured data easily accessible for automated querying.

In this paper, we focus on an IE system that is capable of processing simple narratives with action
verbs, in particular, verbs that express physical acts such as go, give, and put. Consider a sample narrative
that we refer to as the JS discourse:

John traveled to the hallway. (1)
Sandra journeyed to the hallway. (2)

The actions travel and journey in the narrative describe changes to the narrative’s environment, and
can be coupled with the readers commonsense knowledge to form and alter the readers mental picture
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for the narrative. For example, after reading sentence (1), a human knows that John is the subject of
the sentence and traveled is an action verb describing an action performed by John. A human also
knows that traveled describes the act of motion, and specifically that John’s location changes from an
arbitrary initial location to a new destination, the hallway. Lierler et al. [13] outline a methodology
for constructing a Question Answering (QA) system by utilizing IE techniques. Their methodology
focuses on performing inferences using the complex interactions of events in narratives. Their process
utilizes an action language ALM [8] and an extension of the VERBNET lexicon [19, 11]. Language
ALM enables a system to structure knowledge regarding complex interactions of events and implicit
background knowledge in a straight-forward and modularized manner. The knowledge represented in
ALM is processed by means of logic programming under answer set semantics and can be used to
derive inferences about a given text. The proposed methodology in [13] assumes the extension of the
VERBNET lexicon with interpretable semantic annotations in ALM. The VERBNET lexicon groups
English verbs into classes allowing us to infer that such verbs as travel and journey practically refer to
the same class of events.

The processes described in [13] are exemplified via two sample narratives processed manually. The
authors translated those narratives to ALM programs by hand and wrote the supporting ALM modules
to capture knowledge as needed. To produce ALM system descriptions for considered narratives, the
method by Lierler et al. [13] utilizes NLP resources, such as semantic role labeler LTH [9], parser and co-
reference resolution tools of CORENLP [15], and lexical resources PROPBANK [20] and SEMLINK [3].
Ling [14] used these resources to automate parts of the method in the TEXT2DRS system. In particular,
TEXT2DRS extracts entities, events, and their relations from a given action-based narrative. A narrative
understanding system developed within this work, TEXT2ALM, utilizes TEXT2DRS and automates the
remainder of the method outlined in [13]. When considering the JS discourse as an example, system
TEXT2ALM produces a set of facts in spirit of the following:

move( john,hallway,0) move(sandra,hallway,1) (3)
loc in( john,hallway,1) loc in( john,hallway,2) loc in(sandra,hallway,2), (4)

where 0,1,2 are time points associated with occurrences of described actions in the JS discourse. In-
tuitively, time point 0 corresponds to a time prior to utterance of sentence (1). Time point 1 corresponds
to a time upon the completion of the event described in (1). Facts in (3) and (4) allow us to provide
grounds for answering questions related to the JS discourse such as:

Question: Ground:
Is John inside the hallway at the end of the story (time 2)? loc in( john,hallway,2)
Who is in the hallway at the end of the story? loc in(John,hallway,2)

loc in(sandra,hallway,2)
We note that modern NLP tools and resources prove to be sufficient to extract facts (3) given the

JS discourse. Yet, inferring facts such as (4) requires complex reasoning about specific actions present
in a given discourse and modeling such common sense knowledge as inertia axiom (stating that things
normally stay as they are) [12]. System TEXT2ALM combines the advances in NLP and knowledge
representation and reasoning (KRR) to tackle the complexities of converting narratives such as the JS
discourse into a structured form such as facts in (3-4).

The effectiveness of system TEXT2ALM is measured by its ability to answer questions from the bAbI
tasks [22]. These tasks were proposed by Facebook Research in 2015 as a benchmark for evaluating
basic capabilities of QA systems in twenty categories. Each of the twenty bAbI QA tasks is composed
of narratives and questions, where 1000 questions are given in training set and 1000 questions are given
in a testing set. We extend the information extraction component of the TEXT2ALM by a specialized
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QA processing module to tackle seven of the bAbI tasks containing narratives with action verbs. Tool
TEXT2ALM matched or exceeded the performance of modern machine learning methods in six of these
tasks. We also illustrate that the TEXT2ALM approach generalizes to a broader spectrum of narratives
than present in bAbI.

We start the paper by a review of relevant tools and resources stemming from NLP and KRR com-
munities. We then proceed to describe the architecture of the TEXT2ALM system implemented in this
work. We conclude by providing the evaluation data on the system.

2 Background
NLP Resource VERBNET: VERBNET is a domain-independent English verb lexicon organized into a
hierarchical set of verb classes [19, 11]. The verb classes aim to achieve syntactic and semantic coherence
between members of a class. Each class is characterized by a set of verbs and their thematic roles. For
example, the verb run is a member of the VERBNET class RUN-51.3.2. This class is characterized by

• 96 members including verbs such as bolt, frolic, scamper, and weave,
• four thematic roles, namely, theme, initial location, trajectory and destination,
• two subbranches: RUN-51.3.2-1 and RUN-51.3.2-2. For instance, RUN-51.3.2-2 has members gallop,

skip, and strut, and has additional thematic roles agent, result, and source.

Dynamic Domains, Transition Diagrams, and Action Language ALM: Action languages are formal
KRR languages that provide convenient syntactic constructs to represent knowledge about dynamic do-
mains. The knowledge is compiled into a transition diagram, where nodes correspond to possible states
of a considered dynamic domain and edges correspond to actions/events whose occurrence signal transi-
tions in the dynamic system. The JS discourse exemplifies a narrative modeling a dynamic domain with
three entities John, Sandra, hallway and four actions, specifically:

ajin – John travels into the hallway ajout – John travels out of the hallway
asin – Sandra travels into the hallway asout – Sandra travels out of the hallway

Scenarios of a dynamic domain correspond to trajectories in the domain’s transition diagram. Tra-
jectories are sequences of alternating states and actions. A trajectory captures the sequence of events,
starting with the initial state associated with time point 0. Each edge is associated with the time point
incrementing by 1.

In this work we utilize an advanced action language ALM [8] to model dynamic domains of given
narratives. This language can represent knowledge pertaining to the commonalities of similar actions
through means of logic programming under answer set semantics. This is a crucial feature of the language
that made it especially fit for this work. In addition, there are efficient solving techniques available for
ALM. In particular, a translation from ALM to logic programs under answer set semantics (answer set
programs) was proposed by Inclezan and Gelfond in [8]. In turn, answer set programming is a prominent
subfield of automated reasoning supported by a plead of efficient answer set solvers (tools that find
solutions to answer set programs). Here we use system CALM [21] that translates ALM theories into
answer set programs in the language of answer set solver SPARC [1]. We then use system SPARC to find
solutions for ALM theories of interest.

We illustrate the syntax and semantics of ALM using the JS discourse dynamic domain by first
defining an ALM system description and then an ALM history for this discourse. In language ALM,
a dynamic domain is described via a system description that captures a transition diagram specifying
the behavior of a given domain. An ALM system description consists of a theory and a structure. A
theory is comprised of a hierarchy of modules, where a module represents a unit of general knowledge
describing relevant sorts, properties, and the effects of actions. The structure declares instances of entities
and actions of the domain. Figure 1 illustrates these concepts with the ALM formalization of the JS



90 Information Extraction Tool TEXT2ALM

system description JS_discourse

theory JS_discourse_theory

module JS_discourse_module

sort declarations

points, agents :: universe

move :: actions

attributes

actor : agents -> booleans

origin : points -> booleans

destination : points -> booleans

function declarations

fluents

basic

loc_in : agents * points -> booleans

axioms

dynamic causal laws

occurs(X) causes loc_in(A,D) if instance(X,move), actor(X,A),

destination(X,D).

executability conditions

impossible occurs(X) if instance(X,move), actor(X,A), loc_in(A,P),

origin(X,O), P!=O.

impossible occurs(X) if instance(X,move), actor(X,A), loc_in(A,P),

destination(X,D), P=D.

structure john_and_sandra

instances

john, sandra in agents

hallway in points

ajin in move

actor(john) = true

destination(hallway) = true

asin in move

actor(sandra) = true

destination(hallway) = true

Figure 1: An ALM system description formalizing the JS discourse dynamic domain

discourse domain.
The JS discourse theory uses a single module to represent the knowledge relevant to the domain.

The module declares the sorts (agents, points, move) and the property (loc in) to represent entities
and attributes of the domain. Actions utilize attributes to define the roles of participating entities. For
instance, destination is an attribute of move that denotes the final location of the mover. Here we ask a
reader to draw a parallel between the notions of an attribute and a VERBNET thematic role.

The JS discourse theory also defines two types of axioms, dynamic causal laws and executability
conditions, to represent commonsense knowledge associated with a move action. The dynamic causal
law states that if a move action occurs with a given actor and destination, then the actor’s location
becomes that of the destination. The executability conditions restrict an action from occurring if the
action is an instance of move, where the actor and actor’s location are defined, but either (i) the actor’s
location is not equal to the origin of the move event or (ii) the actor’s location is already the destination.

An ALM structure in Figure 1 defines the entities and actions from the JS discourse. For example,
it states that john and sandra are agents. Also, action ajin is declared as an instance of move where john
is the actor and hallway is the destination.
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An ALM system description can be coupled with a history. A history is a particular scenario de-
scribed by observations about the values of properties and occurring events. In the case of narratives, a
history describes the sequence of events by stating occurrences of specific actions at given time points.
For instance, the JS discourse history contains the events

• John moves to the hallway at the beginning of the story (an action ajin occurs at time 0) and
• Sandra moves to the hallway at the next point of the story (an action asin occurs at time 1).

The following history is appended to the end of the system description in Figure 1 to form an ALM

program for the JS disocurse. We note that happened is a keyword that captures the occurrence of
actions.

history

happened(ajin, 0).

happened(asin, 1).

An ALM Solver CALM: System CALM is an ALM solver developed at Texas Tech University by Wertz,
Chandrasekan, and Zhang [21]. It uses an ALM program to produce a ”model” for an encoded dynamic
domain. The engine for system CALM (i) constructs a logic program under stable model/answer set
semantics [6], whose answer sets/solutions are in one-to-one correspondence with the models of the
ALM program, and (ii) uses an answer set solver SPARC [1] for finding these models. In this manner,
CALM processes the knowledge represented by an ALM program to enable reasoning capabilities. The
ALM program in Figure 1 follows the CALM syntax. However, system CALM requires two additional
components for this program to be executable. The user must specify (i) the computational task and (ii)
the max time point considered.

In our work we utilize the fact that system CALM can solve a task of temporal projection, which is the
process of determining the effects of a given sequence of actions executed from a given initial situation
(which may be not fully determined). In the case of a narrative the initial situation is often unknown,
whereas the sequence of actions are provided by the discourse. Inferring the effects of actions allows
us to answer questions about the narrative’s domain. We insert the following statement in the ALM

program prior to the history to perform temporal projection:

temporal projection

Additionally, CALM requires the max number of steps to be stated. Intuitively, we see this number as an
upper bound on the ”length” of considered trajectories. This information denotes the final state’s time
point in temporal projection problems. We insert the following line in the ALM program to define the
max steps for the JS discourse ALM program:

max steps 3

For the case of the temporal projection task, a model of an ALM program is a trajectory in the
transition system captured by the ALM program that is ”compatible” with the provided history. A
compatible model correlate to the answer set solved by CALM. For the JS discourse ALM program, the
CALM computes a model that includes the following expressions:

happened(ajin, 0), happened(asin, 1),

loc_in(john, hallway, 1), loc_in(sandra, hallway, 2), loc_in(john, hallway, 2)

ALM Knowledge Base COREALMLIB: The COREALMLIB is an ALM library of generic common-
sense knowledge for modeling dynamic domains developed by Inclezan [7]. The library’s foundation
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occurs(X) causes location(O, D) if instance(X, move),

object(X, O),

destination(X, D),

instance(D, spatial_entity).

Figure 2: Commonsense Knowledge Axiom from the COREALMLIB motion module.

is the Component Library or CLib [2], which is a collection of general, reusable, and interrelated com-
ponents of knowledge. CLib was populated with knowledge stemming from linguistic and ontological
resources, such as VERBNET, WORDNET, FRAMENET, a thesaurus, and an English dictionary. The
COREALMLIB was formed by translating CLib into ALM to obtain descriptions of 123 action classes
grouped into 43 reusable modules. The modules are organized into a hierarchical structure, and contain
action classes and axioms to support commonsense reasoning. An example of one such axiom from the
motion module is provided in Figure 2. This axiom states that if a move action occurs where O is the
object moving and D is a spatial entity and the destination, then the location of O becomes D.

3 System TEXT2ALM Architecture
Lierler, Inclezan, and Gelfond [13] outline a methodology for designing IE/QA systems to make in-
ferences based on complex interactions of events in narratives. This methodology is exemplified with
two sample narratives completed manually by the authors. System TEXT2ALM automates this process.
Figure 3 pretenses the architecture of the system. It implements four main tasks/processes:

1. TEXT2DRS Processing – Entity, Event, and Relation Extraction
2. DRS2ALM Processing – Creation of ALM Program
3. CALM Processing – ALM Model Generation and Interpretation
4. QA Processing
Figure 3 denotes each process by its own column. Ovals identify inputs and outputs. Systems

or resources are represented with white, grey, and black rectangles. White rectangles denote existing,
unmodified resources. Grey rectangles are used for existing, but modified resources. Black rectangles
signify newly developed subsystems. The first three processes form the core of TEXT2ALM, seen as
an IE system. The QA Processing component is specific to the bAbI QA benchmark that we use to
illustrate the validity of the approach advocated by TEXT2ALM. The system’s source code is available at
https://github.com/cdolson19/Text2ALM.

3.1 TEXT2DRS Processing
The method by Lierler et al. [13] utilizes NLP resources, such as semantic role labeler LTH [9], parsing
and coreference resolution tools of CORENLP [15], and lexical resources PROPBANK [20] and SEM-
LINK [3] to produce ALM system descriptions for considered narratives. System TEXT2DRS [14] was
developed with these resources to deliver a tool that extracts entities, events, and their relations from
given narratives. The TEXT2DRS tool formed the starting point in the development of TEXT2ALM due to
its ability to extract basic entity and relational information from a narrative. The output of the TEXT2DRS

system is called a discourse representation structure, or DRS [10]. A DRS captures key information
present in discourse in a structured form. For example, Figure 4 presents the DRS for the JS discourse.

This DRS states that there are three entities and two events that take part in the JS narrative. The DRS
assigns names, or referents, to the entities (r1,r2, and r3) and the events (e1,e2). For instance, entity
r1 and event e1 denote John and an event representing the VERBNET class RUN-51.3.2-1, respectively.
The theme (which is one of the thematic roles associated with RUN-51.3.2-1) of event e1 is entity r1

https://github.com/cdolson19/Text2ALM
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Figure 3: System TEXT2ALM Architecture

entity(r1). entity(r2). entity(r3).

property(r1, "John"). property(r2, "hallway"). property(r3, "Sandra").

event(e1). event(e2).

eventType(e1, "run-51.3.2-1"). eventType(e2, "run-51.3.2-1").

eventTime(e1, 0). eventTime(e2, 1).

eventArgument(e1, "Theme", r1). eventArgument(e2, "Theme", r3).

eventArgument(e1, "Destination", r2). eventArgument(e2, "Destination", r2).

Figure 4: DRS for the JS discourse.
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(or, John) and the destination of this event is entity r2 (or, hallway). Event e1 occurs at time point
0, while event e2 occurs at time point 1. We refer an interested reader to the work by Ling [14] for the
details of the TEXT2DRS component. In realms of this project, TEXT2DRS was modified to accommodate
VERBNET v 3.3 (in place of VERBNET v 2), which provides broader coverage of verbs.

3.2 DRS2ALM Processing
The DRS2ALM subsystem is concerned with combining commonsense knowledge related to events in a
discourse with the information from the DRS generated by TEXT2DRS. The goal of this process is to
produce an ALM program consisting of a system description and a history for the scenario described
by the narrative. The system description is composed of a theory containing relevant commonsense
knowledge and a structure that is unique for a given narrative. Since the structure is specific to a given
narrative, it is created using the information from a narrative’s DRS. Meanwhile the theory represents the
commonsense knowledge associated with a narrative’s actions. Thus, the theory depends on a general,
reusable knowledge base pertaining to actions. The COREALMLIB knowledge base was modified to
form CORECALMLIB to fit this need of the TEXT2ALM system. We organize this section by (1) ex-
plaining how CORECALMLIB was obtained and (2) provide details on how a narrative’s ALM program
is generated.

Library CORECALMLIB: To obtain the CORECALMLIB knowledge base, the following modifications
to the COREALMLIB were made:

1. Syntactic adjustments 3. VERBNET extensions
2. Property extractions 4. Axiom changes

First, syntactic adjustments were implemented to make the library compatible with the CALM syn-
tax. Second, we observed that the COREALMLIB has instances where properties (fluents) with the same
name are declared in multiple modules. Yet semantically, these properties are assumed to be the same
across all modules. We found this approach counter-intuitive from the point of knowledge-base design,
thus we extracted all fluent declarations from COREALMLIB modules and created new modules whose
purpose was to declare fluents. These modules were organized by their properties and grouped simi-
lar properties together. The original COREALMLIB modules now import the necessary properties as
needed. Regarding VERBNET extensions, COREALMLIB was further modified by adding a module for
every VERBNET class we observed in the bAbI QA task training sets. We discuss these training sets
in detail in Section 4. In particular, 52 of VERBNET’s 274 classes were formalized with modules in
CORECALMLIB. Each VERBNET module defines a sort for that verb class that inherits from one of
the 123 action classes stemming from COREALMLIB. Specifically, we utilize 15 action classes formal-
ized in COREALMLIB, stemming from 9 of its total 43 modules. Thematic roles from the VERBNET

lexicon are then mapped via state constraints to the attributes associated with actions already used by
the COREALMLIB library. These VERBNET modules are stored in a CORECALMLIB sub-library that
we call VN CLASS LIBRARY. Lastly, we modified and added axioms into some COREALMLIB mod-
ules after identifying pieces of knowledge that were not represented within the original library. When
not considering fluent extractions, fluents were altered or added to only four modules from the original
COREALMLIB. This supports the hypothesis that COREALMLIB can provide an effective baseline for
commonsense reasoning about actions. All modifications to the COREALMLIB to form CORECALM-
LIB are explained further in [18].

ALM Program Generation: The DRS2ALM processing step generates an ALM program for a given
discourse by combining the information in a narrative’s DRS and the CORECALMLIB library. We first
examine the theory in the program’s system description. We start by identifying the general knowledge
associated with a narrative’s domain by importing the VERBNET modules from the CORECALMLIB for
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Parent Sort living entity place spatial entity entity
Associated Actor, Agent Location Destination Instrument, Material
Thematic Beneficiary Place Initity location Pivot, Product Duration
Roles Cause, Co-Agent Source Stimulus, Time, Extent

Co-Theme, Recipient Trajectory, Initial time
Experiencer Topic, Value, Goal
Participant, Patient Result, Attribute
Theme, Undergoer Final time, Frequency

Figure 5: VERBNET Thematic Roles to COREALMLIB Sorts

all VERBNET classes associated with a narrative. These provide the commonsense knowledge backbone
for the actions in the narrative. Then, we define a new module unique to the narrative. This module
declares entities from the narrative as new sorts inheriting from base CORECALMLIB sorts. We chose
to declare the narrative’s entities as new sorts to provide more flexibility to define additional, unique
attributes associated with the entities if the need arises. However, to declare these new sorts we must
identify the CORECALMLIB parent sort to inherit from. We rely on the VERBNET thematic roles
associated with an entity to make this selection. We grouped VERBNET thematic roles into four parent
sorts of CORECALMLIB by reviewing the thematic roles associated with the VERBNET classes in the
training sets and attempting to map these to the most similar sorts defined by the original COREALMLIB.
Figure 5 presents the groupings. If an entity is associated with roles from different categories, we use a
prioritized sort order defined as follows:

living entity >> place >> spatial entity >> entity,
where >> is transitive and states that the left argument has a higher priority than the right one.

We now turn our attention to the process of generating the structure and history for the ALM pro-
gram. The structure declares the specific entities and events from the narrative. Entity IDs from a given
narrative’s DRS are defined as instances of the corresponding entity sort from the theory. Events are also
declared as instances of their associated VERBNET class sort, and the entities related to events are listed
as attributes of these events. The history states the order and timepoints in which narrative’s events hap-
pened. We extract this information from the arguments expressed in DRS. To exemplify the described
process, Figure 6 presents the ALM program output by the DRS2ALM Processing stage applied towards
the JS discourse DRS in Figure 4. Note that the ALM theory in Figure 6 imports the VERBNET module
for RUN-51.3.2-1 from the VN CLASS LIBRARY. The two events in the JS discourse were identified as
members of the VERBNET class RUN-51.3.2-1. Thus, the module associated with this class is imported
to retrieve the knowledge relevant to RUN events in the JS discourse domain.

3.3 CALM and QA Processing
In the CALM Processing performed by TEXT2ALM, the CALM system is invoked on a given narrative’s
ALM program that was generated by the DRS2ALM Processing stage. The CALM system computes a
model via logic programming under answer set semantics. We then perform post-processing on this
model to make its content more readable for a human by replacing all entities IDs with their names from
the narrative. For instance, given the ALM program in Figure 6, the output of the CALM Processing will
include expressions:

loc in(John,hallway,1), loc in(John,hallway,2), loc in(Sandra,hallway,2).

We note that no other loc in fluents will be present in the output.
A model derived by the CALM system contains facts about the entities and events from the narrative

supplemented with basic commonsense knowledge associated with the events. We use a subset of the
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system description js_discourse

theory js_discourse_theory

import t_run_51_32.m_run_51_3_2_1 from VN_class_library

module js_discourse

depends on t_run_51_3_2.m_run_51_3_2_1

sorts declarations

john :: living_entity

hallway :: spatial_entity

sandra :: living_entity

structure js_discourse_structure

instances

r1 in john

r2 in hallway

r3 in sandra

e1 in run_51_3_2_1

vn_theme(r1) = true

vn_destination(r2) = true

e2 in run_51_3_2_1

vn_theme(r3) = true

vn_destination(r2) = true

temporal projection

max steps 3

history

happened(e1,0).

happened(e2 1).

Figure 6: An ALM system description automatically created by the DRS2ALM processing

bAbI QA tasks to test the TEXT2ALM system’s IE effectiveness and implement QA capabilities within
the SPHINX subsystem (see Figure 3). It utilizes regular expressions to identify the kind of question
that is being asked and then query the model for relevant information to derive an answer. The SPHINX

system is specific to the bAbI QA task and is not a general purpose question answering component.
Additional information on the components of system TEXT2ALM are given in [18].

4 TEXT2ALM Evaluation
Related Work: Many modern QA systems predominately rely on machine learning techniques. How-
ever, there has recently been more work related to the design of QA systems combining advances of NLP
and KRR. The TEXT2ALM system is a representative of the latter approach. Other approaches include
the work by Clark, Dalvi, and Tandon [4] and Mitra and Baral [17]. Mitra and Baral [17] use a training
dataset to learn the knowledge relevant to the action verbs mentioned in the dataset. They posted nearly
perfect test results on the bAbI tasks. However, this approach doesn’t scale to narratives that utilize
other action verbs which are not present in the training set, including synonymous verbs. For example,
if their system is trained on bAbI training data that contains verb travel it will process the JS discourse
correctly. Yet, if we alter the JS discourse by exchanging travel with a synonymous word stroll, their
system will fail to perform inferences on this altered narrative (note that stroll does not occur in the
bAbI training set). We address this limitation in the TEXT2ALM system because the system does not rely
upon the training narratives for the commonsense knowledge. If the verbs occurring in narratives belong
to VERBNET classes whose semantics have been captured within CORECALMLIB then TEXT2ALM is
normally able to process them properly.

Another relevant QA approach is the work by Clark, Dalvi, and Tandon [4]. This approach uses
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1 Mary moved to the bathroom. 5 Mary went back to the kitchen.

2 Sandra journeyed to the bedroom. 6 Mary went back to the garden.

3 Mary got the football there. 7 Where is the football? garden 3 6

4 John went to the kitchen.

Figure 7: Example narrative and question from bAbI task 2 training set

VERBNET to build a knowledge base containing rules of preconditions and effects of actions utilizing the
semantic annotations that VERBNET provides for its classes. In our work, we can view ALM modules
associated with VERBNET classes as machine interpretable alternatives to these annotations. However,
Clark et al. [4] use the first and most basic action language STRIPS [5] for inference. The STRIPS language
allows more limited capabilities than the ALM language in modeling complex interactions between
events.

Evaluation: We use a subset of Facebook AI Researchs bAbI dataset [22] to evaluate system TEXT2ALM.
These tasks were proposed by Facebook Research in 2015 as a benchmark for evaluating basic capabil-
ities of QA systems in twenty categories. Each of the twenty bAbI QA tasks is composed of narratives
and questions, where 1000 questions are given in training set and 1000 questions are given in a testing
set. The goal of the tasks are to answer the questions in the testing sets correctly while also minimizing
the number of questions used from the training set to develop a solution. We evaluate the TEXT2ALM

system with all 1000 questions in the testing sets for tasks 1, 2, 3, 5, 6, 7, and 8. These tasks are selected
for two reasons. First, these tasks contain action-based narratives that are of focus in this work. Second,
the underlying IE engine TEXT2DRS requires further development to formulate representations of more
advanced sentence structures, such as those containing negation and indefinite knowledge. Figure 7 pro-
vides an example of a narrative and a question from the training set of bAbI task 2-Two Supporting
Facts. For this task, a QA system must combine information from two sentences in the given narrative.
The narrative in Figure 7 consists of six sentences. A question is given in line 7, followed by the answer
and identifiers for the two sentences that provide information to answer the question.

The bAbI dataset enables us to compare TEXT2ALM’s IE/QA ability with other modern approaches
designed for this task. The left hand side of Figure 8 compares the accuracy of the TEXT2ALM system
with the machine learning approach AM+NG+NL MemNN described by Weston et al. [22]. In that work,
the authors compared results from 8 machine learning approaches on bAbI tasks and the AM+NG+NL
MemNN (Memory Network) method performed best almost across the board. There were two excep-
tions among the seven tasks that we consider. For the Task 7-Counting the AM+N-GRAMS MemNN
algorithm was reported to obtain a higher accuracy of 86%. Similarly, for the Task 8-Lists/Sets the
AM+NONLINEAR MemNN algorithm was reported to obtain accuracy of 94%. Figure 8 also presents
the details on the Inductive Rule Learning and Reasoning (IRLR) approach by [17]. We cannot compare
TEXT2ALM performance with the methodology by [4] because their system is not available and it has
not been evaluated using the bAbI tasks.

System TEXT2ALM matches the Memory Network approach by Weston et al. [22] at 100% accuracy
in tasks 1, 2, 3, and 6 and performs better on tasks 7 and 8. When compared to the methodology by Mitra
and Baral [17], the Text2ALM system matches the results for tasks 1, 2, 3, 6, and 8, but is outperformed
in tasks 5 and 7.

The results of the TEXT2ALM system were comparable to the industry-leading results with one out-
lier, namely, task 5. We investigated the reason. It turns out that the testing set frequently contained a
phrase of the form:
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Accuracy
bAbI Task AM+NG+NL Mem NN IRLR TEXT2ALM

1-Single Sup. Facts 100 100 100
2-Two Sup. Facts 100 100 100
3-Three Sup. Facts 100 100 100
5-Three Arg. Rels. 98 100 22
6-Yes/No 100 100 100
7-Counting 85 100 96.1
8-Lists/Sets 91 100 100

Figure 8: System Evaluations

bAbI+ Task Accuracy bAbI+ Task Accuracy
1-Single Sup. Facts 97.9 6-Yes/No 99
2-Two Sup. Facts 97.8 7-Counting 96.1
3-Three Sup. Facts 97.4 8-Lists/Sets 100
5-Three Arg. Rels. 19

Figure 9: TEXT2ALM Evaluation on bAbI+ Tasks

Entity1 handed the Object to Entity2. e.g., Fred handed the football to Bill.

The TEXT2ALM system failed to properly process such phrases because the semantic role labeler
LTH, a subcomponent of the TEXT2DRS system, incorrectly annotated the sentence. In particular, LTH

consistently considered a reading in spirit of the following: Fred handed Bill’s football away. This an-
notation error prevents TEXT2DRS from adding crucial event argument to the DRS stating that Entity2
plays the thematic role of destination in the phrase. Consequently, the TEXT2ALM system does not
realize that possession of the object was passed from Entity1 to Entity2.

Even though our system does not match the scores and breadth of testing as the approach by Mitra and
Baral [17], who tested on all 20 bAbI tasks, we consider the scores obtained by TEXT2ALM interesting
for several reasons. First, the approach implemented by TEXT2ALM suggests that lexical resources,
such as VERBNET, PROPBANK, and SEMLINK can be utilized effectively to support IE and KRR tasks.
Second, the scores support the hypothesis that a relatively few, but general, commonsense rules about
the effects of actions can be used to generalize to a broad number of similar actions. To illustrate that
the approach by system TEXT2ALM generalizes well, we create a variant of the bAbI task, which we
call bAbI+. We obtain bAbI+ by changing 50% of action verbs occurring in testing set narratives with
their synonymous counterparts. For example, 50% of instances of travelled and grabbed were replaced
with sprinted and seized, respectively. In total, 13 synonymous verbs were introduced. To ensure that
TEXT2ALM system handles the bAbI+ tasks, two extensions were made to its resources. First, the
CORECALMLIB knowledge base was augmented with appropriate mappings for two more VERBNET

classes. Second, two new entries in SEMLINK were introduced for verbs lacking the mappings and four
modifications to existing SEMLINK entries were required (where SEMLINK is a key resource of the
TEXT2DRS system). Figure 9 presents the accuracy of the TEXT2ALM system on the bAbI+ tasks.
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5 Conclusion and Future Work
Lierler, Inclezan, and Gelfond [13] outline a methodology for designing IE/QA systems to make infer-
ences based on complex interactions of events in narratives. To explore the feasibility of this method-
ology, we built the TEXT2ALM system to take an action-based narrative as input and output a model
encoding facts about the given narrative. We tested the system over tasks 1, 2, 3, 5, 6, 7, and 8 from
the bAbI QA dataset [22]. System TEXT2ALM matched or outperformed the results of modern machine
learning methods in all of these tasks except task 5. It also matched the results of another KRR ap-
proach [17] in tasks 1, 2, 3, 6, and 8, but did not perform as well in tasks 5 and 7. However, our approach
adjusts well to narratives with a more diverse lexicon. Additionally, the ability of the CORECALMLIB

to represent the interactions of events in the bAbI narratives serves as a proof of usefulness of the original
COREALMLIB endeavor.

We conclude our work by listing future research directions in some areas, (i) Expanding narrative
processing capabilities, (ii) Expanding QA ability, (iii) Exploring additional reasoning tasks.

The bAbI QA tasks provided basic narratives to evaluate the effectiveness of information extraction
by system TEXT2ALM. However, these are basic narratives with simple sentence structures. Future work
includes expanding the narrative processing capabilities of system TEXT2ALM, as well as reducing the
impact of semantic role labeling errors. We need to enhance the TEXT2DRS subsystem’s capabilities
in order to provide more detailed IE on narratives. Also, so far we provided ALM annotations via
the CORECALMLIB library for twenty two classes of VERBNET. In the future we intend to cover all
VERBNET classes.

Questions in the bAbI QA tasks follow pre-specified formats. Therefore, system TEXT2ALM’s QA
ability relies on simple regular expression matching. Further research is required on representing generic
questions and answers before using the system’s IE abilities in other applications. Additionally, our
approach should be tested on more advanced QA datasets, such as PROPARA [16]. Conducting tests on
the PROPARA dataset would enable us to compare the results of TEXT2ALM to the approach by [4].

Finally, we will build on TEXT2ALM’s reasoning abilities. For example, the CALM model may
sometimes not contain atoms that could be argued as reasonable. For example, given a narrative The
monkey is in the tree. The monkey grabs the banana., the CALM model will contain fluents stating that
the monkey’s location is the tree at time point 1, the monkey is holding the banana at time point 2, and
the banana’s location is the tree at time point 2. However, it is also natural to infer that the banana’s
location is the tree when the monkey grabs it (time point 1). Yet, that requires reasoning that goes beyond
temporal projection.
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