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In the past, the semantic issues raised by the non-monotonic nature of aggregates often prevented

their use in the recursive statements of logic programs and deductive databases. However, the re-

cently introduced notion of Pre-mappability (PreM) has shown that, in key applications of interest,

aggregates can be used in recursion to optimize the perfect-model semantics of aggregate-stratified

programs. Therefore we can preserve the declarative formal semantics of such programs while

achieving a highly efficient operational semantics that is conducive to scalable implementations on

parallel and distributed platforms. In this paper, we show that with PreM, a wide spectrum of clas-

sical algorithms of practical interest, ranging from graph analytics and dynamic programming based

optimization problems to data mining and machine learning applications can be concisely expressed

in declarative languages by using aggregates in recursion. Our examples are also used to show that

PreM can be checked using simple techniques and templatized verification strategies. A wide range

of advanced BigData applications can now be expressed declaratively in logic-based languages, in-

cluding Datalog, Prolog, and even SQL, while enabling their execution with superior performance

and scalability [7], [5].

1 Introduction

Prolog’s success with advanced applications demonstrated the ability of declarative languages to express

powerful algorithms as “logic + control.” Then, after observing that in relational database management

systems, “control” and optimization are provided by the system implicitly, Datalog researchers sought

the ability to express powerful applications using only declarative logic-based constructs. After initial

successes, which e.g., led to the introduction of recursive queries in SQL, Datalog encountered two major

obstacles as data analytics grew increasingly complex: (i) lack of expressive power at the language level,

and (ii) lack of scalability and performance at the system level.

These problems became clear with the rise of more complex descriptive and predictive BigData an-

alytics. For instance, the in-depth study of data mining algorithms [9] carried out in the late 90s by the

IBM DB2 team concluded that the best way to carry out predictive analytics is to load the data from an

external database into main memory and then write an efficient implementation in a procedural language

to mine the data from the cache. However, recent advances in architectures supporting in-memory paral-

lel and distributed computing have led to the renaissance of powerful declarative-language based systems

like LogicBlox [3], BigDatalog [11], SociaLite [10], BigDatalog-MC [13], Myria [12] and RASQL [7]

that can scale efficiently on multi-core machines as well as on distributed clusters. In fact, some of these

general-purpose systems like BigDatalog and RASQL have outperformed commercial graph engines like

GraphX for many classical graph analytic tasks. This has brought the focus back on to the first chal-

lenge (i) – how to express the wide spectrum of predictive and prescriptive analytics in declarative query

languages. This problem has assumed great significance today with the revolution of machine learning

http://dx.doi.org/10.4204/EPTCS.306.32
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driven data analytics, since “in-database analytics” can save data scientists considerable time and effort,

which is otherwise repeatedly spent in extracting features from databases via multiple joins, aggrega-

tions and projections and then exporting the dataset for use in external learning tools to generate the

desired analytics [1]. Modern researchers have worked toward this “in-database analytics” solution by

writing user-defined functions in procedural languages or using other low-level system interfaces, which

the query engines can then import [6]. However this approach raises three fundamental challenges:

• Productivity and Developability: Writing efficient implementations of advanced data analytic

applications (or even modifying them) using low-level system APIs require data science knowl-

edge as well as system engineering skills. This can strongly hinder the productivity of data scien-

tists and thus the development of these advanced applications.

• Portability: User-defined functions written in one system-level API may not be directly portable

to other systems where the architecture and underlying optimizations differ.

• Optimization: Here, the application developer is entrusted with the responsibility to write an

optimal user-defined function, which is contrary to the work and vision of the database community

in the 90s [8] that aspired for a high-level declarative language like SQL supported by implicit

query optimization techniques.

In this paper, we argue that these problems can be addressed by simple extensions that enable the

use of aggregate functions in the recursive definitions of logic-based languages, such as Datalog, Prolog,

and even SQL. To that effect, we use different case studies to show that simple aggregates in declarative

recursive computation can express concisely and declaratively a host of advanced applications ranging

from graph analytics and dynamic programming (DP) based optimization problems to data mining and

machine learning (ML) algorithms. While the use of non-monotonic aggregates in recursive programs

raises difficult semantic issues, the newly introduced notion of pre-mappability (PreM) [14] can ensure

the equivalence of former programs with that of aggregate-stratified programs under certain conditions.

Following this notion of PreM, we further illustrate step-by-step how a data scientist or an application

developer can very easily verify the semantic correctness of the declarative programs, which provide

these complex ML/AI-powered data analytic solutions. Before diving into these case studies, let us

briefly introduce PreM.

2 Pre-Mappable Constraints in Graph Queries

We consider a Datalog query, given by rules r1.1−r1.3, to compute the shortest paths between all vertices

in a graph given by the relation arc(X, Y, D), where D is the distance between vertices X and Y . In

this query, as shown in rule r1.3, the aggregate min is defined on group-by variables X and Y , at a stratum

higher than the recursive rules (r1.1 and r1.2). Thus, we use the compact head notation often used in the

literature for aggregates.

r1.1 : path(X,Y,D) <- arc(X,Y,D).

r1.2 : path(X,Y,D) <- path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r1.3 : shortestpath(X,Y,min〈D〉) <- path(X,Y,D).

The min and max aggregates can also be viewed as constraints enforced upon the results returned in

the head of the rule: i.e., for the example at hand the min constraint (X,Y,min〈D〉) is enforced on

shortestpath(X,Y,D). This view allows us to define the semantics of r1.3 by re-expressing it with
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negation as shown in rules r1.4 and r1.5. This guarantees that the program has a perfect-model semantics,

although the iterated fixpoint computation of such model can be very inefficient and even non-terminating

in presence of cycles.

r1.4 : shortestpath(X,Y,D) <- path(X,Y,D),¬betterpath(X,Y,D).

r1.5 : betterpath(X,Y,D) <- path(X,Y,D),path(X,Y,Dxy),Dxy< D.

The aforementioned inefficiency can be cured with PreM, whereby the min aggregate can be pushed

inside the recursion within the same stratum, as shown in rules r2.1 and r2.2. Because of PreM this trans-

formation is equivalence-preserving [4] since the program below has a minimal fixpoint and computes

the shortestpath atoms of the original program in a finite number of iterations.

In general, this transformation holds true for any constraint γ and Immediate Consequence Operator

(defined over recursive rules) T , if γ(T (I)) = γ(T (γ(I))), for every interpretation I of the program.

r2.1 : path(X,Y,min〈D〉) <- arc(X,Y,D).

r2.2 : path(X,Y,min〈D〉) <- path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r2.3 : shortestpath(X,Y,D) <- path(X,Y,D).

Testing that PreM was satisfied during the execution of a program is straightforward [7]. Furthermore,

simple formal tools [16] are at hand to prove that PreM holds for any possible execution of a given

program, but due to space limitations we will simply use the reasoning embedded in those tools to

prove PreM for the cases at hand. For example, PreM is always satisfied by base rules such as r2.1

[15], and hence we only need to prove the property for the recursive rule r2.2, i.e. we prove that the

additional constraint γ̄ = (X,Z,min〈Dxz〉) can be imposed on I = path(X,Z,Dxz) without changing the

result returned in the head in as much as this is constrained by γ = (X,Y,min〈Dxz+Dzy〉). Indeed every

(X,Z,Dxz) that violates γ̄ produces a (X,Y,D) value that violates γ and it is thus eliminated. So the

addition of γ̄ does not change the result when γ is also in place. An even more dramatic situation occurs,

if we replace D= Dxz+Dzy with, say, D= 3.14∗Dzy in our recursive rule. Then it is clear that the result

computed in the head of the rule is invariant w.r.t the value of Dxz, and therefore we could even select

the min of these values. In other words, we here have that T (I) = T (γ(I)). Obviously this is a special

case of PreM, that will be called intrinsic PreM (or iPreM in short). Another special case of PreM,

called radical PreM (or rPreM in short) occurs when the equality γ(T (I)) = T (γ(I)) holds. This is

for instance the case when the condition X = a is added to the rule r2.3, which specifies that we are only

interested in the paths that originate in a. Then this condition can be pushed all the way to the non-

recursive base rule r2.1, leaving the recursive rule unchanged and thus amenable to the min optimization

previously described. While the use of rPreM in pushing constants was widely studied in the Datalog

literature, the use of iPreM and full PreM in dealing with non-monotonic constraints was introduced

in [15].

3 Dynamic Programming based Optimization Problem

Consider the classic coin change problem: given a value V and an infinite supply of each of C1,C2, ...,Cn

valued coins, what is the minimum number of coins needed to get change for V amount? Traditionally,

declarative programming languages attempt to solve this through a stratified program: the lower stratum

recursively enumerates over all the possible ways to make up the value V, while the min aggregate is

applied at the next stratum to select the desired answer. Obviously, such simple stratified recursive
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solutions are computationally extremely inefficient. In procedural languages, these problems are solved

efficiently with dynamic programming (DP) based optimization. Such DP based solutions utilize the

“optimal substructure property” of the problem i.e., the optimal solution of the given problem can be

evaluated from the optimal solutions of its sub-problems, which are, in turn, progressively calculated

and stored in memory (memoization). For example, consider an extensional predicate coins having the

atoms coins(2), coins(3) and coins(6), which represent coins with values 2 cents, 3 cents and 6

cents respectively. Now, we need at least 2 coins to make up the value V = 9 cents (3 cents + 6 cents).

Note, we can also make up 6 cents using 3 coins of 2 cents each. However, the optimal solution to

make up 9 cents should also in turn use the best alternative available to make up 6 cents, which is to

use 1 coin of 6 cent itself. Based on this discussion, the example program below, described by rules

r3.1− r3.2, shows how this solution can be succinctly expressed in Datalog with aggregate in recursion.

This program can be executed in a top-down fashion and the optimal number of coins required to make

up the change is determined by passing the value of V (9 in our example) to the recursive predicate num

(as shown by the query goal).

r3.1 : num(C,1)← coins(C).

r3.2 : num(V,min〈N〉)← coins(C),C< V,X = V−C,num(X,Y),N = Y+1.

?−num(9,N).

The successive bindings for the predicate num are calculated from the coin value C under consid-

eration (as V - C) and are passed in a top-down manner (top-down information passing) till the exit

rule r3.1 is reached. The min aggregate inside recursion ensures that for every top-down recursive call

(sub-problem) only the optimal solution is retained. With this said materialization of the intensional

predicate num (analogous to memoization), this program execution is almost akin to a DP based solution

except one difference — pure DP based implementations are usually executed in a bottom-up manner.

In the same vein, it is worth mentioning that many interesting DP algorithms (e.g., computing minimum

number of operations required for a chain matrix multiplication) can also be effectively computed with

queries, containing aggregates in recursion, using bottom-up semi-naive evaluation identical to the DP

implementations. We next focus our attention on validating PreM for the above program. Note the

definition of PreM, iPreM or rPreM does not refer to any evaluation strategy for processing the recur-

sive query i.e. the definitions are agnostic of top-down, bottom-up or magic sets based recursive query

evaluation strategies. Interestingly, the use of “optimal substructure property” in DP algorithms itself

guarantees the validity of PreM. This can be illustrated as follows with respect to the min constraint:

consider inserting an additional constraint γ̄ = num(X,min〈Y〉) on I = num(V,N) in the recursive rule r3.2.

Naturally, any Y, which does not satisfy γ̄ , will produce a N that violates the min aggregate in the head

of rule r3.2 and hence will be discarded. Since, the imposition of γ̄ in the rule body does not change the

result when γ in the head (of rule r3.2) is applied, the min constraint can be pushed inside recursion i.e.,

γ(T (I)) = γ(T (γ(I))), thus validating PreM.

4 K-Nearest Neighbors Classifier

K-nearest neighbors is a popular non-parametric instance-based lazy classifier, which stores all instances

of the training data. Classification of a test point is computed based on a simple majority vote among K

nearest1 training instances of the test point, where the latter is assigned into the class that majority of the

K neighbors belong to.

1Based on metrics like Euclidean distance.
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In the Datalog program, defined by rules r4.1− r4.7, the predicate te(Id,X,Y) denotes a relational

instance of two-dimensional test points represented by their Id and coordinates (X,Y). Likewise, the

predicate tr(Id,X,Y,Label) denotes the relational instance of training points represented by their Id,

coordinates (X,Y) and corresponding class Label. In this example, rule r4.1 calculates the Euclidean dis-

tance between the test and all the training points, while the recursive rule r4.3 with aggregate determines

the nearest K neighbors for each of the test point. Symbolically, the predicate nearestK(IdA,D,IdB,J)

represents the training instance IdB is the J-th nearest neighbor of the test point IdA located at a distance

of D apart. Finally, rules r4.4− r4.5 aggregates the votes for different classes and performs the classifi-

cation by majority voting. cMax in rule r4.5 is a special construct that extracts the corresponding class

Label that received the maximum votes for a given test point. Rule r4.5 can be alternatively expressed

without cMax, as shown in rules r′4.5,r
′′
4.5. In terms of simple relational algebra, the constructs cMin or

cMax can be thought of denoting the projection of specific columns (attributes like Id2 in r4.3 and Label

in r4.5) from a tuple, which satisfies the min or max aggregate constraint respectively. However, these

special constructs are mere syntactic sugar as illustrated before with equivalent rules r′4.5,r
′′
4.5, which do

not use any of these constructs.

r4.1 : dist(Id1,Id2,D)← te(Id1,X1,Y1),tr(Id2,X2,Y2,Label),D= (X1−X2)
2+(Y1−Y2)

2
.

r4.2 : nearestK(Id,−1,−1,nil)← te(Id,X,Y).

r4.3 : nearestK(Id1,min〈D〉,cMin〈Id2〉,J1)← dist(Id1,Id2,D),nearestK(Id1,S,Id3,J),

larger(S,Id3,D,Id2),J1 = J+1,J1 ≤ K.

r4.4 : votes(Id1,Label,count〈Id2〉)← nearestK(Id1,D,Id2,J),tr(Id2,X,Y,Label).

r4.5 : classify(Id1,max〈V〉,cMax〈Label〉)← votes(Id1,Label,V).

r4.6 : larger(S,Id3,D,Id2)← D> S.

r4.7 : larger(S,Id3,D,Id2)← D= S,Id2 > Id3.

r′4.5 : classify(Id1,V,Label)← votes(Id1,Label,V),¬higher(Id1,V).

r′′4.5 : higher(Id1,V)← votes(Id1,Label,V),votes(Id1,Label
′
,W),W > V.

We now verify that the min aggregate in the recursive rule r4.2 − r4.3 satisfies PreM and ensures

semantic correctness. Note the exit rule r4.2 always trivially satisfies the PreM definition, since the

interpretation, I of the recursive predicate is initially an empty set. Thus, we focus our attention only on

the recursive rule r4.3. We now prove that r4.3 satisfies iPreM: consider inserting an additional constraint

(Id1,J,min〈S〉) in the body of the rule r4.3 that defines the min constraint on the recursive predicate

nearestK in the body (creating an interpretation γ(I) in the rule body). If this min constraint in the body

ensures that for a given Id1 and J, S is the minimum distance of the J-th nearest neighbor, then for the

corresponding valid J1(≤ K), r4.3 without the min aggregate in the head will produce all potential J1-th

neighbors whose distances are higher than S (i.e., distance of J-th neighbor), thereby being identical to

T (I). Thus, we have, T (I) = T (γ(I)) validating r4.3 satisfies iPreM, since the recursive rule remains

invariant to the inclusion of the additional constraint (Id1,J,min〈S〉) in the rule body.

Similar to K-nearest neighbor classifier, several other data mining algorithms like K-spanning tree

based graph clustering, vertex and edge based clustering, tree approximation of Bayesian networks,

etc. — all depend on the discovery of a sub-sequence of elements in sorted order and can likewise be

expressed with PreM using aggregates in recursion. It is also worth observing that while our declarative

K-nearest algorithm requires more lines of code than the other cases presented in this paper, it can still be

expressed with only seven lines of logical rules as compared to standard learning tools like Scikit-learn

that implements this in 150+ lines of procedural or object-oriented code.
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5 Iterative-Convergent Machine Learning Models

Iterative-convergent machine learning (ML) models like SVM, perceptron, linear regression, logistic re-

gression models, etc. are often trained with batch gradient descent and can be written declaratively as

Datalog programs with XY-stratification, as shown in [2]. Rules r5.1− r5.3 show a simple XY-stratified

program template to train a typical iterative-convergent machine learning model. J denotes the tempo-

ral argument, while training_data (in r5.2) is an extensional predicate representing the training set

and model(J, M) is an intensional predicate defining the model M learned at iteration J. The model is

initialized using the predicate init_model and the X -rule r5.2 computes the corresponding error E and

gradient G at every iteration based on the current model and the training data using the predicate compute

(defined according to the learning algorithm under consideration). The final Y -rule r5.3 assigns the new

model for the next iteration based on the current model and the associated gradient using the update

predicate (also defined according to the learning algorithm at hand). Since many iterative-convergent

ML models are formulated as convex optimization problems, the error gradually reduces over iterations

and the model converges when the error reduces below a threshold δ .

r5.1 : model(0,M)← init_model(M).

r5.2 : stats(J,E,G)← model(J,M),training_data(Id,R),compute(M,R,E,G).

r5.3 : model(J+1,M′)← stats(J,E,G),model(J,M),update(M,G,M′),E> δ .

Interestingly, an equivalent version of the above program can be expressed with aggregates and pre-

mappable constraints in recursion, as shown with rules r′5.1−r′5.4. The stopping criterion γ : E> δ pushed

inside the recursion in rule r′5.3 satisfies rPreM, since T (γ(I)) and γ(T (I)) would both generate the same

atoms in find, where the error E is above the threshold δ (assuming convex optimization function). Also

note, the max aggregate defined over the recursive predicate find trivially satisfies iPreM.

r′5.1 : model(0,M)← init_model(M).

r′5.2 : stats(J,E,G)← model(J,M),training_data(Id,R),compute(M,R,E,G).

r′5.3 : find(max〈J〉,cMax〈M〉,cMax〈E〉,cMax〈G〉)← model(J,M),stats(J,E,G),E> δ .

r′5.4 : model(J1,M
′)← find(J,M,E,G),update(M,G,M′),J1 = J+1.

6 Conclusion

Today BigData applications are often developed and operated in silos, which only support a particular

family of tasks – e.g. only descriptive analytics or only graph analytics or only some ML models and

so on. This lack of a unifying model makes development extremely ad hoc, and hard to port efficiently

over multiple platforms. For instance, on many graph applications native Scala with Apache Spark can-

not match the performance of systems like RaSQL, which can plan the best data partitioning/swapping

strategy for the whole query and optimize the semi-naive evaluation accordingly [7]. However, as demon-

strated in this paper, a simple extension to declarative programming model, which allows use of aggre-

gates and easily verifiable pre-mappable constraints in recursion, can enable developers to write concise

declarative programs (in Datalog, Prolog or SQL) and express a plethora of applications ranging from

graph analytics to data mining and machine learning algorithms. This will also increase the productivity

of developers and data scientists, since they can work only on the logical aspect of the program without

being concerned about the underlying physical optimizations.
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