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Boolean networks are conventionally used to represent and simulate gene regulatory networks. In
the analysis of the dynamic of a Boolean network, the attractors are the objects of a special attention.
In this work, we propose a novel approach based on Answer Set Programming (ASP) to express
Boolean networks and simulate the dynamics of such networks. Our work focuses on the identifica-
tion of the attractors, it relies on the exhaustive enumeration of all the attractors of synchronous and
asynchronous Boolean networks. We applied and evaluated the proposed approach on real biological
networks, and the obtained results indicate that this novel approach is promising.

1 Introduction

A gene regulatory network is a collection of genes interacting with each other. Each gene contains
information determining its function. It is a specific biological system that represents how the genes
interact in a cell for its survival, reproduction, or death. Among the approaches that are used to model
these networks [4], we can find qualitative ones. These approaches allow for the capture of the most
important properties, like the attractors which represent the sets of states to which the system converges.

Our goal in this work is to develop an exhaustive approach to analyze the dynamics of Boolean
networks . We are dealing with two kinds of problems: finding all the possible stable states and enumer-
ating all the stable cycles of a dynamic system. We apply two update modes that are the synchronous
and asynchronous modes and use the ASP framework to represent and solve the aforementioned prob-
lems. We will see that the identification of the attractors in a transition graph representing the dynamics
of a Boolean network amounts to calculating and enumerating the stable models of the logical program
expressing the interactions between the entities of the network. It is than important to have an efficient
ASP solver that is able to enumerate the models in a reasonable time. In this work, we use the method
introduced in [8]. This method relies on a Boolean enumeration process defined for the ASP paradigm
according to the semantic introduced in [2].

In what follows, we start by summarizing some notions on Boolean networks, then show in Section
3, how to express gene networks as logic programs. In Section 4, we evaluate our approach on biological
networks. We conclude the work in Section 5.

2 Boolean Networks (BN)

Le V = {v1, ...,vn} be a finite set of Boolean entities vi ∈ {0,1}. A system configuration x = (x1, . . . , xn) is
the assignment of a truth value xi ∈ {0,1} to each element of V . The set of all configurations [7], also
called the space of configurations, is denoted by X = {0,1}n.

The dynamics of such a Boolean system is modeled by a global transition function f and by an
updating mode that define how the elements of V are updated over time. Formally, we have : f : X→ X
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such that x = (x1, . . . , xn) 7→ f (x) = ( f1(x), . . . , fn(x)), where fi : X→{0,1} is a local transition function that
gives the evolution of the gene xi along time. The dynamic of a Boolean network is naturally described
by a transition graph TG that is characterized by a transition function f and an update mode. Formally:

Definition 1. Let X = {0,1}n be the configuration space of a Boolean network and f : X→ X its associated
global transition function. The transition graph representing the dynamic of f is the oriented graph
TG( f ) = (X,T ( f )) where the set of vertices is the configuration space X and the set of arcs is T ( f ) =

{(x,y) ∈ X2 | x , y, x = (x1, . . . , xi, . . . , xn),y = ( f1(x), . . . , fi(x), . . . , fn(x))}

There exist several update modes, among them the synchronous and the asynchronous modes. The
synchronous update means that all the components of a configuration x = (x1, . . . , xn) are updated at the
same time. Conversely, the asynchronous mode is an update in which only one component of x is updated
at each time.

An orbit in TG( f ) is a sequence of configurations (x0, x1, x2, ...) such that either (xt, xt+1) ∈ T ( f )
or xt+1 = xt when there is no successors for xt. A cycle of length r is a sequence of configurations
(x1, . . . , xr, x1) with r ≥ 2 whose configurations x1, . . . , xr are all different. We can now give the meaning
of an attractor in a dynamical system. A configuration x = (x1, . . . , xn) of the transition graph TG( f ) is a
stable configuration when ∀xi ∈ V, xi = fi(x), thus x = f (x). A stable configuration x = (x1, . . . , xn) forms a
trivial attractor of TG( f ). A sequence of configurations (x1, x2, . . . , xr, x1) forms a stable cycle of TG( f )
when ∀t < r, xt+1 is the unique successor of xt and x1 is the unique successor of xr. A stable cycle in
TG( f ) forms a cyclic attractor.

Transition graphs represent an excellent tool for studying the dynamic behavior of an update function
corresponding to a Boolean network. However, in practice, biological data comes from experiments that
generally give only correlations between the genes, but nothing on the dynamic of the network. The
interaction graph is a static representation of the regulations between the genes. Each node vi of the
interaction graph is a Boolean variable that represent the state of gene i in the network. More precisely,
if vi = 1 (resp. vi = 0)), then the gene i is active (resp. inactive). A positive (resp. a negative) arc (vi,+,v j)
(resp. (vi,−,v j)) defined from the node vi to the node v j means that the gene i is an activator (resp. or
an inhibitor) of the gene j. In the following, when there is no confusion we will lighten the notation by
simply writing i to express the vertex vi.

Definition 2. An interaction graph is a signed-oriented graph IG = (V, I) where V = {1, . . . ,n} is its set
of vertices and I ⊆ V ×{+,−}×V its set of signed arcs.

Exemple 1. Consider a set of two genes V = {1,2}, the space configuration X = {0,1}2 and the transition
function f defined as f (x1, x2) = (x2, x1 ∧¬x2). From f , we derive the transition graphs corresponding
to both synchronous and asynchronous update modes. The synchronous and asynchronous transition
graphs are given in Figure 4-b and Figure 4-c. Figure 4-a shows the interaction graph IG = (V, I) where
V = {1,2} and I = {(1,+,2), (2,+,1), (2,−,2)}, corresponding to both previous transition graphs.

Figure 1: (a) Figure 2: (b) Figure 3: (c)

Figure 4: The synchronous (b) / asynchronous (c) transition graphs of a Boolean network represented by
an interaction graph (a) having two genes
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The synchronous graph has two attractors that are the stable configuration (0,0) and the stable cycle
formed by the configurations {(1,0), (0,1)}. On the other hand, the asynchronous graph has only one
attractor represented by the stable configuration (0,0). We can also remark that the asynchronous graph
contains a non-stable cycle {(0,1), (1,0)}. This last cycle is not stable because there is an arc going out
of it from (0,1).

3 Using the ASP framework for Boolean network modeling and attractor
computation

3.1 Interaction graph modeling

In this section, we show how to express the interaction graph associated with a Boolean network as an
extended logic program PIG. In other words, we represent the global transition function associated with
the corresponding transition graph. The dynamics of the network will be represented by the answer sets
of the logic program considered. We start with the rule (r1) that encodes the notion of discrete time:

r1 : time(0..t).
To compute the different configuration sequences of a given Boolean network, we have to observe its

behavior under certain initial state conditions. This could require defining various combinations for the
initial state. The number of possible combinations for the initial state could be very high. This renders
the task very heavy for a hand user. We then decided to automate the process. To do this, we introduced
the rules (r2 and r3) that will generate all the combinations of the initial state:
r2 : vi(0)← not¬vi(0). r3 : ¬vi(0)← not vi(0).

These rules force the solver to make choices for each gene, either it is active or inactive. Indeed,
the absence of vi(0) makes ¬vi(0) true, and conversely absence of ¬vi(0) makes vi(0) true. In this way,
different answer sets are automatically generated for each possible starting combination.

The rules from {r4,r5,r6,r7} encodes the influences of one gene on another. That is, the activation or
inhibition of a gene by an other gene.
r4 : v j(t + 1)← vi(t) r5 : ¬v j(t + 1)←¬vi(t)
r6 : v j(t + 1)←¬vi(t) r7 : ¬v j(t + 1)← vi(t)

Rules r4 and r5 mean the following: if the gene vi is active (resp. inactive) at time step t, then it will
activate (resp. will inhibit) the gene v j at time step t + 1 . These two rules represent the positive oriented
arc (vi,+,v j) of the associated interaction graph. Both rules r6 and r7 express the fact that the activation
(resp. inhibition) of the gene vi at time step t will inhibit (resp. will activate) the gene v j at time step
t + 1. These rules encode the negative oriented arc (vi,−,v j) of the interaction graph.

The rules r8 and r9 are inertia rules that express what happens to a gene when there is no change at
the next time step. That is, a gene preserve its state unless it was changed:
r8 : vi(t + 1)← vi(t), not ¬vi(t + 1) r9 : ¬vi(t + 1)←¬vi(t),not vi(t + 1)

In what follows, we will present some rules to manage Boolean networks where a given gene could
have several interactions with the other genes. The main idea, is to express each local transition functions
fi as a set of rules. To this end, we assume that any function fi is given in disjunctive normal form (DNF).
Given the configuration v = (v1,v2, ...,v j, ...,vn), for each node vi ∈ V of the interaction graph, we express
its corresponding function f j by the following DNF formula:

v j(t + 1) = f j(v(t)) =
l j∨

i=1
m j

i , where m j
i = (±vi1 ∧±vi2∧, . . . ,∧± vik ) and ih ∈ {1..n} ∀h ∈ {1..k} The

formula m j
i is a conjunction of literals representing positive / negative interactions of genes vih acting on
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v j(t). Let DNF(¬ f j(v(t)) = ¬(
l j∨

i=1
m j

i ) =
r j∨

i=1
m′ ji be the DNF form of ¬ f j(v(t)). The set of rules that encodes

each function f j is defined as follows:
r10 : {v j(t + 1)← m j

i (t) | 1 ≤ i ≤ l j}, j ∈ {1, . . . ,n}
r11 : {¬v j(t + 1)← m′ j

i (t) | 1 ≤ i ≤ r j}, j ∈ {1, . . . ,n}
The formula m′ j

i is a conjunction of literals representing positive / negative interactions of genes
acting on ¬v j(t).

Exemple 2. Consider the interaction graph given in Example 1. The sets of rules generated by the rules
r10 and r11 when applied to the considered interaction graph are the following:

r10 : {1(t + 1)← 2(t); 2(t + 1)← 1(t), ¬2(t)}
r11 : {¬1(t + 1)←¬2(t); ¬2(t + 1)←¬1(t); ¬2(t + 1)← 2(t)}

The rules r10 and r11 are applicable only for synchronous update mode. For the asynchronous update
mode, we have to consider only one local transition function f j at each time step. To do this, we introduce
a new predicate Block(vi, t) stating that vi is blocked for update at time step t. Obviously, each unblocked
local transition can be performed.

We also add the rules r12 and r13 which express the fact that the state of the gene vi is updated
each time its state at step t + 1 is different from its state at the previous step t. r12 : Change(vi, t)←
vi(t + 1),¬vi(t) r13 : Change(vi, t)←¬vi(t + 1),vi(t)

To enforce the asynchronous mode, we establish the rule r14 to allow only one possible local tran-
sition and block all the others. This rule says that if a given vi is not blocked and its also updated then
all the other v j will be blocked. For the asynchronous update mode we reconsider both rules r10 and r11
by involving the new predicate Block(vi, t) and obtain the rules r15 and r16. This rules state that a local
transition can be made unless it is blocked. In other words, the local transition function fi is used to
update v j(t) if Block(v j, t) is not true.
r14 : {{Block(vk, t)} ←Change(vi, t),not Block(vi, t) |∀ k ∈ {1, ...,n}\{i}}.
r15 : {v j(t + 1)← m j

i (t),not Block(v j, t) | 1 ≤ i ≤ l j}, j ∈ {1, . . . ,n}
r16 : {¬v j(t + 1)← m′ j

i (t),not Block(v j, t) | 1 ≤ i ≤ r j}, j ∈ {1, . . . ,n}

Exemple 3. The sets of rules generated by the rules r14, r15, and r16 when applied to the interaction
graph of Example 1 are the following:
r14 : {Block(1, t)←Change(2, t),not Block(2, t); Block(2, t)←Change(1, t),not Block(1, t)}
r15 : {1(t + 1)← 2(t),not Block(1, t); 2(t + 1)← 1(t), ¬2(t),not Block(2, t)}
r16 : {¬1(t+1)←¬2(t),not Block(1, t); ¬2(t+1)←¬1(t),not Block(2, t); ¬2(t+1)← 2(t),not Block(2, t)}

The rules explained above form the logic program PIG representing the interaction graph of the
considered gene network. Now, we are able to establish the correspondence between an answer set of
PIG and a a sequence of configurations of the corresponding transition graph.

Proposition 1. Let PIG be the logic program representing the interaction graph IG having a global
transition function f and TG( f ) the corresponding transition graph. A tuple x = (x0, . . . , xt) is a sequence
of configurations of TG( f ) , if only if I = {(v1(0), . . . ,vn(0)), . . . , (v1(t), . . . ,vn(t))} is an answer set of PIG
such that the set of all the literals (v1(i), . . . ,vn(i)) fixed at the step i ∈ {0, ..., t} corresponds to the state of
the genes of the configuration xi ⊆ x defined at the step i in the transition graph TG( f ).

3.2 The calculation of the attractors

One of the methods used to analyze the dynamics of a Boolean network is to enumerate all the possible
configurations and run a simulation from each of them. The method enumerates all the possible state
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sequences of the transition graph. This ensures that all the attractors will be detected. In this approach,
we search for all the sequences of configurations a given length n in the transition graph of a Boolean
network. We say that a sequence has length n if it has n transitions. When a sequence of states is
found, we check if it contains a cycle. Since each state in a synchronous transition graph has a unique
successor then when a sequence of states enter in a cycle, it never leaves it. This means that each cycle
in a synchronous transition graph is stable. However, in the case of asynchronous transition graphs, the
states could have multiple transitions. Thus, in general, the cycles are not necessarily stable. There may
exist stable cycles and unstable cycles.

We can determine the presence of a cycle in a sequence of states by checking whether the last state
occurs at least twice in the path corresponding to the considered sequence. Clearly, all the states between
any two occurrences of the last state belong to a cycle. For stable configuration detection, it is sufficient
to check whether the successor state is the same as the last one. Since we can have an exponential
number of possible states in a transition graph, an explicit enumeration of all the states is cumbersome
for large networks. We want to avoid this exhaustive enumeration performed by the naive simulation of
the network dynamics. To do this, we keep track of the cycles already found to eliminate them in the
next iterations. If for a given sequence length, we do not find any cycle, the algorithm doubles the value
of n and searches for a sequence having the new length 2n. The algorithms stop when no sequence of
configurations is found. It means that all the cycles are already found. Once all the cycles have been
found, we can only find sequences shorter than the current length. The general schema of the proposed
method is presented in Algorithm 1.

Algorithm 1 The general schema of the cycle search algorithm
Require: PIG: the logic program representing the interaction graph
1: I=ASP-Solver(PIG)
2: while I is a new answer set of PIG do
3: attractor is found = False
4: xI = (x0, x1, ..., xt) is the sequence of configurations corresponding to I
5: i = t
6: while ((i ≥ 0) and not (attractor is found)) do
7: if xt = xi then
8: attractor is found = True
9: attractors = attractors∪{xi+1, ..., xn}

10: PIG = PIG ∪ j∈{i+1,t} {← v1( j),v2( j), . . . ,vn( j)}
11: end if
12: i = i−1
13: end while
14: if not(attractor is found) then
15: n = 2∗n
16: end if
17: I=ASP-Solver(PIG)
18: end while

In what follows, we start by generating an extended logic program PIG representing the interaction
graph according to the schema described in the previous sub-section. The logic program is generated
for n time steps. We use the ASP system presented in [8] based on the semantics introduced in [2]
to compute the answer sets representing the sequences of configuration of a particular length n in the
transition graph. If an answer set is found, the algorithm checks whether there is cycle or a stable
configuration in the sequence corresponding to this answer set. In the affirmative case, we build and add
some constraint rules for each of the cycles already to avoid them in the next steps found states. That is,
By adding these added rules to the logic program PIG, eliminate all the answer sets that could contain
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an attractor already found. If the solver does not find any answer set, then no configuration sequence of
length n exists. This implies that all the cycles have been already identified.

In the case of the synchronous update mode, each cycle correspond to a stable cycle. But for the
asynchronous mode, the cycles of the transition graph are not necessary stable. The could be unstable
cycles. To detect the instability of a cycle, one can verify at each step of the cycle, if the current con-
figuration could evolve to a new configuration that is not a part of the cycle. In the affirmative case, we
proved the instability of the cycle, otherwise the cycle is stable.

Now we will show how we can check if a given cycle is stable or unstable.

Proposition 2. Let PIG be the logic program representing the interaction graph IG having a global tran-
sition function f , TG( f ) the corresponding transition graph and I = {(v1(0), . . . ,vn(0)), . . . , (v1(t), . . . ,vn(t))}
is an answer set of PIG corresponding to the sequence of configuration xI in TG( f ). If a subset of literals
Is = {(v1(1), . . . ,vn(1)), . . . , (v1(r), . . . ,vn(r)), (v1(r + 1), . . . ,vn(r + 1))} ⊆ I corresponding to a sequence of
configurations (x1, . . . , xr, x1) ⊆ xI forms a stable cycle in TG( f ), then every answer set J of PIG different
from I (J , J), is such that J∩ Is = {∅}

We can do the stability check by a slight modification in the ASP solver [8] that we used to compute
the answer sets. Indeed, for each answer set of the program PIG containing a cycle, we have to check
for each of its sub-set of literals {(v1(i), . . . ,vn(i))} corresponding to a configuration xi of the cycle, if a
new sub-set of literals {(v1(i + 1), . . . ,vn(i + 1))} corresponding to a configuration xi+1 different from the
successor of xi in the cycle can be deduced. To do this, we try to produce a different configuration at
each choice point not Block(vi, t) of the branch corresponding to that answer set. This could be done by
choosing a different choice point literal not Block(v j, t). We integrated this operation in the resolution
process of the method [8] that we used to compute the answer sets of PIG.

4 Experimental Results

To demonstrate the validity of our approach on Boolean network simulation and attractor discovery, we
applied it on real biological networks. We checked the method for both synchronous and asynchronous
update modes on real genetic networks found in the literature. We tested the method on the networks
yeast cell cycle [1] and fission yeast cell cycle studied in [3]. We also applied the method on the network
T-helper cell differentiation described in [6]. We computed all the attractors of these Boolean networks
when using the synchronous and asynchronous modes. We focus here on the computation times and the
number of attractors found. The obtained results are presented in Table 1. We can see that the method
performs relatively fast on all of the networks. We also observe that the attractors in the synchronous
case often coincide with those in the asynchronous case. This is due to the presence of a great number
of stable configurations in comparison to the number of stable cycles in these networks. It is well known
that the stable configurations are often the same in both synchronous and asynchronous update modes
[5].

Network Genes Attractors Update Schema Time(Sec)
Yeast cell cycle 11 6 Synchronous 2,21

11 6 Asynchronous 0,56
Fission Yeast 10 11 Synchronous 1,82

10 12 Asynchronous 0,5
Th cell differentiation 23 2 Synchronous 0,37

23 2 Asynchronous 0,43

Table 1: The results obtained on common graph regulatory networks found in the literature
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The obtained results can not be compared to the ones of the method presented in [9]. Indeed, with
this method, the user must choose a specific semantic of activation on which the dynamic evolution will
be based. There is two semantics. The first one activates a gene when at least one of its activators is
active and no inhibitor is active. In the second semantics, a gene is activated when it has more activators
expressed than inhibitors. The chosen activation semantic is applied for all the genes of the model, while
the activation rules in our method are specific to each gene and based on the transition functions.

5 Conclusion

Boolean networks are a widespread modeling technique for analyzing the dynamic behavior of gene
regulatory networks. By using Boolean networks, we can capture the network attractors, which are often
useful for studying the biological function of a cell. We proposed a method dedicated to find stable
configuration and cycles (stable and unstable) for a chosen update mode (synchronous or asynchronous).
The advantage of our approach is the exhaustive enumeration thanks to the use of ASP framework and
the ASP solver introduced in [8]. The proposed approach is applied on real life regulatory networks, and
the obtained results look promising and the room for improvement is important.

We plan to extend this work by considering adaptations and optimizations of the approach to address
larger boolean networks. First, the elimination feature used to remove attractors already found could be
improved. The technique that we use currently consist on adding rules to the logic program to exclude the
attractors already found. This technique could be memory consuming when we deal with large networks.
Another trail consists in generating and increasing the size of path in a more adaptive and insightful way.
This could avoid us to traverse unnecessarily long paths.
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