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1 Introduction and problem description

The aim of my Ph.D. thesis concerns Reasoning in Highly Reactive Environments.

As reasoning in highly reactive environments, we identify the setting in which a knowledge-based

agent, with given goals, is deployed in an environment subject to repeated, sudden and possibly unknown

changes. This is for instance the typical setting in which, e.g., artificial agents for video-games (the so

called “bots”), cleaning robots, bomb clearing robots, and so on are deployed. In all these settings one

can follow the classical approach in which the operations of the agent are distinguished in “sensing”

the environment with proper interface devices, “thinking”, and then behaving accordingly using proper

actuators [2].

In order to operate in an highly reactive environment, an artificial agent needs to be:

• Responsive → The agent must be able to react repeatedly and in a reasonable amount of time;

• Elastic → The agent must stay reactive also under varying workload;

• Resilient → The agent must stay responsive also in case of internal failure or failure of one of the

programmed actions in the environment.

Nowadays, thanks to new technologies in the field of Artificial Intelligence, it is already technically

possible to create AI agents that are able to operate in reactive environments. Nevertheless, several

issues stay unsolved, and are subject of ongoing research.

2 Goal of the research

With the term data streams we identify an unbounded sequences of time-varying data elements, that

means a “continuous” flow of information. The assumption is that recent information are more relevant

as they describe the current state of a dynamic system. In the latest years, due to the increasing volume

of data streams and the crucial time requirements of many applications, different real-time approaches

have been studied in order to ensure that a query answer is pushed as soon as it becomes available to the

consumers. Notably, in the field of stream reasoning, some work aim at introducing advanced reasoning

capabilities under a well understood and formalized framework [3, 4]. By the way, Stream Reasoning is

a quite young and unexplored area, and therefore many different issues need to be solved. To this end

we aim at extending the functionality of the already existing tools in order to give them the possibility to

work also in highly reactive environment in a context in which the amount of data coming each second

is relatively small, yet time requirements are very strict. In order to achieve our goal we focus on the

usage of the pure Answer Set Programming (ASP) semantics in a repeated evaluation setting. In this
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respect, we aim to study incremental techniques able to reuse previously computed inferences, allowing

to knock down the time required during the reasoning phase. We aim to achieve this goal particularly

focusing on the optimization of the grounding step. In addition to this, we would like to develop also

an incremental answer set solver able to evaluate solutions at runtime in subsequent, similar, evaluation

shots. Moreover, we are currently working on a framework able to ease the development of AI-agents in

highly reactive contexts such as video-games and real robots. Some of these results have been already

achieved and will be briefly described in sections 5.

3 Background and overview of the existing literature

During the last years, some different approaches have been explored in order to create responsive agents

that are able to operate in highly reactive environments. Most of them make use of deep learning tech-

niques in order to let the agent be able to emulate human learning. These techniques are applied in the

field of video-games for automatic game playing accordingly to [19]. The same technique can be also

used for predicting human behavior as discussed in [17]. This kind of approaches have their “limits”

especially when one aims to a) generalize reasoning (indeed, deep learning techniques are usually built

ad-hoc for a specific operating environment); b) create development and reasoning tools that can be

“used” as middleware for the production of the so called “bots”, in which “intelligent” capabilities can

be tuned, refined and prototyped; and c) provide intelligible explanations of choices taken by the agent.

In the Answer Set Programming (ASP) community there have been some recent studies about reasoning

in reactive environments; in particular, researchers recently proposed ASP-based forms of reactive rea-

soning. One of these (called “oclingo”) allows to implement real-time dynamic systems running online

in changing environments (as described in [15]). This new technology paves the way for applying ASP

in many areas like robots, bots, and video-games due to the fact that now an ASP solver can be also

adopted for online usage. However oclingo cannot be defined as totally “declarative”. Indeed, the user

has to specify how the environment will evolve and it is necessary to specify the operational design of

some base, cumulative and volatile groups of rules, that should be respectively evaluated only one time,

at each iteration and only in one iteration before being discarded.

A second promising ASP extension like HEX [1] provides the possibility of a bidirectional access to

external sources of knowledge and/or computation using the concept of external atoms; the extension

ActHEX [14] of HEX programs introduces the notion of action atoms, which are associated to corre-

sponding functions capable of actually changing the state of external environments. Using this ASP

extension it is in practice possible to realize artificial agents able to operate in many different settings

(for instance, an HEX extension has been successfully used for implementing an AI agent operating

in video-games scenarios as described in [7]). However, ActHex does not make explicitly possible to

check and act if the planned actions in the schedule have failed at each shot. Moreover, in very complex

scenarios, the implementation of ActHex knowledge bases could become very hard and unhandy due

to the complex ways for programming the order of actions composing a scheduled plan. Furthermore,

we found in literature a large variety of languages designed for programming logical Agents and Multi-

Agent Systems in contexts very similar to our setting. One of these is Jason [5]; Jason is a platform for

developing agents based on the Agent-Speak logic language. A Jason agent consists of a set of plans,

each of which has a triggering event, a context, and a body of actions. Moreover also other languages

like IMPACT [13], DALI [10], ALP [12] and ASTRA [11] can be used to design logical Agents and

Multi-Agent Systems.
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4 Current status of the research

In the latest years, also the Answer Set Programming community focused on Stream Reasoning. Imple-

menting stream reasoning with a typical ASP system requires to start each computation from scratch

again and again at each evaluation shot. Indeed, the typical structure of an ASP system mimics such way

of defining the semantics by relying on a grounding module that takes in input a non-ground logic pro-

gram P and produces an equivalent propositional theory gr(P); the grounder is coupled with a subsequent

solver module that applies proper resolution techniques on gr(P) for computing the actual semantics in

form of answer sets AS(gr(P)) [20].

In the context of stream reasoning and multi-shot reasoning engines [4, 6, 16] based on answer set

programming, a quite typical setting is when the grounding step is repeatedly executed on slightly dif-

ferent input data, while a short computation time window is allowed. In this respect, we decided to focus

our attention on the following open issues:

1. reuse as much as possible of the previously computed knowledge in logic programs;

2. knocking down the time required for the evaluation of logic programs in subsequent and similar

evaluation shots;

3. stop and restart the computation of the answer sets when new facts are fed in input.

Concerning points 1 and 2 we focused on the usage of the pure ASP semantics in a repeated evaluation

setting. In particular, we aimed at closing some of the mentioned gaps in the current state-of-the-art by

investigating the possibility of generating incrementally larger ground programs for a fixed non-ground

logic program. In our recent experiments, we showed that this approach, which we called “overground-

ing”, pays off in terms of performance. Overgrounded programs can be reused in combination with

deliberately many different sets of inputs; this gives less control on the computational procedure easing

the burden of taking care of it: indeed, the overgrounding process and the multi-shot machinery can be

completely transparent to the user. We expect this setting to be particularly favourable when non-ground

input knowledge bases are constituted of small set of facts, typical of declaratively programmed video

game agents, or robots. Part of this work has been published in [18] while its extension will be published

in [9].

5 Preliminary results

5.1 First year

In order to achieve our goal, we started to investigate the literature [1,3,4,7,14,15,17,19,21,22]. Then, we

focused our research on artificial agents for video-games (also called “bots”). We worked on embedding

rule-based Reasoning Modules into the well-known Unity1 game development engine. To this end, we

presented an extension of EMBASP2, a framework to ease the integration of declarative formalisms with

generic applications. Finally, we proved the viability of our approach3 by developing a proof-of-concept

Unity game that makes use of ASP-based AI modules [8].

1https://unity3d.com/unity
2https://www.mat.unical.it/calimeri/projects/embasp
3All the development material, including logic programs, source code and a fully playable version of the game are available

at

https://github.com/DeMaCS-UNICAL/Pac-Man-Unity-EmbASP.

https://unity3d.com/unity
https://www.mat.unical.it/calimeri/projects/embasp
https://github.com/DeMaCS-UNICAL/Pac-Man-Unity-EmbASP


F. Pacenza 423

As a side research topic we investigated to what extent the ASP-based approach is scalable enough

for industrial contexts in the field of video games, by proposing a Unity extension capable to automati-

cally generate dungeons maps4. In this context we first investigated over the usage of a partition-based

generation technique [25], then we proposed a multiple step-generation approach, set in the context of the

2-D caves generation domain, where each step is declaratively controlled by an ASP specification. With

respect to existing literature [23, 26], our approach promises to be better scalable to real contexts with

higher size mazes; experiments aimed at confirming that are currently ongoing. Finally we developed

two plugins based on our generation technique, which were respectively deployed as an asset available

in the Unity development and in the GVGAI [24] frameworks [8].

5.2 Second year

During the currently ongoing second year of studies, we continued to work on the lines of research

described above. In particular we extended the integrated rule-based Reasoning Module framework by

adding some new functionalities in order to ease the integration of declarative formalisms within the

typical game development workflow in Unity. We solved some of the issues encountered in the previous

work as, for example, the possibility to execute asynchronous tasks in a Unity game and the possibility

to share the internal Unity data structure with the AI module. Thanks to these improvements we give the

possibility to developers to directly attach a reasoning task to a trigger condition on an object property

or at scheduled times.

After some preliminary studies we focused our attention on the usage of the pure ASP semantics in

a repeated evaluation setting. We characterized a class of ground programs called embeddings or embed-

ding programs which introduce a model-theoretic-like notion of ground programs; second, we proposed

an incremental grounding strategy able to reuse previously grounded programs. This technique allows to

knock down the time necessary for performing the instantiation of logic programs in subsequent, similar,

evaluation shots. In particular, we maintain a stored ground logic program which grows monotonically

from one shot to another; such overgrounded programs are series of embedding programs that become

more and more general while elaborating consecutive shots, increasingly adding potentially useful rules.

Cached rules can be reused in combination with deliberately many different sets of inputs. Then we

developed a first implementation of an intelligent grounder able to apply the new introduced differential

algorithm and finally tested our architecture over some applicative domains. We obtained very promising

results.

Currently we are performing other tests using the benchmark suite used during the ASP Competition.

Part of this work has been published in [18] while its extension will likely be published in [9].

6 Open issues and expected achievements

In the future work we aim at solving some of the issues encountered during the last 2 years. Some of

them are reported in the following:

1. consider simplified ground programs;

2. introduction of memory constraints during the grounding step;

4Both versions of our prototypes, together with logic program specifications and source code are fully available online at

https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-GVGAI and

https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-Unity

https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-GVGAI
https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-Unity
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3. development of an incremental solver considering also the model generation phase;

4. possibility to stop and restart the computation of an answer set.

Studying the first issue is of great importance because including simplifications in ground programs

would knock down the usage of computational resources in terms of memory consumption; indeed,

storing a non simplified ground program is more expensive than storing a simplified yet general ground

program due to its larger and increasing size in terms of number of stored rules. Our next step is to add

the simplification step in our incremental grounder framework.

After the implementation of the simplification, another issue we will deal with is the possibility to

add a memory constraint during the grounding stage. Thanks to this possible improvement, one could

set an upper bound to memory consumption. One possibility could be to remove the less triggered rules

(or simply the oldest ones) when the memory limit has been exceeded.

Concerning the third issue, this is one of the crucial points that we need to solve in order to release a

monolithic system able to directly produce incremental answer sets. At this stage of research activities,

we are performing benchmarks also on the solving time of the overgrounded programs that are obviously

greater than the solving time of the simplified instances. This time could be knocked down if a solver

could be fed at each shot with only the newly computed ground rules. In this case it is not necessary to

read at each iteration the entire ground program but only the new incremental rules.

Finally, we aim at adding the possibility to stop and restart the computation of the answer sets when

the system understands that the current knowledge base has been changed by adding or removing asser-

tions, so the set of candidate solutions is no more the same and it is needed to restart the computation

over the new set of facts.

7 Conclusions

In this work we are investigating the field of stream reasoning with specific focus on achieving high per-

formance. Our goal is to extend the currently developed framework to ease the generation of responsive,

elastic and resilient artificial agents. Here we reported on how we are proceeding in order to make this

goal possible and so we have presented our current state of the work. In the last year we worked on

the implementation of an incremental grounder able to apply a differential algorithm in subsequent and

similar shots over different input data; currently we are working on an improvement of the incremental

grounder in order to take in consideration simplifications rules that can allow to produce smaller pro-

grams. Moreover, we have presented some of the research themes that we would like to deepen (add

a memory consumption limit, develop of a full incremental solver, introduce the possibility to restart a

computation at runtime).
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