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In artificial intelligence, multi agent systems constitute an interesting typology of society modeling,

and have in this regard vast fields of application, which extend to the human sciences. Logic is often

used to model such kind of systems as it is easier to verify the explainability and validation, so for this

reason we have tried to manage agents’ memory extending a previous work by inserting the concept

of time.

1 Introduction

Memory in an agent system is a process of reasoning: it is the learning process of strengthening a concept.

The interaction between an agent and the environment can play an important role in constructing its

memory and may affect its future behaviour. In fact, through memory an agent is potentially able to

recall and to learn from experiences so that its beliefs and its future course of action are grounded in

these experiences. In computational logic, [2] introduces DLEK (Dynamic Logic of Explicit beliefs and

Knowledge) as a logical formalization of the short-term and long-term memory. The underlying idea is

to represent reasoning about the formation of beliefs through perception and inference in non-omniscient

resource-bounded agents. DLEK has however no notion of time, while agents’ actual perceptions are

inherently timed and so are many of the inferences drawn from such perceptions. In this paper we

present an extension of LEK/DLEK to T-LEK/T-DLEK (“Timed LEK” and “Timed DLEK”) obtained

by introducing a special function which associates to each belief the arrival time and controls timed

inferences. Through this function it is easier to keep the evolution of the surrounding world under

control and the representation is more complete. This abstract is an evolution version of [3], where we

have introduced explicit time instants and time intervals in formulas, and it is extracted from [4].

2 T-LEK and T-DLEK

As in [2], our logic consists of two different components: a static component, called T-LEK, which

is mix between an Epistemic Logic and Metric Temporal Logic, and a dynamic component, called T-

DLEK, which extends the static one with mental operations, which are vary important for “controlling”

beliefs (adds new belief, update belief, etc).

2.1 Syntax

In our scenario we fix Atm = {p(t1, t2),q(t3, t4), ... ,h(ti, t j)} where ti 6 t j and p,q,h are predicates, that

can be equal or not. Moreover p(t1, t2) stands for “p is true from the time instant t1 to t2” with t1, t2 ∈ N

(Temporal Representation of the external world); as a special case we can have p(t1, t1) which stands
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for “p is true in the time instant t1”. Obviously we can have predicates with more terms than only two

but in that case we fix that the first two must be those that identify the time duration of the belief (i.e.

open(1,3,door) which means “the agent knows that the door is open from time 1 to time 3”). Instead

in the previous work [3] we considered atoms of the form pI with I = [t1, t2], which are the conjunction

pt1 ∧ pt1+1 ∧ ·· · ∧ pt2 and also pt stand for pIt with It = [t, t]; we have decided to change approach

because pI is too detached from propositional logic.

Below is the definition of the formulas of the language LT-LEK , with a slight abuse, in this grammar

we use I as terminal symbol standing for time intervals (possibly specified through arithmetic expres-

sions, as said earlier):

ϕ ,ψ := p(t1, t2) | ¬ϕ | �I ϕ | Bϕ | K ϕ | ϕ ∧ ψ | ϕ → ψ

Other Boolean connectives ⊤, ⊥, ↔ are defined from ¬ and ∧ as usual. In the formula �I Φ the MTL

Interval “always” operator is applied to a formula; I is a “time-interval” which is a closed finite interval

[t, l] or an infinite interval [t,∞) (considered open on the upper bound), for any expressions/values t, l
such that 0 ≤ t ≤ l and �[0,∞) will sometimes be written simply as �. The operator B is intended to

denote belief and the operator K to denote knowledge. More precisely, B identifies beliefs present in the

working memory, instead K identifies what rules present in the background knowledge.

Terms/atoms/formulas as defined so far are ground, namely there are no variables occurring therein.

We introduce variables and use them in formulas in a restricted manner, as usual for example in an-

swer set programming. Variables can occur in formulas in any place; constants can occur and are in-

tended as place holders for elements of the Herbrand universe. More specifically, a ground instance of

a term/atom/formula involving variables is obtained by uniformly substituting ground terms to all vari-

ables (grounding step), with the restriction that any variable occurring in an arithmetic expression (i.e.,

specifying a time instant) can be replaced by a (ground) arithmetic expressions only. Consequently, a

non-ground term/atom/formula represents the possibly infinite set of its ground instances, namely, its

grounding. Notice that the rational of considering ground formulas is that they represent perceptions

(either new or already recorded in agent’s memory) coming in general from the external world (we say

“in general” as, in fact, in some of the aforementioned agent-oriented frameworks perceptions can also

result from internal events, i.e., from an agent’s observations of its own internal activities). As it is

customary in logic programming, variable symbols are indicated with an initial uppercase letter whereas

constants/functions/predicates symbols are indicated with an initial lowercase letter.

The language LT-DLEK of Temporalized DLEK (T-DLEK) is obtained by augmenting LT−LEK with

the expression [α ]ψ , where α denotes a mental operation and ψ is a ground formula. The mental

operations that we consider are essentially the same as in [2]:

• +ϕ , where ϕ is a ground formula of the form p(t1, t2) or ¬p(t1, t2): the mental operation that

serves to form a new belief from a perception ϕ . A perception may become a belief whenever an

agent becomes “aware” of the perception and takes it into explicit consideration. Notice that ϕ

may be a negated atom.

• ∩(ϕ ,ψ): believing both ϕ and ψ , an agent starts believing their conjunction.

• ⊢(ϕ ,ψ), where ψ is a ground atom, say p(t1, t2): an agent, believing that ϕ is true and having

in its long-term memory that ϕ implies ψ (in some suitable time interval including [t1, t2]), starts

believing that p(t1, t2) is true.

• ⊣(ϕ ,ψ) where ϕ and ψ are ground atoms, say p(t1, t2) and q(t3, t4) respectively: an agent, believ-

ing p(t1, t2) and having in the long-term memory that p(t1, t2) implies ¬q(t3, t4), removes the timed
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belief q(t3, t4) if the intervals match. Notice that, should q be believed in a wider interval I such

that [t1, t2] ⊆ I, the belief q(., .) is removed concerning intervals [t1, t2] and [t3, t4], but it is left for

the remaining sub-intervals (so, its is “restructured”).

The last mental operation, which is a sort of “update” or “restructuring operator”, substitutes −ϕ ([2]),

that instead represents arbitrary “forgetting”, i.e., removing a belief from the short-term memory. In fact

in [2] there are +ϕ , −ϕ , ⊢(ϕ ,ψ) and ⊣(ϕ ,ψ).

Example 1: We propose a small example to illustrate the form and the role of rules in the working

memory and in the long-term memory. If at time t=2 it is starting raining, in the agent’s working mem-

ory there will be the following belief: B(raining(2,2)). And if we have in the background knowledge

K(rain(t1, t2) → take(t1, t2,umbrella)) and 2 ∈ [t1, t2] then the agent can infer B(take(2,2,umbrella)),
which is a new belief stored in the working memory. And if we have also K(rain(t1, t2)∧
take(t1, t2,umbrella) → go(t1 + 1,∞,shops)) than the agent can infer B(go(3,∞,shops)) which means

that after getting the umbrella the agent can go around the shops.

Example 2: An example of a non-ground T-LEK formula is:

K(�[t1,t2](enrollment(T,T)) →�[t1,t2](�[T,T+14]send payment(T1,T1)))

where we suppose that an agent knows that it is possible to enroll in the university in the period [t1, t2] and

that, after the enrollment, the payment must be sent within fourteen days (still staying within the interval

[t1, t2]). Since, by the restrictions on formulas stated earlier, it must be the case that T1 ∈ [T,T +14] and

both T , T + 14 must be in [t1, t2], only a finite set of ground instances of this formula can be formed

by substituting natural numbers to the variables T,T1 (specifically, the maximum number of ground

instances is t2 − t1 − 14+ 1 assuming to pay on the last day t2). In case one would consider the more

general formula:

K(�[t1,t2](enrollment(T,T,X)) →�[t1,t2](�[T,T+14]send payment(T1,T1,X)))

where X represents a student of that university, i.e., student(., .,X) holds for some ground instance of X ,

then the set of ground instances would grow, as a different instance should be generated for each student

(i.e., for each ground term replacing X ). In practice, however, ground instances need not to be formed a

priori, but rather they can be generated upon need when applying a rule; in the example, just one ground

instance should be generated when some student intends to enroll in that university at a certain time

T = t̂.

2.2 Semantics

Semantics of DLEK and T-DLEK are both based on a set W of worlds. In both DLEK and T-DLEK we

have the valuation function: V : W → 2Atm. Also we define the “time” function T that associates to each

formula the time interval in which this formula is true and operates as follows:

• T (p(t1, t2)) = [t1, t2], which stands for “p is true in the time interval [t1, t2]” where t1, t2 ∈ N; as

a special case we have T (p(t1, t1)) = t1, which stands for “p is true in the time instant t1” where

t1 ∈ N (time instant);

• T (¬p(t1, t2)) = T (p(t1, t2)), which stands for “p is not true in the time interval [t1, t2]” where

t1, t2 ∈N;
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• T (ϕ op ψ) = T (ϕ)
⊎

T (ψ) with op ∈ {∨,∧,→}, which means the unique smallest interval in-

cluding both T (ϕ) and T (ψ);

• T (Bϕ) = T (ϕ);

• T (Kϕ) = T (ϕ);

• T (�Iϕ) = I where I is a time interval in N;

• T ([α ]ϕ) there are different cases depends on which kind of mental operations we applied:

1. T (+ϕ) = T (ϕ);

2. T (∩(ϕ ,ψ)) = T (ϕ)
⊎

T (ψ);

3. T (⊢(ϕ ,ψ)) = T (ψ);

4. T (⊣(ϕ ,ψ)) returns the restored interval where ψ is true.

For a world w, let t1 be the minimum time instant of T (p(t1, t1)) where p(t1, t1) ∈ V (w) and let t2 be

the supremum time instant (we can have t2 = ∞) among the atoms in V (w). Then, whenever useful, we

denote w as wI where I = [t1, t2], which identifies the world in a given interval.

The notion of LEK/T-LEK model does not consider mental operations, discussed later, and is intro-

duced by the following definition.

Definition 2.1 A T-LEK model is a tuple M = 〈W ;N;R;V ;T 〉 where:

• W is the set of worlds;

• V : W → 2Atm valuation function;

• T “time” function;

• R ⊆ W×W is the accessibility relation, required to be an equivalence relation so as to model

omniscience in the background knowledge s.t. R(w) = {v ∈W | wIR vI} called epistemic state of

the agent in wI , which indicates all the situations that the agent considers possible in the world

wI or, equivalently any situation the agent can retrieve from long-term memory based on what it

knows in world wI;

• N : W → 22W

is a “neighbourhood” function, ∀w ∈ W , N(w) defines, in terms of sets of worlds,

what the agent is allowed to explicitly believe in the world wI; ∀wI,vI ∈W , and X ⊆W:

1. if X ∈ N(wI), then X ⊆ R(wI): each element of the neighbourhood is a set composed of

reachable worlds;

2. if wIR vI , then N(wI) ⊆ N(vI): if the world vI is compliant with the epistemic state of world

wI , then the agent in the world wI should have a subset of beliefs of the world vI .

A preliminary definition before the Truth conditions : let M = 〈W ;N;R;V ;T 〉 a T-LEK model. Given

a formula ϕ , for every wI ∈W , we define

‖ ϕ ‖M
wI
= {vI ∈W | M,vI |= ϕ}∩R(wI).

Truth conditions for T-DLEK formulas are defined inductively as follows:

• M,wI |= p(t1, t2) iff p(t1, t2) ∈V (wI) and T (p(t1, t2))⊆ I;

• M,wI |= ¬ϕ iff M,wI 2 ϕ and T (¬ϕ)⊆ I;

• M,wI |= ϕ ∧ψ iff M,wI |= ϕ and M,wI |= ψ with T (ϕ),T (ψ)⊆ I;
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• M,wI |= ϕ ∨ψ iff M,wI |= ϕ or M,wI |= ψ with T (ϕ),T (ψ)⊆ I;

• M,wI |= ϕ → ψ iff M,wI 2 ϕ or M,wI |= ψ with T (ϕ),T (ψ)⊆ I;

• M,wI |= Bϕ iff ‖ ϕ ‖M
wI
∈ N(wI) and T (ϕ)⊆ I;

• M,wI |= Ki ϕ iff for all vI ∈ R(wI), it holds that M,vI |= ϕ and T (ϕ)⊆ I;

• M,wI |=�Jϕ iff T (ϕ)⊆ J ⊆ I and for all vI ∈ R(wI), it holds that M,vI |= ϕ ;

In particular, considering formulas of the forms Bϕ and K ϕ , we observe that M,wI |= Bϕ if the set

‖ ϕ ‖M
wI

of worlds reachable from wI which entail ϕ in the very same model M belongs to the neigh-

bourhood N(wI) of wI . Hence, knowledge pertains to formulas entailed in model M in every reachable

world, while beliefs pertain to formulas entailed only in some set of them, where this set must however

belong to the neighbourhood and so it must be composed of reachable worlds. Thus, an agent is seen as

omniscient with respect to knowledge, but not with respect to beliefs.

Concerning a mental operation α performed by any agent i, we have: M,wI |= [α ]ϕ iff Mα ,wI |= ϕ

and T (ϕ) ⊆ I where Mα = 〈W ;Nα(wI);R;V ;T 〉 Here α represents a mental operation affecting the

sets of beliefs. In particular, such operation can add new beliefs by direct perception, by means of one

inference step, or as a conjunction of previous beliefs. When introducing new beliefs, the neighbourhood

must be extended accordingly, as seen below; in particular, the new neighbourhood Nα(wI) is defined

for each of the mental operations as follows.

• Learning perceived belief:

N+ϕ(wI) = N(wI) ∪
{

‖ ϕ ‖M
wI

}

with T (ϕ)⊆ I.

The agent adds to its beliefs perception ϕ (namely, an atom or the negation of an atom) perceived

at a time in T (ϕ); the neighbourhood is expanded to as to include the set composed of all the

reachable worlds which entail ϕ in M.

• Beliefs conjunction:

N∩(ψ ,χ)(wI) =







N(wI) ∪
{

‖ ψ ∧ χ ‖M
wI

}

if M,wI |= B(ψ)∧B(χ)
and T (∩(ψ ,χ))⊆ I

N(i,wI) otherwise

The agent adds ψ ∧χ as a belief if it has among its previous beliefs both ψ and χ , with I including

all time instants referred to by them; otherwise the set of beliefs remain unchanged. The neigh-

bourhood is expanded, if the operation succeeds, with those sets of reachable worlds where both

formulas are entailed in M.

• Belief inference:

N⊢(ψ ,χ)(wI) =







N(wI) ∪
{

‖ χ ‖M
wI

}

if M,wI |= B(ψ) ∧ K(ψ → χ)
and T (⊢ (ψ ,χ))⊆ I

N(wI) otherwise

The agent adds the ground atom χ as a belief in its short-term memory if it has ψ among its previ-

ous beliefs and has in its background knowledge K(ψ → χ), where all the time stamps occurring

in ψ and in χ belong to I. Observe that, if I does not include all time instants involved in the

formulas, the operation does not succeed and thus the set of beliefs remains unchanged. If the

operation succeeds then the neighbourhood is modified by adding χ as a new belief.

• Beliefs revision (applied only on ground atoms):

Given Q = q( j,k) s.t. T (q( j,k)) = T (q(t1, t2))∩ T (q(t3, t4)) with j,k ∈ N and P =
{

M,wI |=
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B(p(t1, t2))∧B(q(t3, t4))∧K(p(t1, t2) → ¬q(t3, t4)) and T (⊣ (p(t1, t2),q(t3, t4))) ⊆ I and there is

no interval J ) T (p(t1, t2)) s.t. B(q(t5, t6)) where T (q(t5, t6))=J
}

:

N⊣(p(t1,t2),q(t3,t4))(wI) =

{

N(wI)\
{

‖ Q ‖M
wI

}

if P

N(i,wI) otherwise

The agent believes that q(t3, t4) holds only in the interval T (q(t3, t4)) and has the perception of

p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)). Then, the agent replaces previous belief q(t3, t4) in

the short-term memory with q(t5, t6) where T (q(t5, t6))=T (q(t3, t4)) \ T (q(t1, t2)). In general,

the set T (q(t3, t4)) \ T (q(t1, t2)) is not necessarily an interval: being T (p(t1, t2)) ⊆ T (q(t3, t4)),
with T (p(t1, t2))=[t1, t2], and T (q(t3, t4))=[t3, t4], we have that T (q(t3, t4)) \ T (q(t1, t2))=[t3, t1 −
1]∪[t2 +1, t4]. Thus, q(t3, t4) is replaced by q(t3, t1 −1) and q(t2 +1, t4) (and similarly if t4 = ∞).

We write |=T-DLEK ϕ to denote that ϕ is true in all worlds wI , of every TLEK model M.

Example 3: Let us consider the example of a person who is married or divorced, where s(he) can perform

the action to be married or divorced. Let us assume that performed actions are recorded among an agent’s

perceptions, with the due time stamp. For reader’s convenience, actions are denoted using a suffix “A”.

For simplicity, actions are supposed to always succeed and to produce an effect within one time instant.

Let us consider the following rules (kept in long-term memory):

K(marry(T,T)A → married(T +1,∞))
K(divorce(T,T)A → divorced(T +1,∞)).

Let us now assume that a person married, e.g., at time 5; then, a belief will be formed of the person is

married from time 6 on; however, if that person later divorced, e.g., at time 8, as a consequence result

that s(he) is divorced from time 9. It can be seen that the application of previous rules in consequence

of an agent’s action of marring/divorcing determines some “belief restructuring” in the short-term mem-

ory of the agent. In absence of other rules concerning marriage, we intend that a person can not be

simultaneously married and divorced. The related belief update is determined by the following rules:

K(married(T,∞)→¬divorced(T,∞))
K(divorced(T,∞) →¬married(T,∞))

With the above timing, the result of their application is that the belief formed at time 5, i.e., married(6,∞)
will be replaced by married(6,8) plus divorced(9,∞).

Property 1: For the mental operations previously considered we have the following (where ϕ ,ψ are as

explained earlier):

• |=T-DLEK [+ϕ ]Bϕ .

Namely, as a consequence of the operation +ϕ (thus after the perception of ϕ) the agent i adds ϕ

to its beliefs.

• |=T-DLEK (Bϕ ∧Bψ)→ [∩(ϕ ,ψ)]B(ϕ ∧ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the mental operation ∩(ϕ ,ψ)
the agent starts believing ϕ ∧ψ ;

• |=T-DLEK (K(ϕ → ψ)∧Bϕ)→ [⊢(ϕ ,ψ)]Bψ .

Namely, if an agent has ϕ as one of its beliefs and has K(ϕ→ψ) in its background knowledge,

then as a consequence of the mental operation ⊢(ϕ ,ψ) the agent starts believing ψ ;
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• |=T-DLEK (K(p(t1, t2)→¬q(t3, t4))∧B(p(t1, t2))∧B(q(t3, t4)))→ [⊣(p(t1, t2),q(t3, t4))]B(q(t5, t6))
where T (q(t5, t6)) = T (q(t3, t4))\T (q(t1, t2)).
Namely, if an agent has q(t3, t4) as one of its beliefs, q is not believed outside T (q(t3, t4)), the agent

perceives p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)), and has K(p(t1, t2) → ¬q(t3, t4)) in its back-

ground knowledge. Then after the mental operation ⊣(p(t1, t2),q(t3, t4)) the agent starts believing

q(t5, t6)) where T (q(t5, t6)) = T (q(t3, t4))\T (q(t1, t2)).

3 Axiomatization and Canonical Models

The logic T-DLEK can be axiomatized as an extension of the axiomatization of DLEK as follows. We

implicitly assume modus ponens, standard axioms for classical propositional logic, and the necessitation

rule. The T-LEK axioms are the following:

1. K(ϕ)∧K(ϕ → ψ)→ K(ψ);

2. K(ϕ)→ ϕ ;

3. K(ϕ)→ KK(ϕ);

4. ¬K(ϕ)→ K¬K(ϕ);

5. Bϕ ∧K(ϕ ↔ ψ)→ Bψ .

The axiomatization of T-DLEK, involves these axioms:

1. [α ] f ↔ f where f = p or f = pt or f = pI ;

2. [α ]¬ϕ ↔¬[α ]ϕ ;

3. [α ](ϕ ∧ψ)↔ [α ]ϕ ∧ [α ]ψ ;

4. [α ]K(ϕ)↔ K
(

[α ](ϕ)
)

;

5. [+ϕ ]Bψ ↔
(

B([+ϕ ]ψ)∨K
(

[+ϕ ]ψ ↔ ϕ
)

)

;

6. [⊢(ϕ ,ψ)]Bχ ↔
(

B
(

[⊢(ϕ ,ψ)]χ
)

∨
(

Bϕ ∧K
(

ϕ → ψ
)

∧K
(

[⊣(ϕ ,ψ)]χ ↔ ψ
)

))

;

7. [⊣(ϕ ,ψ)]Bχ ↔
(

B
(

[⊣(ϕ ,ψ)]χ
)

∨
(

Bϕ ∧K(ϕ→¬ψ)∧K
(

[⊣(ϕ ,ψ)]χ↔¬ψ
)

))

;

8. [∩(ϕ ,ψ)]Bχ ↔
(

B
(

[∩(ϕ ,ψ)]χ
)

∨
(

(Bϕ ∧Bψ)∧ K
(

[∩(ϕ ,ψ)]χ ↔ (ϕ ∧ψ)
)

)

;

9.
ψ ↔ χ

ϕ ↔ ϕ [ψ/χ ]
where ϕ [ψ/χ ] denotes the formula obtained by replacing ψ with χ in ϕ .

We write T-DLEK ⊢ ϕ to indicate that ϕ is a theorem of TDLEK.

Both logics T-LEK and T-DLEK are sound for the class of T-LEK models. The proof that T-DLEK

is strongly complete can be achieved by using a standard canonical model argument.

The canonical T-LEK model is a tuple Mc = 〈Wc;Nc; {Rc;Vc;Tc〉 where:

• Wc is the set of all maximal consistent subsets of LT-LEK ; so, as in [2], canonical models are

constructed from worlds which are sets of syntactically correct formulas of the underlying lan-

guage and are in particular the largest consistent ones. As before, each w ∈Wc can be conveniently

indicated as wI .
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• For every wI ∈W and wIRcvI if and only if Kϕ ∈ wI iff Kϕ ∈ vI ; i.e., Rc is an equivalence relation

on knowledge; as before, we define Rc(wI) = {vI ∈W |wIRci
vI}. Thus, we cope with our extension

from knowledge of formulas to knowledge of formulas.

• Analogously to [2], for wI ∈W , Φ ∈ LT-LEK we define AΦ(wI) = {vI ∈ Rc(wI) | Φ ∈ vI}. Then,

we put Nc(wI) = {AΦ(wI) | BΦ ∈ wI}.

• Vc is a valuation function defined as before.

• Tc is a “time” function defined as before.

As stated in Lemma 2 of [2], there are the following immediate consequences of the above definition:

if wI ∈Wc and i ∈ Ag, then

• for Φ ∈ LT-LEK, it holds that KΦ ∈ wI if and only if ∀vI ∈W such that wIRcvI we have Φ ∈ vI ;

• for Φ ∈ LT-LEK, if BΦ ∈ wI and wIRcvI then BΦ ∈ vI .

Thus, while Rc-related worlds have the same knowledge and Nc-related worlds have the same beliefs,

as stated in Lemma 3 of [2] there can be Rc-related worlds with different beliefs. The above properties

can be used analogously to what is done in [2] to prove that, by construction, the following results hold:

Lemma 3.1 For all wI ∈ Wc and BiΦ,BiΨ ∈ LT-LEK , if BiΦ ∈ wI but BiΨ 6∈ wI , it follows that there

exists vI ∈ Rci
(wI) such that Φ ∈ vI ↔ Ψ 6∈ vI .

Lemma 3.2 For all Φ ∈ LT-LEK and wI ∈Wc it holds that Φ ∈ wI if and only if Mc,wI � Φ.

Lemma 3.3 For all Φ ∈ LT-DLEK then there exists Φ̃ ∈ LT-LEK such that T-DLEK ⊢ Φ ↔ Φ̃.

Under the assumption that the interval I is finite, the previous lemmas allow us to prove the following

theorems. The limitation to finite intervals is not related to features of the proposed approach, but to

well-known paradoxes of temporal logics on infinite intervals.

Theorem 3.1 T-LEK is strongly complete for the class of T-LEK models.

Theorem 3.2 T-DLEK is strongly complete for the class of T-LEK models.

With the new formalization of time intervals proposed in this paper, the proof of the previous Theo-

rem immediately follows from the proof proposed in [2].

4 Conclusion

In this work we extended an existing approach to the logical modeling of short-term and long-term

memories in Intelligent Resource-Bounded Agents by introducing the T function, which manages the

interval when an atom is true. Through this function we are also able to assign a “timing” to the epistemic

operators B and K. Moreover we add the always operator �I of the Metric Temporal Logic to increase

the expressiveness of our logic. We considered not just adding new beliefs, rather we introduced a

new mental operation not provided in DLEK, to allow for removing/restructuring existing beliefs. The

resulting T-DLEK logic shares similarities in the underlying principles with hybrid logics (cf., e.g., [1])

and with temporal epistemic logic (cf., e.g., [5]); as concerns the differences, the former has time instants

but no time intervals, and the latter has neither time instants nor time intervals.

With regard to complexity for the mono agent case for LEK it has been proved that the satisfiability

problem is decidable and it has been proved to be in NP-complete, instead for DLEK it has been con-

jectured to be PSPACE. It is easy to believe that our extensions cannot spoil decidability because the T
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function do not interfere. Inference steps to derive new beliefs are analogous to D-LEK: just one modal

rule at a time is used and a sharp separation is postulated between the working memory, where inference

is performed, and the long-term memory. We are working on the extension to the multi-agent case, also

reconsidering the complexity, and on the “Store” operation, which consist in managing the transition

from working memory to long term memory.
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