Incremental Database Design using UML-B and Event-B

Ahmed Al-Brashdi Michael Butler Abdolbaghi Rezazadeh
University of Southampton University of Southampton University of Southampton
Southampton, UK Southampton, UK Southampton, UK

azablgl4@ecs.soton.ac.uk mjb@ecs.soton.ac.uk ra3@ecs.soton.ac.uk

Correct operation of many critical systems is dependent on the data consistency and integrity prop-
erties of underlying databases. Therefore, a verifiable and rigorous database design process is highly
desirable. This research aims to investigate and deliver a comprehensive and practical approach
for modelling databases in formal methods through layered refinements. The methodology is being
guided by a number of case studies, using abstraction and refinement in UML-B and verification
with the Rodin tool. UML-B is a graphical representation of the Event-B formalism and the Rodin
tool supports verification for Event-B and UML-B. Our method guides developers to model rela-
tional databases in UML-B through layered refinement and to specify the necessary constraints and
operations on the database.

1 Introduction

Database systems hold large resources upon which critical decisions rely. These resources and decisions
can be part of safety or business critical domains like health and patient systems or enterprise intelligent
systems. This emphasises the fact that database systems are a very important field in software engineer-
ing [[11] and thus require a verifiable and rigorous design and implementation. While the chances of
inconsistency and ambiguity of specifications are low in small and simple systems, the chances increase
as the database size and complexity grow. The conventional database design using Entity-Relational
Diagram (ERD) to describe databases is restricted to modelling the structure of the databases without
specifying the system behaviour. Modelling only the structure of the databases does not prove its consis-
tency or unambiguity as these can be caused by an operation of the database.

This research tries to address the question of how to gradually design databases and prove their
consistency and integrity. To address this, we propose a method for model-based database design in
formal methods using a UML-like notation that supports layered refinement of system models. We use
Event-B which is a formal method for rigorous specification and verification of digital systems [1]]. It
has been supported in an open tool platform called Rodin [3]]. We model our system using a UML-like
notation in the Rodin tool called UML-B [18] which supports modelling in class diagrams and state
machine diagrams. The UML-B tool translates UML-B models to Event-B models and the Rodin tool is
used to verify their consistency. As class diagrams are commonly used to model database systems, using
UML-B class diagrams will be more straightforward for database designers than modelling databases
directly in Event-B.

This paper is structured as follows: In Section[2] we give background about the topics that are related
to this research, mainly formal methods and relational databases. Section [3] describes how to model an
information system using UML-B and Event-B in Rodin through abstraction and refinement following
case studies. In Section 4 we outline our tool, UB2DB, which automatically generates database code
from UML-B and Event-B model. Before concluding in section [6] we outline the most related work in
Section [3

R. Laleau, D. Méry, S. Nakajima, E. Troubitsyna (Eds): Joint Workshop on
Handling IMPlicit and EXplicit knowledge in formal system development

and Formal & Model-Driven Techniques for Developing Trustworthy Systems.
EPTCS 271, 2018, pp. 34 doij10.4204/EPTCS.271.3

© A. Al-Brashdi, M. Butler & A. Rezazadeh
This work is licensed under the
Creative Commons Attribution License.

http://dx.doi.org/10.4204/EPTCS.271.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Al-Brashdi, M. Butler & A. Rezazadeh 35

2 Background

2.1 Event-B

Event-B is a formal method for system modelling and verification. A model in Event-B consists of a
static part in a context that defines the types, constants and axioms, and a dynamic machine component
with all variables and invariants as well as events that change the variable state. An event may have
guards that must hold before the execution of the event. Event actions change the state of a variable. All
events in a machine must preserve all of its invariants.

Refinement in Event-B enables a modeller to gradually specify the system at different levels [1].
Model refinement is a key concept in Event-B which enables a modeller to gradually specify the system
so it becomes more precise and closer to reality [4]. In a refinement, we start with an abstract model that
describes the main functionality of a system. Then gradually we elaborate the system by adding further
details in the specifications. Event-B refinement can be horizontal or vertical. The horizontal refinement
includes adding extra details to the model while the vertical refinement or data refinement transforms the
state of an abstract variable to make it closer to programming implementation.

Applying refinement to a context in Event-B can be done by adding new sets, constants and axioms.
Machine refinement may include adding new variables, invariants and new events or refining existing
events [1l]. A new event in a refinement refines a skip event that does nothing to the abstract model.
When doing refinement we have to make some proofs so that the new refinement doesn’t violate the
abstract model. Moreover, doing a data refinement that removes an abstract variable and replaces it
with another more concrete one introduces the glueing invariant. The glueing invariant links between an
abstract state and a concrete one [1]].

Compared to other formal notations and methods such as Z [19], VDM [14] and B method [2],
Event-B provides more flexible refinements in which we can introduce new events in refinements. This
feature is important in our research as databases include different operations on their data and we need
to introduce these operations on data when their variables are introduced in refinements.

2.2 UML-B

UML-B is a graphical notation for formal modelling in Event-B that is based on UML [18]. A tool,
called iUML-B, is provided which supports building diagrams in UML-B and is integrated into an Event-
B machine or context. The model is translated into Event-B for verification. UML-B supports modelling
with class diagrams which are used to describe the data structure and behavioural part of the system [18]],
and state diagram which are attached to a class, partitions the class instances into different states.

UML-B allows the modeller to choose one of three kinds when adding an event to a class. These
kinds are normal, constructor or destructor events. A constructor event should be selected for events
that aim to create an instance of a class. The destructor is used for the opposite. For other operations, the
normal event is selected; it adds a guard automatically to check that the instance to select or update is an
element of that class set.

A class diagram in UML-B can be refined by adding new attributes or new associations. New classes
and events are also possible when refining a UML-B class diagram and new class invariants can be
defined. A state machine can be refined by adding new states ans transitions. A refinement of a state
machine can also include adding nested states inside another state.

36 Incremental Database Design

2.3 Relational Database

In 1970, Codd [10] introduced the relational model of database systems, which became the most widely
used database type. The relational model of a database is composed of several relations. Relation
elements are represented as tuples in which they may be formed by one or many columns where each
column is a set. Given sets S1,5,...,5,, relation R is a set of n-tuples where each tuple has its first
element from Sy, its second element from S, ...etc. Each column in a relation has a heading (name)
and a domain of values such as character or integer. Relations are viewed as tables, tuples as rows and
columns as attributes.

Any committed state of a database must guarantee and preserve some pre-defined constraints and
assertions. These constraints might relate to a table, an attribute in a table, or a relation between one
table and another. It is important that database consistency is proved so that any requirement of the
database system is not violated in any valid state of the system. It is also important to prove that database
requirements don’t contradict with each others. This can achieved by using formal methods in which
invariants are used to model these requirements. The invariants are universally quantified in the formal
model and preserved by all its operations.

3 Modelling database through abstraction and refinement

This section shows how to structure a database model in UML-B using our approach of layered refine-
ments. In order to illustrate our approach clearly, we need to introduce some concepts that we identified
when modelling three case studies. These case studies concern a Student Enrollment and Registration
System (SRES), a Car Sharing System and an Emergency Room System.

Following the modelling of the case studies, we can generalise guidelines for modelling information
systems in layered refinements by extending each refinement with extra features and complexity. The
guidelines define both the structure of the model as the operations on its variables. We define how
to model CRUD (Create, Read, Update and Delete) operations in Event-B with minimal mathematical
notations that can be later translated automatically to database code.

Modelling databases gradually using abstraction and refinement in Event-B should help the modeller
breaks down the complexity of a system. Since the refinement proofs are generated when using refine-
ment in Event-B, the modeller can make sure that the refinement does not violate the abstract model.

3.1 Primary, Secondary and Attribute Classes

Modelling these case studies introduces different class types that can be used in defining a refinement
strategy when modelling database systems. These classes are primary, secondary and attribute classes.
Primary classes are the classes that describe the main entities of the system and can be seen in classes
that describe people such as Student and Staff in SRES, Member in Car Sharing, or Patient and Doctor
in Emergency Room. Primary classes can also illustrate activities such as Module and Treatment, objects
such as Car and Room, or an organisation such as Department.

Secondary classes are the classes that relate two or more primary classes together. Examples of such
classes are Registration of a student in a particular model, Booking of a car by a member, and Admission
of a patient by a doctor into a room.

Attribute class is a class that represents a complex attribute of a primary class that consists of multiple
attributes. An example of such a class is the Address of a person which by itself has attributes such as

A. Al-Brashdi, M. Butler & A. Rezazadeh 37

> A (o B
. 1.1
'¢' addA o r {} addB
removeA | 0.n % removeB
% updateR

Figure 1: Abstract model of UML-B class diagram

J.1 © offeredBy | © Module
® Department © Program © Person
% addModule
addDepartmentDean # addProgram # updateModule
updateDeaprtmentDean % updateProgramDepartment % removeModule
addDepartment # removeProgram
removeDepartment

1.1 T
0.1 .1 .

0.n © offeredin \

@ enrolledin
© Staff © Student U-N
© worksin 0..
© hasDean 0.1 '3 addstaff # addStudent
% updateWork % updateEnrolment
¥ removeStaff ¥ removeStudent

Figure 2: Abstract model of SRES entities and relations as a UML-B class diagram

street number and postcode. For each concept and refinement, this section will show it using an example
of one of the case studies.

3.2 Modelling classes and their associations

Modelling information systems in our approach is done in different refinements that are defined in suc-
cessive steps. The abstract model of the system may consist of different classes and the associations
between them. Figure (1| shows an abstract UML-B model of two classes A and B. The diagram shows
the classes and association between them, 7.

The abstract model needs to include all required events that modify the state of variables introduced
in that model. Such events are add, update and remove events, where add events insert new elements in
the class, update events change the value of one or more of its attributes and remove events delete one
or more records from it. Examples of primary classes in the SRES case study are Student, Module, Staff,
Program and Department. Figure 2] shows our abstract UML-B model of the SRES case study.

The model includes all events that change the state of its classes instances, attributes and associations.
Add events are set as constructor event types in UML-B. For each class such as Program, all associations
from it to another class are added in its constructor event. For example, addProgram for the Program
class has a parameter for offeredBy and an action to map it to Program instance as in action act2.

Event addProgram =

any

38 Incremental Database Design

¢ ClassAttribute

Overview Mame: program_code
Model Type: PROGRAM_CODE
Data Kind: Variable
Initial Value:
Container Name Comment
Elaborates: ml program_code
Link Data Un-link Data Create & Link Un-link & Delete
Surjective: false w0
Injective: true v
Total: true o

Functional: true w0

Comment:

Figure 3: Setting class attribute in UML-B

this_Program, d
where

grdl :this_Program ¢ Program

grd2 :d € Department, this_Program € PROGRAM
then

actl : Program := Program U {this_Program}

act2 : offeredBy := offeredBy U {this_Program d }
end

The model also includes inheritance between super and sub-classes. An example is the Staff and Student
classes which are sub-classes of Person class. The subclasses could have some explicit associations for
each that are not shared between them.

Modelling the relation between Staff and Department introduces a circular dependency in which
each class relates to the other one forming a circle as a Department has a dean and a member of Staff
works in a Department. By modelling this in Event-B and specifying each association as a total function,
both adding Staff and adding Department events are not enabled as each requires an instance from the
other class. To avoid this, we weakened one association, hasDean, by making the association optional,
or partial function.

3.3 Adding attributes and extending events

In a refinement, each class will have attributes that add some details about the class such as program_-
code in class Program. After defining these classes and their associations, we refine the model by adding
different attributes to each class and defining their constraints. The constraints such as not null and
unique constraints can be defined by defining the attribute as total and injective functions when added in
UML-B as in Figure [3] for the attribute program_code in Program class. Adding this as a refinement is
because we prefer to have the general structure of the classes and associations between them first, then
to add details to each individual class.

A. Al-Brashdi, M. Butler & A. Rezazadeh 39

) 1.1y © offeredBy l0.n R
© Department © Program

© department_name: VARCHAR © program_code: PROGRAM_CODE

© department_url: VARCHAR © program_name: VARCHAR

% addDepartment % addProgram

% addDepartmentDean % updateProgramDepartment

% updateDeaprtmentDean % removeProgram

% updateDepartmentName]
% removeDepartment

Figure 4: Adding attributes to the main classes

Figure [4] shows this refinement in our approach where we added the attributes to the classes. In
this level, data types such as date and variable characters are defined as carrier sets and used as types
for different attributes in various tables. All events are extended to include the new attributes such as
program_code and progran_name in addProgram event:

Event addProgram =
extends addProgram

any
where p-code, p_name

grd4: p_code € PROGRAM _CODE; p_code € PROGRAM CODE
then

act3: program_code := program_code J {this_Program — p_code}

act4: program_name := program_name U {this_Program — p_name}
end

3.4 Modelling secondary classes

In a further refinement we introduce the secondary classes to the model in which they associate between
primary classes or are instances of a primary class such as the Registration in Figure [5| which is a class
that describes a Student taking a Module in a specific time and the Module_Runs which specifies modules
running at given year and semester.

3.5 Modelling attribute classes

Another distinction is introduced in this model: the attribute classes. An example is Address class, which
is an attribute type that is associated with Person as shown in Figure [6] The association is directed to
and not from the Person class giving the assumption that each person might have 0..n addresses. This
concept, the attribute class, can be introduced in any refinement. The association is defined from the
primary/secondary class to the attribute class.

40 Incremental Database Design

(© Student (© Module

@ student_id: STUDENT_ID © module_code: CODE

@ enrolment_start: DATE % module_name: VARCHAR
@ enrolment_end: DATE © module_credit: CREDIT

@ student_status: STATUS % addModule

% addStudent % updateModuleCode

% updateEnrolment % updateModuleName

% removeStudent % updateModuleCredits
C] % addOffering

1.1 % removeOneOffering

removeModuleOffering

© registeredStudent]

2 runningModule

. 0.n 0.n
© Registration © Module_Runs
© grade: Z © running_semester: SEMESTER

© registeredModule
% addGrade o.n 1.1
% addRegistration % addModule_Runs
% updateGrade

© running_year: YEAR

Figure 5: Adding secondary classes

) © Address

© Person © address_line1: VARCHAR
© name: VARCHAR . © address_line2: VARCHAR
o email: EMAIL @ has 1.1] @ address_city: VARCHAR

© phone: PHONE
© dob: DATE

© address_postcode: POSTCODE
© address_country: COUNTRY

% addAddress
. % updateAddress

Figure 6: An example of an outer entity

3.6 Modelling historical data

In some systems such as SRES, there might be a need to move some historical data into different tables
from which it can be retrieved later. Moving the data is necessary when the table becomes large and a full
scan becomes very expensive. For example, after a student has completed and passes his/her registered
modules, instead of keeping all the records in the original or live table, the completed records will be
moved into a historical table. While the new table is a subtype of the same supertype as the live table,
they are not bound to the live one. Completed_Student and Completed_Registration in Figure [/| are new
classes that represent archives of the records of completed students. When a student finishes his or her
degree, the information is moved to Completed_Student and the history of the registration is moved to
Completed _Registration. We remove an instance from the live class and add it to the historical one in
one event which is atomic in Event-B. The historical classes might have new attributes that are not in
the live classes such as d_date which specifies the date of completion. This refinement can be introduced

A. Al-Brashdi, M. Butler & A. Rezazadeh 41

© Completed_Student ® Completed_Registration

© g_student_id: STUDENT_ID © g_module: CODE

& g_student_name: VARCHAR ° P— © g_grade: Z
9- — 1.1 graduateRegistration o | o g._date: DATE

Figure 7: Historical data classes

later in the system as it concerns archiving old data in which the modeller do not need to worry about it
when the modelling starts. Similar refinement could include classes that are used to track the changes in
the database in which it keeps logs of all the changed data and by whom.

3.7 Association splitting

While association between two classes in UML-B can be of a type relation which is a many-to-many
association, relational database model does not support direct many-to-many relationships. We need
association splitting to make the formal specification closer to the implementation. For any relation in
Event-B that is a many-to-many association between two classes, we introduce a design pattern, associ-
ation splitting, by refining it into a new class with two functions to the other two classes. This pattern as
in Figures [§] and [9] shows the refinement of relation R to two functions R1 and R2 from a newly created
intermediate class C to A and B. The following gluing invariant, inv/, specifies that R is equal to the
relational composition of inverse R1 (R17) and R2:

invi: R = (R17;R2)

Since a relation does not have a duplication in pairs, the refined functions R1 and R2 must satisfy the
same uniqueness of R as in inv2.

inv2: Va,b,cl,c2-cl—a€RIAN2—a€RIA
cl—beERZAN2—DbER2=cl =¢2)
The second invariant specifies that we cannot have two Cs that both refer to the same a and b. This
forms a composite uniqueness in which the uniqueness is not about a single value, but the combination
of multiple values.

Figure 8: The abstract model of a relation R

3.8 Modelling Operations

UML-B model provides three kinds of events: constructor, destructor and normal. Our method and tool
try to map these events to procedures that perform CRUD operations on the database. The guards in
Event-B events must hold for an event to be enabled and must satisfy the model invariants.

42 Incremental Database Design

1.1 0..n 0..n 0..1
> R1 © R2

Figure 9: The refinement of relation R to R1 and R2

For a constructor event in UML-B, an instance of the class is created along with its attributes and
associations such as addprogram. A destructor removes an instance of a class with all its attributes and
associations as in removeA using domain subtraction. Domain subtraction {this_a} < x removes all pairs
of x whose domain value is this_a.

Event removeA =

any
this_
where ¢
grdl :this.a €a
then
actl 1a:=a\{this.a}, x:= {this_a} <x, r:= {this.a} <r
end

Normal events in UML-B can be used to update or override set elements as in updateA which uses
function override to update the association r. Function override of r means that the range value that the
domain this_a is mapped to is updated to the value new_r. Normal events can be used also to query
information from the classes as in getA which retrieve all a’s whose x value is z.

Event wupdateAd = BEvent getA =
any any

this_a a-list
where V- whei'ze

guardl : alist € P(a)
guard2 : 2 € Z

guard3 : a_list = x"[{ 2 }]

guardl : this_a € a
guard2 : new.r € b

then then

actionl : 1 := r < {this.a — new_r} skip
end end

While the events that modify the state of machine variables are introduced in that machine, we
introduced get events in a later refinement because they might require a complete structure of different
classes in order to retrieve valuable data. The event, getDepartmentStaff, reports, in grd3, all the Staffs
working in a given department. The query, or get, events do not have actions as they just report some
data from the model.

A. Al-Brashdi, M. Butler & A. Rezazadeh 43

Event getDepartmentStaff =

any
d
staf f_list
where
grdl :d € Department
grd3 : staff-list € P(Staff)
grd3 : staff list = worksIn~'[{d}]
then
skip
end

3.9 Summary of approach

By using our approach to model an information system at different refinement levels, we introduced
different concepts and distinctions in which each concept could be modelled in a new refinement. This
approach can help the modellers to gradually model a complex system using layered refinement where
in each refinement they focus on modelling and verifying a subset of the requirements. The approach
can be summarised in the following steps:

e Modelling primary classes,associations and relevant events.

Introducing secondary classes, extending events and adding new events.

Introducing attribute classes, extending events and adding new events.

Introducing historical data, extending events and adding new events.

Introducing query events.

The approach is extended further for extra features such as modelling database views. Two of our case
studies with layered refinement can be found in [6].

3.10 Model verification

By modelling databases in UML-B and Rodin, we introduce formal verification for our database models.
The database constraints are modelled as invariants in which they must be preserved by all events. Let’s
assume we have a requirement that Students can only register in Modules offered by the same program
of study they are enrolled in as in Figure [I0] This can be modelled by invariant inv/ which applies to
all instances of the registration class. For presentation and space, inv/ is not shown in Figure [10[and is
added directly to Event-B machine. The invariant becomes universally quantified in Event-B:

invi: Vm,s-s — m € registeredStudent™"; registeredModule =
runningModule(m) — enrolledIn(s) € of feredIn

An event that adds a registration must preserve this invariant by having grd2 that ensures the module to
register the student for is offered in the student program of study:

Event addRegistration =

44 Incremental Database Design

! S ——
O e ——
? Program 0.n 0.n © Module
> offeredin
1.1 KK
@ enrolledin © runningModule
? Student > Registration © Module_Runs
1.1 0..n 0.n 1.1
© registeredStudent * addRegistration

© registeredModule

Figure 10: Student registration and enrollment

any
this_Registration, m, s

where
grdil: this_Registration ¢ Registration, m € Module_Runs, s € Student
grd2: runningModule(m) — enrolledIn(s) € of feredIn

then

end

Without proving the consistency of this requirement among all operations on the database, a Students
can register in a Module that is not offered by program of study in which they are enrolled in. The same
verification applies to every invariant in the model in which it must be satisfied by every event in the
model and any model that refines it. This draws an example for the importance of applying formal
verification in the database design.

4 Tool support

We developed a tool, called UB2DB [7], as a plugin for the Roding platform which generates the SQL
code for the database from the UML-B class diagram. The tool supports translating to different con-
straints in SQL such as primary key, foreign key, not null, unique and check constraints. The events in
the model are translated to stored procedures in which event guards are validated and actions are exe-
cuted in the stored procedure. A stored procedure is a program unit that is stored and validated in the
database. The generated SQL code by the tool satisfies the system requirements and constraints and is
validated against them for the case studies. We have generated the SRES database from the system and
have been able to execute it successfully. Evaluating the performance of inserting 10000 records using
the generated code shows that our code performed around 21% slower than a hand written code. Further
evaluation and optimisation should improve the efficiency and performance of UB2DB.

A. Al-Brashdi, M. Butler & A. Rezazadeh 45

5 Related Work

There is existing literature covering the concept of formalising database specifications. Schlatte and
Aicherig present a database development of an industrial project using VDM-SL [17]. In [8] and [15]], the
authors formalise relational databases in Z specifications. Barros in [8]] covers different CRUD operations
as well as transactions, sorting, aggregations and other database components. There is no tool provided in
which modellers can use to automatically generates database code for the formal definitions. Davies et al.
in [[13]] shows how to formalise an object-oriented databases using UML and Object Constraint Language
(OCL) [21]] using Booster notation [12]. Mammar and Laleau in [16] have also specified relational
database notions using UML-like notation. Their work supports modellers in designing databases using
a UML diagram and then translate that model to a B specification and on to Java and SQL code. The
refinement process supported by Laleau and Mammar work is toward a database implementation of B
specifications. From Event-B, Wang and Wahls in [20] developed a Rodin plug-in that generates Java and
JDBC code to create and query databases. However, the results shown issues with preserving database
integrity from the code generated by their tool as in [3].

None of these research provides general guidelines for modelling relational database in formal meth-
ods. Moreover, they do not address layered refinement where in each refinement a modeller can intro-
duce new classes, attributes, associations and operations. The approach of modelling database systems
by gradual refinement steps is an important aspect and contribution of this research. While layered re-
finement is well used when modelling in Event-B as stated is [9] and [[1], the contribution of this research
is applying that to database design with distinction of different concepts such as primary and secondary
classes and different events for different database operations.

6 Conclusion

Formal modelling and specification of database systems is an important concept which has been covered
in much literature. The importance of verified database design lies in critical domains and decisions
that depend on correct and consistent data. The reviewed literature does not tackle how to structure the
model in different refinement levels where in each refinement the modeller introduces some concepts for
specification and verification. Where the refinement is used in the reviewed work, such as in [16]], it was
a refinement for implementation where the concrete model becomes closer to an implementation lan-
guage. Our research provides a practical approach for modelling the databases with different constraints
through layered refinement. Throughout the process of modelling the case studies, we have identified
the differences between different kinds of classes and events. These distinctions identify a refinement
strategy or patterns for the model such as starting with classes and associations, then introduce attributes,
then queries, etc. Undertaking the approach of specifying various components in different refinements
enabled us to model each concept separately and verify its specifications. Our tool, UB2DB, which is
developed to support our approach is validated against case studies and successfully generates the SQL
and stored procedures code for database structure and operations from the case studies. While the pre-
sented approach for layered refinement are for guidance only, it is open for further extensions. Further
extension patterns will be investigated using more and larger case studies. We will investigate different
design patterns for modelling relational database which can be derived from different diverse case stud-
ies. The patterns will define how provide a solution for common problems when modelling information
systems using UML-B and Event-B.

46

Incremental Database Design

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

Jean-Raymond Abrial (2010): Modeling in Event-B: system and software engineering. Cambridge University
Press, doi;10.1017/CBO9781139195881.

Jean-Raymond Abrial & Jean-Raymond Abrial (2005): The B-book: assigning programs to meanings. Cam-
bridge University Press.

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta & Laurent Voisin
(2010): Rodin: an open toolset for modelling and reasoning in Event-B. International journal on software
tools for technology transfer 12(6), pp. 447466, doii10.1007/s10009-010-0145-y.

Jean-Raymond Abrial & Stefan Hallerstede (2007): Refinement, decomposition, and instantiation of discrete
models: Application to Event-B. Fundamenta Informaticae 77(1-2), pp. 1-28.

Ahmed Al-Brashdi (2015): Translating Event-B to Database Application. Master’s thesis, University of
Southampton.

Ahmed Al-Brashdi (2017): Case studies. http://users.ecs.soton.ac.uk/azablgi4/CaseStudies/|
[Online; accessed 24-August-2017].

Ahmed Al-Brashdi, Michael Butler, Abdolbaghi Rezazadeh & Colin Snook (2016): Tool support for model-
based database design with Event-B. In: FM&MDD Workshop at ICFEM 2016, pp. 1-7.

Roberto Souto Maior Barros (1998): On the formal specification and derivation of relational database appli-
cations. Electronic Notes in Theoretical Computer Science 14, pp. 3-29, d0ij10.1016/S1571-0661(05)80226-
9l

Michael Butler (2013): Mastering System Analysis and Design through Abstraction and Refinement. In:
Engineering Dependable Software Systems, 10S Press, pp. 49-78, do0i]10.3233/978-1-61499-207-3-49.

Edgar F Codd (1970): A relational model of data for large shared data banks. Communications of the ACM
13(6), pp. 377-387, doi:10.1145/362384.362685!

Thomas M Connolly & Carolyn E Begg (2005): Database systems: a practical approach to design, imple-
mentation, and management. Pearson Education.

Jim Davies, Charles Crichton, Edward Crichton, David Neilson & Ib Holm Sgrensen (2005): Formality,
evolution, and model-driven software engineering. Electronic Notes in Theoretical Computer Science 130,
pp- 39-55, doi:10.1016/j.entcs.2005.03.004.

Jim Davies, James Welch, Alessandra Cavarra & Edward Crichton (2006): On the generation of object
databases using Booster. In: Engineering of Complex Computer Systems, 2006. ICECCS 2006. 11th IEEE
International Conference on, IEEE, pp. 10—pp, doii10.1109/ICECCS.2006.65.

Cliff B Jones (1990): Systematic software development using VDM. 2, Citeseer.
Saeed Khalafinejad & Seyed-Hassan Mirian-Hosseinabadi (2013): Translation of Z specifications to exe-

cutable code: Application to the database domain. Information and Software Technology 55(6), pp. 1017—
1044, doi:10.1016/.infsof.2012.12.007.

Amel Mammar & Régine Laleau (2006): From a B formal specification to an executable code: appli-
cation to the relational database domain. Information and Software Technology 48(4), pp. 253-279,
doi:10.1016/j.infsof.2005.05.002.

Rudi Schlatte & Bernhard K Aichernig (1999): Database development of a work-flow planning and tracking
system using VDM-SL. In: Workshop Materials: VDM in Practice, pp. 109-125.

Colin Snook & Michael Butler (2008): UML-B and Event-B: An Integration of Languages and Tools. In: Pro-
ceedings of the IASTED International Conference on Software Engineering, SE *08, ACTA Press, Anaheim,
CA, USA, pp. 336-341.

J Michael Spivey & JR Abrial (1992): The Z notation. Prentice Hall Hemel Hempstead.

Qi Wang & Tim Wahls (2014): Translating Event-B machines to database applications. In: Software Engi-
neering and Formal Methods, Springer, pp. 265-270, doii10.1007/978-3-319-10431-7_19.

http://dx.doi.org/10.1017/CBO9781139195881
http://dx.doi.org/10.1007/s10009-010-0145-y
http://users.ecs.soton.ac.uk/azab1g14/CaseStudies/
http://dx.doi.org/10.1016/S1571-0661(05)80226-9
http://dx.doi.org/10.1016/S1571-0661(05)80226-9
http://dx.doi.org/10.3233/978-1-61499-207-3-49
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1016/j.entcs.2005.03.004
http://dx.doi.org/10.1109/ICECCS.2006.65
http://dx.doi.org/10.1016/j.infsof.2012.12.007
http://dx.doi.org/10.1016/j.infsof.2005.05.002
http://dx.doi.org/10.1007/978-3-319-10431-7_19

A. Al-Brashdi, M. Butler & A. Rezazadeh 47

[21] Jos Warmer & Anneke Kleppe (1999): The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

	1 Introduction
	2 Background
	2.1 Event-B
	2.2 UML-B
	2.3 Relational Database

	3 Modelling database through abstraction and refinement
	3.1 Primary, Secondary and Attribute Classes
	3.2 Modelling classes and their associations
	3.3 Adding attributes and extending events
	3.4 Modelling secondary classes
	3.5 Modelling attribute classes
	3.6 Modelling historical data
	3.7 Association splitting
	3.8 Modelling Operations
	3.9 Summary of approach
	3.10 Model verification

	4 Tool support
	5 Related Work
	6 Conclusion

