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Ensuring a car’s internal systems are free from security vulnerabilities is of utmost importance, es-
pecially due to the relationship between security and other properties, such as safety and reliability.
We provide the starting point for a model-based framework designed to support the security testing
of modern cars. We use Communicating Sequential Processes (CSP) to create architectural models
of the vehicle bus systems, as well as an initial set of attacks against these systems. While this con-
tribution represents initial steps, we are mindful of the ultimate objective of generating test code to
exercise the security of vehicle bus systems. We present the way forward from the models created
and consider their potential integration with commercial engineering tools.

1 Introduction

The security of modern cars has attracted a great deal of media attention in recent years (e.g [22]). As
the transportation paradigm shifts towards autonomy, many concerns have been raised about the in-car
computer systems’ ability to safeguard the behaviour of cars — and, ultimately, the safety of drivers,
passengers and pedestrians.

Several methods are available to test the security of systems against attacks, one of which (and pos-
sibly the most well-known) is penetration testing. In it, highly-skilled security professionals mimic the
actions of an attacker, whose objective is the achievement of unauthorised goals (e.g. data exfiltration or
command spoofing) on the target system. Although penetration testing is widely deployed by companies
seeking to obtain an understanding of the real security of their systems and networks, it is not a perfect
solution. For example, it carries a high cost, it requires a high degree of ability and knowledge, and it
is primarily applicable to already deployed systems — it is a reactive, rather than a preventive security
testing approach.

While we recognise penetration testing’s role, we believe that there is the potential for other security
testing approaches to play a complementary role, with one candidate being the testing of a system’s
security from models — in short, model-based security testing. Thus, the focus of this paper, which
builds upon the initial work described in [3], is on answering how might a model-based testing (MBT)
framework support the automatic security testing of a modern car’s subsystems? This work falls into
the category of formal and model-driven approaches to engineering safety-critical and security-critical
systems.
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Our motivations for answering this question are manifold. First, it is consistent with the automotive
industry’s approach to product development, which is characterised by an emphasis on models, with the
actual implementation often delegated to third parties. Second, the distributive nature and complexity
of the systems involved require a testing approach reusable across all the different systems. Finally,
initiatives like OpenCar2X [7] indicate a momentum towards the creation of in-car apps by various
developers (in a similar way to the smart phone eco-system) — these apps will inevitably have to be
tested for security.

The remainder of this paper is organised as follows. Section 2 details the motivations behind our
research line and provides necessary background information on related work. Section 3 introduces CSP,
the formalism backing the work. In the sequence, Section 4 defines the threat model from which security
attacks to the system will be derived. Next, Section 5 presents the core of the work: the definition of the
in-vehicle architecture and attacks in a formal fashion. Finally, Section 6 concludes the paper, discussing
our results in context and paving the way ahead in the research project.

2 Motivation and Background

Cars are very complex entities. This complexity begins with architecture design, which is formed by a
large number of inter-connected embedded systems — also known as electronic control units (ECUs). An
average modern passenger vehicle typically has 40 or more ECUs [9]. Depending on their application,
ECUs can have strict networking requirements. As a result, various kinds of networks are available.
For instance, a low-latency network (e.g. the Controller Area Network) is more suitable for real-time
applications, whereas a high-bandwidth network (e.g. MOST) is more suitable for in-car entertainment
applications.

Figure 1 illustrates a simplified version of an automotive architecture, which is based on the topology
of bus systems [20]. Realisations of this architecture can vary, with respect to the number of components,
as well as, the form of connection between components. Various bus systems are connected to different
networks. Gateways manage communication between different networks. Each network type provides
its own set of requirements (e.g. latency, transmission speed, etc.), as well as has its own frame structure.
The Controller Area Network (CAN) is responsible for safety and non-safety functions of the vehicle. It
should be noted that FlexRay intends to replace CAN as standard for safety communication [25].

Sensors and actuators can either be connected to a bus system directly or attached to their own Local
Interconnect Network (LIN). Figure 1 shows a centralised architecture with one gateway. Decentralised
architectures with two gateways are also possible.

With regards to the security of cars, early academic studies have shown that cars can be exploited
by both physical [5, 6] and wireless [2, 4] channels. Physical attacks typically take the form of packet
injections directly on the internal network (e.g. the aforementioned CAN) via the OBD-II port, whereas
wireless attacks typically exploit vulnerabilities in the implementation of mostly proprietary authentica-
tion protocols. Researchers have been able to achieve a range of unauthorised goals, including instal-
lation of covert surveillance capabilities within the vehicle, remote data exfiltration and remote control.
Although all vehicles share the same basic principles and communication standards, it seems apparent
that implementation and architectural differences play a vital role to determine a car’s security level [9].

To date, most studies have focussed on finding network issues. Less attention, however, has been
given to security issues that are brought about by data [14]. Vehicles nowadays consume a vast amount
of data from a variety of sources (e.g. data collected by internal and external sensors, and from online
databases). Further, within the vehicle, data needs to be captured, processed and stored [14]. All of these
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Figure 1: Automotive bus systems in a generic architecture

steps must happen securely to provide the vehicle with higher assurance levels. We consider this data
lifecycle in this paper.

With regards to formal methods, there has been little application of them in the automotive domain
broadly, and even less for security specifically. Mundhenk et al. [12] use continuous time Markov models
to facilitate decision making between different automotive architectures with regard to required security
properties. Siegl et al. [19] formalise automotive systems requirements by test models. However, their
approach is concerned primarily with safety, rather than security requirements.

Modern cars inherit many of the more generic verification challenges associated with cyber-physical
systems (CPSs). Zheng and Julien [26] outline some of the challenges facing verification of cyber-
physical systems, noting that CPSs’ real-time requirements and traditional large system size make them
difficult to be verified by state-of-the-art formal verification tools.

Seshia et al. [17] discuss the need for formal methods for semi-autonomous driving. By requiring
human driver intervention at certain moments, semi-autonomous cars introduce many conditional spec-
ification and verification problems. For instance, it is not easy to determine which situations require
human intervention or whether the driver will be able to resume control of the vehicle on time.

It should be noted that, in the following, we make no distinction between car and vehicle — their use
is synonymous. For simplicity, whenever we refer to automotive system, we also refer to the connecting
networks associated with the given system.

3 Communication Sequential Processes (CSP)

Our formal models are presented in the language of Communication Sequential Processes (CSP), a
process-algebraic formalism that supports the modelling and analysis of concurrent systems. In addi-
tion we utilise the refinement checker, FDR (Failures Divergences Refinement) [13].

The choice of CSP can be justified by the systems of systems (SoS) approach to building modern
vehicles, which can be modelled in CSP via compositions of processes. In this context, each individual
sub-system is modelled as an individual CSP process. Processes, in turn, can exchange messages between
each other in a similar way to automotive networks. There are precedents for the use of CSP in this
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respect: it has also been in the verification of properties of car protocols (see, for example, [16]).
In the following, we provide a necessarily brief introduction to the language of CSP.

3.1 Syntax

The alphabet of a CSP process is the set of events that it is willing to communicate. An event requires
the agreement of both the environment and the communicating process, occurs instantaneously, and is
atomic. The set of all possible events within the context of a particular specification is denoted Σ.

The simplest possible process is the one that offers to participate in no events: STOP. Another simple
process, SKIP, represents successful termination (via the internal event, X). The prefixing operator,→,
allows us to prefix an event e ∈ Σ to any process: the process e→ STOP will refuse to communicate
anything other than e, after which it will offer no further events. Recursion allows us to capture infinite
behaviour using a finite description. For example, B = b→ B is the process that will communicate b
indefinitely.

External (or deterministic) choice is denoted by 2: we write P 2 Q to describe the process that
offers the choice between the initial events of both processes, before behaving as one of P or Q. Internal
(or nondeterministic) choice is denoted by u: the process P u Q may behave as P or as Q, but the
environment has no choice over which. Both forms of choice have an associated indexed form: 2 i : I •
A(i) andu i : I • A(i).

A parallel composition of processes tells us not only which processes are to be combined, but also
describes the events that are to be synchronised on. The synchronous parallel operator, ‖, requires
component processes to agree on all events. As an example, the process A ‖ B, where A= a→ b→ STOP
and B = b→ B, will deadlock as the combination cannot agree on the first event. Generalised parallel
composition, of the form A ‖

X
B, requires cooperation on the events of X; all other events can proceed

independently. For example, in A ‖
{b}

B, the event a occurs without B’s cooperation. Some processes do

not synchronise on any events; interleaved processes are written A ||| B.
Channels are the means by which values are communicated: c.x is the communication of the value

x on the channel c. A natural extension to this is to consider input and output values — of the form c?x
and c!x respectively. Input along a channel can also be expressed using external choice: we might write
2x : X • c.x→ P(x).

3.2 Semantics

It is often useful to consider a trace of the events which a process can communicate: the set of all such
possible finite paths of events which a process P can take is written traces [[P]]. However, it is well
understood that traces on their own are not enough to fully describe the behaviour of a process. For
a broader description of process behaviour, we might consider what a process can refuse to do: the
refusals set of a process — the set of events which it can initially choose not to communicate — is given
by refusals[P]. By comparing the refusals set with the traces of a process, we can see which events the
process may perform: refusals[A 2 B] = {} and refusals[A u B] = {{},{a},{b}} (assuming A and B as
defined above, and Σ = {a,b}). It follows that the failures of a process P — written failures [[P]] — are
the pairs of the form (t,X) such that, for all t ∈ traces [[P]], X = refusals[P/t], where P/t represents the
process P after the trace t.

The aforementioned FDR tool compares processes in terms of refinement. We write P vM Q when
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Q refines P under the model M: Q is ‘at least as good as’ P. If we were only to consider traces, then

PvT Q⇔ traces [[Q]]⊆ traces [[P]]

Similarly, we define failures refinement as

PvF Q⇔ traces [[Q]]⊆ traces [[P]] ∧ failures [[Q]]⊆ failures [[P]]

4 Threat Model

We now briefly review the supporting threat model of our work. For a broader review of the topic, we
refer the reader to [1] and [11].

1. Vehicle Owner/Driver. Car drivers have unlimited access to the vehicle, which, in most cases, is
their own property. They do not usually have knowledge about the internal functioning of a car.
Some car models allow external apps to interact with the car or to add non-safety related software
component to the head unit. Drivers are not limited to the vehicle’s legal owner or their relatives,
but rather should include everybody allowed to drive the vehicle (e.g. valets, car-sharers, etc.).

2. Evil Mechanic. An evil mechanic has unlimited access to many cars at the same time. They also
have a deep knowledge of cars’ internal functioning as well as specialist diagnostics equipment.
As a result, they can easily modify cars’ hardware and software components. In addition, they can
also manipulate data stored within the vehicle [15]. Commonly, drivers have no way to tell what
modifications their car underwent after being collected from the garage.

3. Thief. Thieves might be keen to steal the owner’s possessions inside a car, car components, or
the car as a whole. A thief can attempt to get access to the bus system, attach a malicious ECU
and send fabricated messages possibly opening the doors, evading the immobilizer and starting the
engine [8]. Since many cars share the same technology and car theft can have a high profit margin,
acquiring knowledge and tools is worthwhile for professional thieves. The knowledge and tools
might be acquired via reverse engineering or by colluding with evil mechanics.

4. Remote Attacker. Some individuals might want to bring havoc to many cars indiscriminately out of
various possible motivations, e.g. the seeking of a feeling of power. To have maximum impact, an
attacker could try to use any of the openly accessible interfaces of a car such as cellular connections
usually used to connect the car via the internet to a back-end system, wireless connections for
Vehicle-to-X communication (IEEE 802.11p), or Bluetooth connecting mobile devices to the head
unit (cf. [2, 6, 9]).

Our threat model assumes that an attacker has complete access to the wired network of a car in
addition to access to public interfaces. An attacker can modify the network, i.e. remove or add any
network connection or ECU. With respect to data manipulation, if the attacker manages to modify data
(software or configuration data) — as done in the Jeep Cherokee hack [10] — the attacks can cause a
change to the built-in functionality

5 Formal Models of the Automotive Architecture

To enable the generation of test cases from models, there is a need to specify the underlying system to
be tested in terms of models.
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Our formal architecture consists of modelling individual networks and associated bus systems as
CSP processes. We use the generic architecture of Figure 1 as a basis. Instead of modelling the generic
architecture as a single entity, we decompose it into smaller parts, each of which represent a single
network type or system. We are aware that a bus system may be formed by multiple ECUs [20]. However,
for the sake of simplicity, we model each bus system as associated with a single ECU only. We use CSP’s
parallel composition operator (‖) to denote communication between bus systems and the corresponding
network.

5.1 The system model

Our system model follows the diagram in Figure 1. We model gateways, networks, and bus systems
connected to each network.

The first process, GATEWAY , manages the communication between the networks directly associated
to it: two CAN High-Speed networks (CANHS1 and CANHS2), one CAN Low-Speed network (CANLS),
and one FlexRay network (FLEXRAY).

Each network has its own CSP process, where associated bus systems are modelled. Events of the
form gateway ∗ serve to communicate between the process GATEWAY and individual network pro-
cesses. External choices (2) split different possible paths (i.e. between gateways or bus systems). After
the gateway ∗ event in the network process (e.g. CANHS1), there is an external choice between available
bus systems within that process. This multi-level choice is repeated many times in our models.

GATEWAY = gateway canhs1→ CANHS1
2

gateway canhs2→ CANHS2
2

gateway canls→ CANLS
2

gateway flexray→ FLEXRAY

CANHS1 = gateway canhs1→
( engine cu→ STOP
2

gearbox→ STOP
2

head unit→ STOP)

CANHS2 = gateway canhs2→
(can ecu30→ STOP 2 canhs most→MOST )

CANLS = gateway canls→
(can ecu32→ STOP 2 canls lin→ LIN )

FLEXRAY = gateway flexray→
(video→ STOP 2 radar→ STOP)
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The MOST and LIN networks do not connect with the main gateway. Their connection to individual
ECUs in the CAN High-Speed and CAN Low-Speed networks, respectively, is also represented in our
CSP models. The events canhs most and canls lin indicate those connecting ECUs.

MOST = canhs most→
( dvd→ STOP
2

mp3→ STOP
2

radio→ STOP
2

media→ STOP)

LIN = canls lin→
( lin sensor→ STOP 2 lin actuator→ STOP)

5.2 Modelling attacks

The capabilities of the attacker are described as channels and are defined in process Attacker below.
The attacker can spoof commands to bus systems, block communication to a bus system, eavesdrop

communication between bus systems, and change the functionality of a bus system. These capabilities
are expressed by channels spoofing, block, eavesdrop, and change functionality, respectively.

Spoofing, blocking and eavesdropping are associated with command-and-control or monitoring soft-
ware, which are installed or operated by remote attackers, thieves or, even, the vehicle’s owner. Change
of functionality, on the other hand, requires a more advanced knowledge of the vehicle’s internal systems
as well as available time, thus it is more likely to be conducted by evil mechanics or vehicle owners. The
Jeep Cherokee vulnerability discovered by Miller and Valasek is an example of spoofing combined with
change of functionality [10].

We also define the set All Buses, which include all bus systems in the vehicle. However, any subset
of the bus systems can be used, if required. Variable c of channel spoofing indicate a command to be
spoofed to the bus system.

Attacker =
spoofing?b : All Buses?c : {0..10}→ Attacker
2 block?b : All Buses→ Attacker
2 eavesdrop?b : All Buses→ Attacker
2 change functionality?b : All Buses→ Attacker

Integration between system and attack models is done via alphabetised parallel composition, as de-
fined by process Attack1 below. This type of parallel composition demands the definition of the events
that we want to execute. In the example below, this is done by the set AttackPath, which restricts all
executable events to gateway canhs1, engine cu, and spoofing.

Attack1 = Attacker[AttackPath || AttackPath]GATEWAY
AttackPath = {gateway canhs1,engine cu,spoofing.engine cu.2}

A benefit of such models is that they allow a fine-grained definition of what systems to test and what
attacks to test against. Moreover, the capabilities of each threat actor can be represented by different
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test models. Even though process Attack1 uses the whole system model (process GATEWAY) as input,
only a few events of it are actually considered (via the AttackPath set). Replacing GATEWAY by another
subsystem can narrow down the scope of the test models even further.

6 Final Considerations and Future Work

We have created formal models of architectures of the networks and bus systems commonly found in a
modern car. We then combine these models with attack models, thus enabling the automatic generation
of tests to exercise the behaviour of car systems against attacks.

Our work also addresses the problem of scalability of security testing in distributed environments.
Each of the involved systems must have its security tested. Consequently, the use of automatic tools as
well as an underpinning formal model to guide the process is mandatory. Moreover, another advantage
of our formal model is that it allows network parameters (e.g. latency) to be modelled alongside the
network topology. We believe this feature can be useful to test the availability of components — e.g.
sensors, actuators and ECUs — while the network they are plugged to is under attack. Remote attackers
may selectively shut components off or trigger on-demand malicious commands —, consequently, there
is a need to ensure redundancy mechanisms work as expected.

The next step in our work plan is to implement a tool to generate executable test cases from the test
models introduced in this paper. This tool will use system and attack models in CSP as input and, with
the aid of FDR, will generate traces for each execution of the input process. We anticipate that each trace
generated by FDR will correspond to a different test case, which can further vary in terms of process
variables. To interface with automotive engineering software, test cases will be generated as XML files
or CAPL1 code.

Furthermore, we also plan to extend the framework to encompass other main sources of threats to the
modern car, for instance, attacks from vehicular networks (V2X) and attacks to autonomous vehicles’
sensors (e.g. Lidar, cameras, etc). Sensor attacks have been shown in practice (e.g. [18]). A formal
model of these attacks can also help to systematise the security testing of modern vehicles. Moreover,
we will also pursue the integration of our test case generation method into industry-grade automotive
engineering tools (e.g. CANoe [23] and PreScan [21]). Subsequent work will include the incorporation
of our method onto a wider automotive testing methodology and its expansion to other kinds of cyber-
physical systems with similar requirements (e.g. avionics).
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