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Iterative imperative programs can be considered as irdgtéte systems computing over possibly
unbounded domains. Studying reachability in these sysieniwmllenging as it requires to deal with
an infinite number of states with standard backward or fodveaploration strategies. An approach
that we callConstraint-based reachabilitys proposed to address reachability problems by exploring
program states using a constraint model of the whole programe keypoint of the approach is to
interpret imperative constructions such as conditionatgs, array and memory manipulations with
the fundamental notion afonstraintover a computational domain. By combining constraint filter
ing and abstraction techniqué&3pnstraint-based reachabilitig able to solve reachability problems
which are usually outside the scope of backward or forwaplogation strategies. This paper pro-
poses an interpretation of classical filtering consisemased in Constraint Programming as abstract
domain computations, and shows how this approach can beaigedduce a constraint solver that
efficiently generates solutions for reachability probleéhet are unsolvable by other approaches.

1 Introduction

Modern automated program verification can be seen as theegance of three distinct approaches,
namely Software Testing, Model-Checking and Program RpviEven if the general verification prob-
lems are often undecidable, investigations on these apipesahave delivered the most efficient au-
tomated techniques to show that a given property is satisifenot by all the reachable states of an
infinite-state system.

Several authors have advocated the usageoaostraintsto represent an infinite set of states and
the usage of constraint solvers to efficiently address edality problems|[[6] 13, 16,/4]. In automated
program verification problems, the goal is to find a state efglogram which violates a given safety
property, i.e., arunsafe state Two distinct strategies have been investigated to exploograms with
constraints, namely the forward analysis and the backwaadysis strategies. In forward analysis, a
set of reachable states is explored by computing the trangiom the initial states of a program to the
next states in forward way. If an unsafe state is detecteelmnh to the set of reachable states during
this exploration then a property violation is reported. ackward analysis, states are computed from
an hypotetical unsafe state in a backward way with the hoplstmver that one of those is actually
an initial state. One advantage of backward analysis overdia analysis is its usage of the targeted
unsafe state to refine the state search space. However,ttaibges are quite powerful and have been
implemented into several software model checkers basedmstraint solvingl[25, 16] and automated
test case generatofs [29] 18] [117,18, 3].

In this paper, we present an integrated constraint-basatégy that can benefit from the strengths
of both forward and backward analysis. The keypoint of theregch, that we have callgCionstraint-
Based Reachability (CBRi to interpret imperative constructions such as conutti®, loops, array and
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memory manipulations with the fundamental notiorcofistraintover a computational domain. By com-
bining constraint filtering and abstraction techniquesRd8able to solve reachability problems which
are usually outside the scope of backward or forward exfnrastrategies. A main difference is that
CBR does not sequentially explore the execution paths gbtbgram ; the exploration is driven by the
constraint solver which picks-up the constraint to explbepending on the priorities that are attached to
them. It is worth noticing that applying CBR to program exphion results in a semi-correct procedure
only, meaning that there is no termination guarantee. CBFbbkan mainly applied in automatic test data
generation for iterative programs [21,/22], programs thahipulate pointers towards named locations
of the memoryl[[2B, 24], programs on dynamic data structuneisamonymous locations][7], programs
containing floating-point computations| [5]. A major impewaent of the approach was brought by the
usage of Abstract Interpretation techniques to enrich ttexifig capabilities of the constraints used to
represent conditionals and loops|[14), 15]. This approacmiped us to build efficient test data generator
tools for a subset of € [19] and Java Bytecdde [8].

The first contribution of this paper is the interpretatiorclafssical filtering consistencies notions in
terms of abstract domain computations. Constraint filggisrthe main approach behind the processing of
constraints in a finite domains constraint solver. We shogeimeral the existence of tight links between
classical filtering techniques and abstract domain contipntathat were not pointed out elsewhere. We
also give the definition of a new consistency filtering insdifrom the Polyhedral abstract domain, as
conseguence of these links.

The second contribution is the description of a special ttaimé handling any iterative construc-
tion. The constraintv captures iterative reasoning in a constraint solver andiets, $s able to deduce
information which is outside the scope of any pure forwarthackward abstract analyzer. lIts filtering
capabilities combines both constraint reasoning andadisfiomain computations in order to propagate
informations to the rest of the constraint system. In thigsgpawe focus on the theoretical foundations
of the constraints, while giving examples of its usage fet taise generation over iterative programs.

Outline of the paper. The rest of the paper is organized as follows. Sec.2 intregltite necessary
background in Abstract Interpretation to understand th&rdmutions of the paper. Sec.3 establishes
the link between classical constraint filtering and abstdamenain computations. Sec.4 describes the
theoretical foundation of the constraint for handling iterative constructions while Semoncludes the
paper.

2 Background

Abstract Interpretation (Al) is a theoretical frameworkaduced by Cousot and Cousot/in [10] to manip-
ulate abstractions of program states. An abstraction carsee to simplify program analysis problems
otherwise not computable in realistic time, to manageabddlpms more easily solvable. Instead of
working on the concrete semantics of a prodﬂaﬂi computes results over an abstract semantics allow-
ing so to produce over-approximating properties of the caecsemantics. In the following we introduce
the basic notions required to understand Al.

Definition 1 (Partially ordered set (poset)) LetC be a partial order law, then the paiZ,C) is called
a poset iff

Vxe Z,XxEx (reflexive)

YX,ye Z,XCYAYyL X = x=Yy (anti-symmetry)

vX,y,z€e 2,XCYAyC z — XL z (transitive)

1program semantics captures formally all the possible behes/of a program.
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Definition 2 (Complete lattice) A complete lattice is a 4-tupleZ,C,| |,[ ]) such that
e (2,0C)is aposet
e | |is a upper boundy.” C 2, we have

vxe . xC| |7
Ve ,(vxe.s xCy) = | |SCy

e []is alower boundv.” C 2, we have

vxe.Z,[ |7 Ex
Vye 2,(vxe .S yCx) = yC[ |~

Complete lattices have a single smallest element [ |2 and a single greatest element= | | 2.
Program semantics can usually be expressed as the leastitiofp@monotonic and continuous function.
A function f from a complete latticé 2,C,| |,[]) to itself is monotonic iffvly,lo € 2,11 C 1, =
f(l) C f(l2). Itis continuous iftv.” C 2, (| |.7) = se» (T(5)) and f ([ ].77) = [ees( T (9))-

The following Theorem guarantees the existence of the firtpaf a monotonic function.

Theorem 1 (Knaster-Tarski) In a complete latticé 2,C.| |,[ ]), for all monotonic functions
f:92—-9,

e the least fix point of f (i.e., | f(f)) exists and I f pf) =[|{x | f(x) C x}
e the greatest fix point of f (i.e., g{p)) exists and gf pf) = | |{x| f(x) C x}

In addition, when the functions are continuous, these fixitgsotan be computed using an algorithm
derived from the following theorem:

Theorem 2 (Kleene) In a complete latticg Z,C,| |,[]), for all monotonic and continuous functions
f: 2 — 92, the least fix point of f is equal td{ f"(L) | n€ N} and the greatest fix point of f is equal
to[{f"(T) |Ine N}

As L, f(L),...,f"(1L),... is an increasing suite, we gel{ f"(_L) | n < k} = fK(L). Hence, Iff) =
limy_s 1w FX(L) and gff f) = limy_, o F(T).

For reaching the least fix point of a monotonic and contindfoastion in a complete lattice, it suffices
to iteratef from _L until a fix point is reached.

Let (2,C,I,[]) be a complete lattice called ttencrete latticeand f a function that defines some
concrete semantics over this lattice, (6, =) be a poset called thabstract posgtand f* : ¢ — %*

be a continuous function, thelbstract Interpretatioraims at computing a fix point of? in order to
over-approximate the computation performedfby

Depending on whether the abstract poset is a completedattinot, we have distinct theoretical results
regarding the abstraction. Proofs of the following the@aan be found iri [11].

Galois connection When the abstract poset is a complete lattice, the noticdBadbis connections
available to link the abstract computations with the coteclattice.

Definition 3 (Galois connection) Let (2,C,| |,[]) and (.@ﬁ,gﬁ,uﬁﬂﬁ) be two complete lattices, then
a pair of functionsa : 2 — 2% andy: 2* — 2 is a Galois connection iff'x € 2,Vy € 2% a(x) C*
y <= XL y(y) noted:



28 Constraint-based reachability

g; ima

Over Approx.

SP

not computable

Concrete lattice Abstract lattice

Figure 1: Static approximations of fixed point computationsomplete lattices

y
(2.C.LLM) S (25, C4 LA TT)
a
Next definition establishes the correction property of aalysis.

v
Definition 4 (Sound approximation) Let(2,C,|],[1) S (2¢,C%, LI, [ 1) be a Galois connection, then
a

afunction f: 2¢ — 2" is a sound approximation of :f2 — 7 iff

vy e 7%, foy(y) Cyo fi(y)
Consquently, we have the following notion:

y

Theorem 3 (Smallest sound approximation)Let(Z,C,| |,[]) < (2%, %, LI, ) be a Galois connec-
a

tion, and a function £ 2 — 2, then the smallest sound approximation of trisf oy

This theorem implies that any function greater than f o y is a sound approximation of and the

following theorem characterizes the results of fixpoint patations:

y
Theorem 4 (Fixpoint computations with sound approximation) Let(Z,C,||,[1)S (2¢,C4LE[T)
a

be a Galois connection, let' f 2¢ — %% and f: 2 — 2 be two monotonic functions such thati§ a
sound approximation of f, then, we have:

Ifp(f) C y(Ifp(f*)) and
gfp(f) C y(gfp( %))

Intuitively, this theorem gives a process to compute an-apgroximation by Abstract Interpretation, as
shown in Fig1. The left part shows the concrete lattice whegeoncrete computation éfis performed
starting from initial stat&,. The right part shows the abstract lattice that is used to-approximate the
computation. This computation is undertaken in three steps
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e initial state abstraction;
o fixpoint computation in the abstract lattice;

e result concretization.

Without Galois connection When the abstract lattice is not complete, there does nst eagcessarily
a best abstraction for all elements of the concrete latfidee notion of Galois connection is no more
available and the abstract lattice is just linked with thearete lattice through a monotonic function
y: 2% — 2. The definition of sound approximation needs to be adapted:

Definition 5 (Sound approximation without a Galois connectbn) Let(2,C) and(2*,C*) be two posets,
lety: 2* — 2 be a monotonic function and:fZ — 2 a function, then the function’ f ¢ — 2% is a
sound approximation of f iff

vx e 2%, foy(x) C yo f4(x)

In such an (not complete) abstract lattice, nothing guaemthe existence of the least fix point:(ifp
is not necessarily approximated by (fg). However, any fix point of* can be used:

Theorem 5 Let(2,C,| ],[]) be a complete lattice, and?*,C*) be a poset, ley: ¢ — 2, t: 2 — 2
and ' : 2% — 2* be three monotonic functions then ifi§ a sound approximation of f, then we have:

vxe 2%, 4 (x) =x = Ifp(f) C y(x)

Next theorem is useful to compute an over-approximationfpffy when the lattice is not complete:

Theorem 6 Let (2,C,| ,[]) be a complete lattice, l€t2*,C%) be a poset with a greatest element
andlety: 28 - 2, f: 2 — 2 and f : 2* — %' be three monotonic functions, then

if ¢ is a sound approximation of f and a is an elemen®éfsuch that there exists k such as=a**(T),
then

ofp(f) C y(a)

Consequently, when the abstract lattice is not compleséeanl of abstracting the initial state, one selects
an element of the abstract lattice that over-approximatedritial state. And, a fix point is computed
in the abstract lattice from this element. The fix point idl sth over-approximation of the concrete
semantics.

2.1 Examples of abstract domains

In this section, we briefly describe two abstract domaing Ititerval [12] and the Polyhedral [11]
domains.

2.1.1 The Interval abstract domain

Interval analysis aims at approximating a set of values byngerval of possible values. If#y =
{[a,b] | a,b e NU{—,4}}, then the Interval abstract domain is the Cartesian prodiick ... x fy
equipped with inclusion, union and intersection over iads. This abstract domain is a complete lattice.
State abstraction is performed by computing an intervdldter-approximates the set of possible values
for each variable. If the concrete state is an unboundedfgeptes {(xi1,...,%n), (X12,. .-, %n2), ..}
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then:

a({(xa1, .- Xn1), (X122, .-+ Xn2), - - }) = ([My,M1],..., [Mn,Mp])

. min; (x;; ) if it exists
winm - { 00

andM; — { ma; (x; ) if it exists

+oo else
The concretization of an abstract state is obtained by ctimgpthe Cartesian product of the intervals.
These functions define a Galois connection between the e@ndomain and the abstract domain of
intervals.
The approximation of transfert functions is realized byngsiheir structure and classical results from
Interval Analysis [[27]. For example, functiongs <y] and [x =y + Z] are abstracted by the follow-
ing (sound) approximationsx < yJ* : ([a,b],[c,d]) — ([a,min(b,d)],[maxa,c),d])) and[x =y +2Z°*:
([a,b],[c,d],[e f]) — ([c+ed+ f]nf[a,b],[a— f,e—b]N*[c,d],[a—d,c—b]N*[e, f]).

2.1.2 The Polyhedral abstract domain

In Polyhedral analyses, each concrete state is abstragteddnjunction of linear constraints that defines
a convex polyhedron. Indeedcanvex polyhedrois a region of an n-dimensional space that is bounded
by a finite set of hyperplanese R"|ax > c wherea € IR" andc € R. The abstract lattice equiped with
inclusion, convex hdfl, and intersection of polyhedra is not a complete latticdagetis no upper bound

to the convex union of all the convex polyhedra that can béewrin a circle.

Abstract functions can be defined to deal with polyhedra.example:

x>yf({z<x+y}h) = {z<x+yy<x} (1)
x>yF({x<y)) = {0=1} 2
x=y*Z*({1<y<10}) = {x<zx<10%z} (3)

If the expression is a linear condition, then it is just adtiedthe polyhedron (cadé 1). If the expres-
sion is contradictory with the current polyhedron, thersiteduced to & 0 meaning that there is no
abstract (and concrete) state in the approximation (dask the expression is non-linear, then a linear
approximation is derived when available and added to thghealron (caskl3).

3 Filtering consistencies as abstract domain computations

As noticed by Aptl[1], constraint propagation algorithms d@ seen as instances of algorithms that
deal with chaotic iteration. In this context, chaotic mefaisapplication of propagators until saturation.
In this section, we elaborate on a bridge between two umetlabtions: filtering consistencies and
abstract domains. In particular, we show that arc— and bewmsistency are instances of chaotic
iterations over two distinct abstract domains. Classidat@tions of sound approximation and abstract
domain computations, not used if [1], allows to show thatitiy consistencies compute sound over-
approximations of the solutions set of a constraint syst€hanks to the bridge, we also propose new
filtering consistency algorithms based on the polyhedratrabt domain.

2The union of two polyhedra is not a polyhedron, this is thsosavhy convex hull or any relaxation of it must be employed.
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3.1 Notations

Let Z be the set of integers and be a finite set of integer variables, where each variakle 7 is
associated with a finite domaid(x). The domainZ is the Cartesian product of each variable do-
main:D(x1) x ... x D(Xm) and.Z(2) denotes the powerset &f. inf4x andsup,x denote respectivelly
the inferior and the superior boundsDfx) in 2. A constraintc is a relation between variables ®f.
The language of (elementary) constraints is built oveharétical operator§+, —, «, ...} and relational
operators{<,<,>,>,=,%#,...} but any relation over a subset #f can be considered. Learsc) be
the function that returns the variables @fappearing in a constraimt A valuation g is a mapping of
variables to values, notefk; — dj,...,X, — dy}. CSdenotes a constraint systéD§ i.e., a finite set of
constraints.

3.2 Exact filtering

Let{ci,..,Cm} be aCSover{xs,..,X,} and letZ = D(x1) x .. x D(X), then the solution-set @Sis an
element of#(Z), notedsol(CS).

Theexact filtering operatoof a constraint; is computed with the functiofi : 2(2) — £(2) which
maps an elemer@ec #(2) to fi(S) = {s| s€ SAci(s)}. The exact filtering operator af removesall
the tuples of7 that violatec;. Hence, by using an iterating procedure, it permits to campal(CS): if
fc = f10...0 fy thensol(C) = gfp( fc). By noticing thatfc is continuous (as eachis continuous) and
monotonic and thanks to Theorémn 2 we gel(CS) = limy_, .« fcX(2).

Example 1 Consider CS= {x #V,y # 2,z # x} where xe 1.2,y € 1..2,z€ 1..2. The exact filtering
operator associated with ¥ y will remove the tuple$l,1,1),(1,1,2),(2,2,1),(2,2,2) from {1,2} x
{1,2} x {1,2}. Iterating over all the constraints of CS will eventuallyhéit the inconsistency of this
example.

In fact, this shows that exact filtering of a CS oW, ) x .. x D(X,) can be reached if one computes over
a complete lattice built over the set of possible valuatigrig(D(x1) x .. x D(xn)), <,U,N). This lattice
will be called theconcrete lattican the rest of the paper. Of course, computing over the coatagtice

is usually unreasonable, as it requires to examine evelg tffthe Cartesian produ€t(x;) x .. x D(X,)
w.r.t. consistency of each constraint.

3.3 Domain-consistency filtering

For binary constraint systems, the most successful logaistency filtering is arc-consistency, which
ensures that every value in the domain of one variable happoduin the domain of the other vari-
able. The standard extension of arc-consistency for cnstrof more than two variables is domain-
consistency (also called hyper-arc consistency [26]). JRbuspeaking, the abstraction that underpins
domain-consistency filtering aims at considering eactalsdeidomain separately, instead of considering
the Cartesian product of each individual domain. More fdlyna

Definition 6 (Domain-consistency) A domainZ is domain-consistent for a constraint ¢ where \(&js=
{x1,..,xn } iff for each variable x 1 <i < nand for each de D(x;) there exist integers;dvith d; € D(x;),
1< j<n,j#isuchthato = {x; — di,..,X, — dn} is an integer solution of c.

Consider the domain® = D(x;) x .. x D(Xn) and Py = P (D(x1)) X ...x Z(D(xn)) and the abstrac-
tion function dare : (%) — P Which mapsSe #(2) to

Qarc(S) = ({1 | X€ S},....{Xn | X€ S})
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The concretization function is a functiog. : ggm — P(2) such that

Yarc((S1,--, &) =S x...x &

If ggrc, |_|ﬁarc and |‘|ﬁarc denote respectivelly the inclusion, union and intersectbtwo tuples of sets,
then we got the following Galois connection:

Yarc
(L@(@)a ga U7 m) <:> (ggrm Eﬁaf& ugrm Hﬁarc)

Qarc

The proof follows comes the monotonicity of the projection &£artesian product. From Theorem 3, we
get:

Definition 7 The best sound approximation of the exact filtering oper&tis

def
£ = Oarco i o Varc

i_arc —
Theorem 7 Let p be afiltering operator associated with constraintieen p computes domain-consistency
iff p = f/

l.arc*

This theorem implies that domain-consistency is the swehgroperty that can be guaranteed by a
filtering operator using the abstraction,.. A proof is given in the Appendix of the paper.

Let us consider now the functioiﬁrc such thatf{,’{rc = ff_arc 0...0 fﬁ_arc. As fﬁrc is a sound approximation
of fc then

sol(C) = gfp(fc) C yarc(afp( fgrc))

This result shows if necessary that constraint propagati@r domain-consistency filtering operators
computes an over-approximation of the solution seg.of

3.4 Bound-consistency filtering

Following the same scheme, Al can be used to show the alistrdicait underpins constraint propagation
with bound-consistency filtering (also called intervahsstency). But, firstly, let us recall the definition
of bound-consistency we consider in this paper, as sevefiitions exist in the literature [9] :

Definition 8 (Bound-consistency) A domainZ is bound-consistent for a constraint ¢ where \&js=
{X1,..,%n} iff for each variable x 1 <i < n and for each de {infyx,supyx;} there exist integers;d
with infyx; < d; <supyXj, 1 <j <n,j#isuchthato = {x; — di,..,%, — dq} is an integer solution
of c.

Roughly speaking, this approximation considers only thends of the domain of each variable and
approximates each domain with an interval. L&tS) = [min(S),maxS)] be the smallest interval that
contains all the elements of a finite set of integgr§imilarly, .# ~1(1) denotes the set of integers of an
intervall : #~Y([a,b]) = {x€Z|a<x<b}.

The abstract domain we consider for bound-consisten@jg%d: FJ(Z(D(X))) x...x Z(Z(D(Xn)))-
Given a tuple of set6S;,...,S,) and a tuple of intervalély, ..., l,), we consider the functionsi,.e; and
Vinter SUch that:

Qinter(St1,-..,S) = (A (S1), ..., 7 (S))
Viter(I2, .. 1n) = (Z 7 1(11), ..., 7 (1)
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Let 0pound: Z(Z) — .@g be an abstraction function such that

ound
Opound = Ainter © Aarc

and ybound: Qﬁounda P () be a concretization function such that

Ybound = VYarc © Yinter

If Eﬁound, Llﬁound and|_|’§)ound respectively denote inclusion, union and intersectiomtdrivals (compo-

nent by component) then we get the following Galois conoecti

Ybound
(‘@(@)7Q7U7m) S (@gound’E%oundﬁ'—'ﬁound?ﬂfnound)

Obound

Let f

I boung P€ the most accurate sound approximatiorf; pfhen we get:

fiﬁ_bound = Obound® fi © Ybound

— #
= Qinter © f{ 3¢ © Vinter

Theorer;\ 8 If p is a filtering operator associated to constraint then p computes bound-consistency
iff p=f

i_bound

This theorem, proved in Appendix, implies that bound-cstesicy is the strongest property that can be
reached with an operator based on tiyg,ng abstraction.

Consider now the functiofif, . such thatf/ =i o...off . Asft .isasound approxi-
mation of fc, then

50l(C) = gfp(fc) < Yoound P fiound))
This result shows if necessary that constraint propagéiased on bound-consistency computes a sound
over-approximation of the solution set®©f In addition, asft’founol is also a sound over-approximation of
fire, then
Yarc(9fp( fgrc)) < Yhound(9fp( fgound»

meaning that filtering with bound-consistency provides aer@pproximation of the results given by a
filtering with domain-consistency.

3.5 New filtering consistencies based on abstract domains

In the previous section, classical filtering consistenaigsinterpreted in terms of abstract domain com-
putations. In this section, we propose a new filtering céesiyy based on the Polyhedral abstract domain
[11].

3.5.1 Linear relaxations

When non-linear constraints are involved in a constraiotestapproximating them with linear cons-
traints is natural in order to benefit from powerful Linean@iamming techniques. These techniques
can be used to check the satisfiability of the constrainiesidien the approximation is sound. If the
approximate constraint system is unsatisfiable so is thdinear constraint system. But, in the context
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of optimization problems, the approximation can also beliusgrune current bounds of the function to
optimize.

Another form of approximation comes from the domain in which computation occurs. A linear
problem over integers can be relaxed in the domain of rasoorareals and solved within this domain.
As the set of integers belongs to the rationals and realsitager solution of the relaxed problem is also
a solution of the original integer problem, but the convéssilse. In this paper, we will consider both
kinds of approximations under the generic term of “linedaxations”.

Computing a linear relaxation of a constraint syst&®aims at finding a set of linear constraints
that characterizes an over-approximation of the solutedroECS It is not unique but for trivial reasons,
we are more interested in the tighter possible relaxatidrige tightest linear relaxation is the convex
hull of the solution set o€Sbut computing this relaxation is as hard as solv@f§ ForCSover finite
domains, the problem is therefore NMRard. Whenever a relaxation is computed by using the current
bounds of variable domains, it is calldginamicand the consistencies presented in the rest of the section
are compatible with dynamic linear relaxations.

3.5.2 Polyhedral-consistency filtering

Let Polybe the abstract domain of closed convex polyhedra withmaticoefficients. As said previously,
Polyis not a complete lattice, and then we cannot define a Galoiseation betweeRoly and the lattice
of the solutions. Nevertheless, the concretization famcly : Poly — &2(2) can be defined as the
function that returns the integer points of a given polybadr

Yooly(S) = int_sol(S)

Here, intsol stands for the whole set of integer solutions of a setnefli constraints AS' is bounded,
Yooly(S') is finite.

Without a Galois connection, we do not expect the polyheciakistency proposed in this section
to be optimal w.r.t. the abstract domain. Hence, we only stiawthe filtering algorithm that computes
this consistency is a sound approximation of the exactifigepperator.

Definition 9 Let apex be the following abstraction function
Obox : Zioung — POly such that

abOX(([alybl]a' L] [amabm])) = {al S Xl S bla' .. 7am S Xm S bm}

and the concretization functiopoy : Poly — .@gounds

(Hmin(xb P)-|7 Lma>(x1, P)H? SRR Hmin(xﬁh P)—‘ ) Lma>(xm, P)J])
Yoox(P) = if Vi, [min(x;,P)| < [maxx;,P)]|
0 otherwise

where | x| (resp. [x]) stands for the next smallest (resp. largest) integex, aind min(v,P) ( resp.
maxVv, P)) computes the smallest (resp. largest) value adrresponding to a point &f.

Both apox andyhex link the polyhedral abstract domain with the interval adstiidomain. The abstraction
function apox Maps a set of intervals into a polyhedron by adding two inktirg per variable, while
the concretization functiop,ox maps a polyhedron into a set of intervals by computing firststtmallest
hypercuboid containing the polyhedron and second the egehipercuboid with integer bounds. The
behaviour of these two functions is illustrated in Fig. 2.
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Figure 2: Connection between the Polyhedral and Intenstratt domains

Definition 10 (Polyhedral-consistency)A domain is polyhedral-consistent for a constraint ¢ where
vargc) = {xi,..,Xn} iff for each variable x 1 <i < n and for each de {infyx;,supyx;} there exist
rationals r with infyx; <r; <supyxj, 1< j<n, j#isuchthato = {xi+—ry,.., X, rn} is a (rational)
solution of a linear relaxation of c.

The rationale behind this definition is to benefit from effitipolyhedral techniques over the rationals
to filter the variation domain of variables. Of course, ist#ing implementations of this filtering consis-
tency should trade between efficiency and precision aséntaggar constraint solving is costly (Nrard
problem) even for bounded domains. It is worth noticing that definition depends on the quality of
the underlying linear relaxation. On the one hand, a linekxation which over-approximateby True
(the whole search space) is useless while on the other haneza felaxation which exploits piecewise
over-approximations of is often too costly. We give examples of polyhedral-coesisy filtering in
function of various linear relaxations.

Example 2 Consider the following CS: 2 x+Y,z= xxY, let ¢ be the second constraint of CS=¢z=
xxYy) and letZ be xe —7..10,y € —7..10,z € 3..10.

Note thatZ is bound-consistent for all the constraints of CS.

The simplest linear relaxation that can be considered isathe that ignores non-linear constraints. In
this example, c is over-approximated by True and theviewed as x> —7,x< 10y > —7,x< 10,z >
3,x < 10,z=x+Y is then polyhedral-consistant w.r.t. this linear relaxat Note that this approach can
be generalized by associating a new fresh variable to thelime@ar term x«y with a domain computed
using the bounds x and y. In this example, this does not help ¢ould help on other examples.
Another linear relaxation consists in building a polyhedrrom the “bounds” of %y in ¥ = x €
—7..10y € —7..10,z € 3..10. By considering the 2-dimensional polyhedron
{(1,10),(10,1),(—1,-7),(—7,—1)} we get that a linear relaxation of ¢ in domain is
11x—-8y+69>0

—X—y+11>0

—8x+11ly+69>0

X+y+8>0

Filtering with the polyhedral-consistency, we get that x-2..9,y € —2..9,z € 3..10 where Ox) and
D(y) have been pruned. These results can be easily computed aisimgar Programming tool and
truncation operators. For example, using the clpq libraf&dC Stus Prolog which implements a simplex
over the rationals, the following request permits to corsghe max bound of variable x:
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{X >= -7, X=<10, Y >= -7, Y =<10, Z >= 3, Z =< 10, Z = X+Y,
11xX - 8*Y+ 69 >=0, -X - Y + 11 >= 0, -8+X + 11+xY +69 >= 0,
X+ Y + 8 >=0}, sup(X, R).

R =179/19 % t hen max bound of x is 9

Finally, we can automate the computation of linear relazati of ¢ by considering the following
trivial constraints, which are always true for any x and(x— infyx)(y—infyy) >0
(Xx—=supX)(y—infgy) <0
(x—=infyx)(y—supyy) <0
(x—supyXx)(y—supyy) =0

By decomposing these constraints, using the original bswfidc y,z and replacing the quadratic term
xxYy by z, we get:

X+ 7y+z+49>0

10x—7y—z+70>0

—7x+10y—z+70>0

—10x—10y+2z+100>0

Filtering with the polyhedral-consistency, we get that x-2..9,y € —2..9,z € 3..10 where Ox) and
D(y) have been pruned. These domains are still bound-consisternother tighter relaxation can be
computed with these new bounds:

2X+2Y+72+4=0

9X—-2Y-2Z2+18=0

—2X+9Y—-2Z2+18=0

—9OX—-9Y+Z+81=0

and then filtering again permits to get that0..8,y € 0..8,z< 3..10. Here, filtering by bound-consistency
leads to prune the domains to:ex1..8,y € 1..8,z < 3..10. Then, by iterating these two process, we get
the only solution to CS which is:x2..2)y € 2.2,z € 4..4. This showed how dynamic linear relaxations
can be used to solve a non-linear CS.

4 Thew constraint operator

In this section, we present threconstraint operator which captures iterative computatiand how it is
processed by a constraint solver. The constraint operatbéen introduced a long time agolinl[21], 22]
and was further refined using Abstract Interpretation (Athiniques [14]. In the following, we recall its
interface and semantics and show how fixed point computatan be used to filter inconsistant values
of the underlying relation. We also explain how the Polylédbstract domain is used to approximate
the fixed point computations.

4.1 was a relation over memory states

Thew operator captures a relation over three memory statesdpetgent the state before, within and
after the execution of an iterating statement. In this paperdo not specify what a memory state is, or
what the iterating statement is, as the approach is geregarding the content of a memory state and
the concrete syntax of the iterator. However, in order t@ élas understanding, the reader can consider
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a memory state to be a mapping between variables of the pnagraalues. More complex examples of
memory states in relation witlr can be found in[7] and [8].

The relationw is expressed with the following syntaw(.#1,.#>, .#3,Dec,Body) } where.#; denotes

the memory state before execution of the iteratiofy; denotes the memory state reached at the end of
execution of theBody, while .#3 denotes the state after executi@ecis a boolean syntactical expres-
sion, andBodyis a list of statements. This three-states considerationsj@red by the Static Single
Assignment of a program [28]. If the state.@f is irrelevant for a given computation, we simply write

_. Note thatBodymay also contain other iterators, and thugs meant to be a compositional operator.
The semantics ak is the semantics of an iterating statement (i.e., repetapplication oBodyover an
input state, whildecis true).

n
We notew" = Wow...W whereo is the application composition.

4.2 Background onw

As described in[[22], the operational semanticsvofvithin a constraint solver is expressed as a set of
guarded-constraints{ (C; — Cy)i }1<i<n. If Cy1 is entailed by the constraint store th€pis added to

it, and the relationw is solved. IfC; is disentailed, then the guarded-constraint is discaraednm
more considered in further analysis. Finally, if none ofsthédis-) entailment deductions is possible,
the guarded-constraint just suspends in the constraird. stte set of guarded-constraints is considered
each time the constraint awakes in the constraint store, so that it captures the ess#rihe iteration
through rewriting in recursive calls. In addition, suhgiitn of variables must be considered to faithfully
represent the constraints innarelation. Dec 4., simply denotes the constraiblec where program
variables from.#3 have been substituted by the variables fref. With these notations, th& relation

is expressed as follows:

w(Dec .#4,.#>, #3,Body) iff

BOdy//l3<—//11 A W(DeQ %27 %ne% %37 BOdy//lzﬁ//lnew)
M3 = M1

hd Dec//l3(—{///1

e ~(Decsse.irr)

® _'(Dec//l3<—{///1 A BOdy//l3<—//11) _'(DeQ///3<—//[1) N M3 = A

o ~(-DecC .y N A3 = M1) DecC sy NBOAY ity N\W(DEC A2, Mnew,-#3,B00Y 11, s1.c)
° join(Decj/SH///l ABodY o, /\W(DGC, Mo, Mpew, M3, Body///ze///new), ﬂ(Dec///ah//l) N Mz = M)
The two former guarded-constraints implement forward ysig| by examining the entailment bfec
Depending on the entailment Bfeg a recursive call to a new is added to the constraint store. The
two followings implement backward reasoning by examinihg differences between the stores after
and before execution of the iteration. Finally, the lastrapen, calledjoin, is the most tricky one and
implements union of stores in case of suspension of the tyemkhis join operation is realized iff none
of the previous guarded-constraints has been solved. Fhefrne Section is devoted to the presentation
of this operator, which is implemented as an abstract operat/er abstract domains.

L

4.3 Concrete fixed point computation

For a giverw operator, lefl be the following set:
T = {(Mh,.M,) | 3| WA, 45, -, DecBody) }

T represents all pairs of memory states that are in relatiamutih thew statement, but still, not all those
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pairs can be considered as solutions of the relation, as pairecan only be reached in temporary states
of the execution. For this reason, we introduce th&Zget

Zy = {(Ai, ;)| (M, ;)TN sol(-Deg)}

wheresol(C) denotes the set of solutions of a constréint
T can be seen as theast fixed poinof:

T = (e, #) | (T' AW(Mk, -, 4}, DecBody)) }UT! (4)
T = {(a,.00)} (5)
andZzZ, can be computed by filtering the pairs of the fixed point.

For instance, considering?; = x+— 0V X+— 1V X+ 2V X+ 3 andw(.#1, Mo, #3,X < 2,X = X+ 1),
and using the notatiofD,0) for denotating(x — 0,x — 0), the fix point computation is as follows:

T = {(07 0)7 (17 1)7 (27 2)7 (37 3)}

T = {(071)7(172)}UT0:{(070)7(071)7(171)7(172)7(272)7(373)}

T? = {(071)7(072)7(172)}UT12{(070)7(071)7(072)7(171)7(172)7(272)7(373)}
T3 _ T2

Consequently, the solutions s&} of W(. 44, M, M3,X < 2,Xx =X+ 1) is:
Zy = {(ab)]|(ab)eT3A(x— b)esol(x>2)}
= {(072)7(172)7(272)7(373)}

ComputingZ,, is undecidable in general as there is no termination gueeaot the iterating process.
This is the reason why this computation is usually abstdaggeng abstract domain computation.

4.4 Abstracting the fixed point computation

Implementing thejoin operator mentionned above can be done by abstracting thputation of the
fixed point within the Polyhedral abstract domain. Péte a conjunction of linear restraints, the inter-
section of which defines a convex polyhedron, that over@pprates the sel. Hence, we can compute
P! as the least fixed point of:

Pl = {( s, #)) | (P' A dpoy( W(. 4k, 4, _,Dec Body))) L P (6)
PO = {(apoy((-#1,.4)) (7)
Compared to ed.]4 and 5, the computation is realized in thieaaibsiomain usingrpoly the abstraction

function of the Polyhedral abstract domain.
Let Zi, be the approximation of the set of solutionsagfobtained by application af oy

Zl, = (M, M) | (M, M) €PN MG E Apoiy(sOl(—-Ded)) }

Looking at the above example whew is just composed of the mappingx#- v, it is worth introducing
different representations of the stores as we progress ifidéd point computation. Whe? is computed
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Out

Figure 3: Exact and approximated fixed point

overx, and establishes a relation in between storéisand. /] that containsj, we note:P' (x¢, X;). If
P' is then considered over, yj, then we will simply writeP' (yi,y;) and apply variable substitution.
With these notations, we have the following computation:

Po(xinaxout) = Xin = 0AXin < 3AXin = Xout

P (Xin,Xou) = (P°(Xin,X0) AXo < 1A Xout = X0 + L)sge s L PO (Xin, Xour)
(Xin = 0AXin < 1A Xout = Xin +1)|—|P0(Xinaxout)

Xin = OAXin < 3A Xout < Xin + 1A Xout > Xin

P?(%in,Xout) = (P (%in,X1) AXe < LA Xout = X1 + L) s LI P (Xin, Xour)
(Xin > 0AXin < 3A X < Xout—l)upl(xinyxout)

Xin = 0AXin < 3A Xout < Xin + 2 A Xout > Xin A Xout < 4

P2 (Xin,Xout) = (P2(%in,X2) AX2 < LA Xout = X2+ L)y s U P?(Xin, Xout)
= (Xin20/\Xin§3/\xinSxout_l)upz(xinaxout)
= Pz(xinaxout)

Fig.[3 illustrates the difference between the abstract fp@dt and the approximate fixed point. Points
in the figure correspond to the elementsTdf while the grey zone represents the convex polyhedron
defined byP3.

An approximation of the solutions @¥(.#1,.#5, #3,x < 2,x =X+ 1) is given by:

Q = P3(xi,Xs) AXsg>2
X3 > 2AX3 <ANAX] <XgA Xy < 3AXp > Xz —2

On the Polyhedral domain, convergence of the fixed point ctatipn ovemw(.#1, 4>, #3,X < 2,X =
x+ 1) can be enforced by using widening techniques. The compatafiP“*! is modified in order to
use a widening operatar [11]. Thus, we have:

P —  PX(Init, Out) (P A apoly(W(. 4, .42, 43, Dec Body)))

A concrete algorithm for computing this approximation igegi in [14], which permits to build imple-
mentation ofw in a constraint solver. As rooted in the Abstract Intergretadomain, the relationv
inherits from some of its fundamental correctness resudts,soundness and termination. However, it is
worth pinpointing some differences.
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Usually, a convex abstract polyhedron denotes the set eddinelations that hold over variables at a
given point of a sequential program under analysis. As tla lgere is to correctly approximate the set
of solutions of aw relation, the polyhedron describes relations betweert iapd output values and, thus,
they involve more variables in the equations. In Abstraterpretation, the analysis can be performed
only once, whereas, in the case of theelation, thejoin operation is launched everytime the relation
is awaked without being succesfull in solving one of the dadrconstraint. As a consequence, we
found out that it was not reasonable to use standard lilsrewieompute over polyhedra, such as PEL [2],
because they usadaial representation for Polyhedravhich is a source of exponential time computations
for the conversion.

4.5 lllustrative example

Looking at an iterative computation over unbounded domagmsa relation captured byva constraint
operator is interesting for adressing Constraint-BaseatReability problems. On the one hand, the sus-
pension mechanism offered by constraint reasoning all@ie gope with the approximation problem,
i.e., the set of states that is considered is determinedéinformations existing in the constraint store,
which makes the reasoning more accurate w.r.t. the properye demonstrated. On the other hand,
adding abstract domain computations to theelation allows us to increase the level of deductions that
can be achieved at each awakening ofwheonstraint operator. To illustrate this remark, consider t
following C program:

f( int i, ... ) {

a. j = 100;

b. while( i > 0)

C. {j=s+1; i=1-1;}
d.

e. if( j > 500)

f.

A typical reachability problem is to find out a value iofsuch that statememt. is executed. Existing
approaches for solving this reachability problem cons&dpath passing through , e.g.,a- b-d-e-f,
and try to solve thepath conditionattached to this path. In this case, it means extractingtons

j1 = 100Ai; < 0OA j1 > 500 and solving it to show that the constraint system is isfgtle, i.e.,
the corresponding path is infeasible. Then, these appesabhcktrack to select another path (e.qg.,
a- b- c- b- d- e- f with path conditionj; = 100Ai1 > 0A jo= j1+1Ai2=1i1—1Ai2 <OA j2 > 500)
and repeat the process again, until a satisfiable path eomastfound. This example is pathologic for
these approaches, as only the paths that iterate more titatird®s in the loop will reach statement
f . . Hopefully, using the constraint operaww(.#1, #>,.#3,i > 0,j = j+1Ai =i— 1) permits us to
unrool dynamically 400 times the loop without backtrackifighe relational analysis performed on the
Polyhedral abstract domain by theoperator determines thg,; — iin = 100 whatever be the number
of loop unrollings. Here, combining precise constrainsmang in the concrete domain, with constraint
extrapolation through abstract domain computations reffis an efficient way of solving reachability
problems on infinite-state systems.
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5 Conclusions

In this paper, we have presented Constraint-Based Redithakia process to combine constraint rea-
soning and abstraction techniques for solving reachghglibblems in infinite-state systems. The con-
tribution is two-fold: first, we have revisited constrainsistency-filtering techniques by the prism of
abstract domain computations ; second, we explained howttodiuce abstract domain computation
within the w constraint operator reasoning. We have illustrated theters with several examples in
order to ease the understanding of the reader.

This appraoch has been implemented and tested on sevdnmps) including real-world programs
[19,/20]. The goal is now to broader the scope of these teaksithat combine constraint reasoning and
abstraction techniqgues, to adress fundamental probleaisasureachability in infinite-state systems.
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Appendix

This appendix contains the proofs of some of the resultedtatthe paper.

Theorem 9 Let p be afiltering operator associated with constraintieen p computes domain-consistency
iff p= f?

l.arc*

Proof 1 (<) Let § = (fi o yarc)(S). From the definitions of; ind y, we get that $is the solution set of
constraint ¢, given the initial domains S (we writg S sol(c;,S)). Hence, S= aac(S1) = (Ag, .., An)
with

A= {X | x € sol(ci,S)}. So, ¢ computes domain-consistency.

(=) Let p be a domain-consistency filtering operator. Suppbse there exists S such thaf{) =
(A1,...,An) be strictly greater than itffarC(S) = (Bu,...,Bm). Then, there exists at least one k such as
Ay 2 By. Hence, there exists an elemenptaot A that does not belong to any solution of constraint c
Hence, p cannot computes domain-consistency which isamiotory with the hypothesis. On the other
side, p cannot be smaller thar f. as it means that the filtering operator removes solutionsndeeif

p computes domain-consistency thea .. O

Theorem 10 If p is a filtering operator associated to constraint then p computes bound-consistency
iff p= f

i_bound

Proof 2 (<) From theoreni B, given initial intervals I, the domairf%rgo yinter (1) are domain-consistent
for constraint ¢. Applying functionainter is similar to the process that keeps extremal values of elgeh e
ment of f_amo vinter (1). Hence, the resulting intervals satisfy the bound-coasist property.

(=) (similar to the proof of theoreil 9) If the filtering operatpris greater than ﬂ‘bound, then the com-
puted intervals contain at least one bound that is not para @blution of ¢ violating so the bound-
consistency property. On the contrary, by supposing thatgmaller than ﬂ_‘boundthen solutions are lost
and p is no more a filtering operator. Hence, if p is a filteringeoator guaranteeing bound-consistency
then p= fiﬁ_bound. O
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