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We give a presentation of Pure type systems where contexts need not be well-formed and show that

this presentation is equivalent to the usual one. The main motivation for this presentation is that,

when we extend Pure type systems with computation rules, like in the logical framework DEDUKTI,

we want to declare the constants before the computation rules that are needed to check the well-

typedness of their type.

1 Introduction

In the simply typed lambda-calculus, to assign a type to a term, we first need to assign a type to its free

variables. For instance, if we assign the type nat → nat → nat to the variable f and the type nat to the

variable x, then we can assign the type nat → nat to the term λy : nat ( f x y).
Whether a type is assigned to f before or after one is assigned to x is immaterial, so the context

{ f : nat → nat → nat,x : nat} does not need to be ordered.

1.1 Well-formed Contexts

In systems, such as the Calculus of constructions, where atomic types are variables of a special type ∗,

contexts are ordered and, for instance, the term λy : nat ( f x y) is assigned the type nat → nat in the

context nat : ∗, f : nat → nat → nat,x : nat but not in the context x : nat,nat : ∗, f : nat → nat → nat, that

is not well-formed.

In a well-formed context, the declarations are ordered in such a way that the type of a variable

only contains variables declared to its left. For instance, the context nat : ∗,z : nat,array : nat → ∗,nil :

(array z) is well-formed, but the context nat : ∗,z : nat,nil : (array z),array : nat → ∗ is not. Moreover,

in such a well-formed context, each type is itself well-typed in the context formed with the variable

declarations to its left. For instance, the context nat : ∗,array : nat →∗,z : nat,nil : (array z z) is not well-

formed. So, a context x1 : A1, ...,xn : An is said to be well-formed if, for each i, x1 : A1, ...,xi : Ai ⊢ Ai+1 : s

is derivable for some sort s in {∗,�}.

The original formulation of the Calculus of constructions of Coquand and Huet [4] has two forms of

judgements: one expressing that a context Γ is well-formed and another expressing that a term t has a

type A in a context Γ. Two rules define when a context is well-formed

(empty)
[ ] well-formed

Γ ⊢ A : s
(decl) s ∈ {∗,�}

Γ,x : A well-formed

and one enables the assignment of a type to a variable, in a well-formed context

Γ,x : A,Γ′ well-formed
(var)

Γ,x : A,Γ′ ⊢ x : A
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These three rules together with five others—(sort), (prod), (abs), (app), and (conv)—form a eight-rule

presentation of the Calculus of constructions, and more generally of Pure type systems. Because the

rule (var) requires the context Γ,x : A,Γ′ to be well-formed, a variable can only be assigned a type in a

well-formed context and this property extends to all terms, as it is an invariant of the typing rules.

This system was simplified by Geuvers and Nederhof [7] and Barendregt [1], who use a single form

of judgement expressing that a term t has a type A in a context Γ. First, they drop the context Γ′ in the

rule (var) simplifying it to

Γ,x : A well-formed

Γ,x : A ⊢ x : A

and add a weakening rule

Γ ⊢ t : A Γ ⊢ B : s
(weak)

Γ,x : B ⊢ t : A

to extend the judgement Γ,x : A ⊢ x : A to Γ,x : A,Γ′ ⊢ x : A. Then, they exploit the fact that the conclusion

of the rule (decl) is now identical to the premise of the rule (var), to coin a derived rule

Γ ⊢ A : s
(start) s ∈ {∗,�}

Γ,x : A ⊢ x : A

Now that the variables can be typed without using a judgement of the form Γ well-formed, such judge-

ments can be dropped, together with the rules (empty), (decl), and (var). So the two rules (start) and

(weak), together with the five other rules form an equivalent seven-rule formulation of the Calculus of

constructions, and more generally of Pure type systems.

1.2 Interacting Safely with an Unsafe Environment

When a judgement of the form Γ ⊢ x : A is derived, the well-typedness of the term A needs to be checked.

But it can be checked either when the variable x is added to the context or when it is used in the derivation

of the judgement Γ ⊢ x : A. In the system with the rules (decl) and (var), it is checked in the rule (decl),

that is when the variable is added to the context. When the rule (var) is replaced with the rule (start), it is

checked when the variable is used. These two systems illustrate two approaches to safety: the first is to

build a safe environment, the second is to interact safely with a possibly unsafe environment.

In the formulation of Geuvers and Nederhof and Barendregt, it is still possible to define a notion of

well-formed context: the context x1 : A1, ...,xn : An is well-formed if for each i, x1 : A1, ...,xi : Ai ⊢ Ai+1 : s

is derivable. With such a definition, it is possible to prove that if the judgement Γ ⊢ t : A is derivable,

then Γ is well-formed. In this proof, the second premise of the rule (weak), Γ ⊢ B : s, is instrumental, as

its only purpose is to preserve the well-formedness of the context.

We can go further with the idea of interacting safely with an unsafe environment and drop this second

premise, leading to the weakening rule

Γ ⊢ t : A

Γ,x : B ⊢ t : A

Then, in the judgement Γ ⊢ x : A, nothing prevents the context Γ from being non well-formed, but the

term A is still well-typed because the rule (start), unlike the rule (var), has a premise Γ ⊢ A : s. In such a

system, the judgement nat : ∗,array : nat → ∗,z : nat,nil : (array z z) ⊢ z : nat is derivable, although the

term (array z z) is not well-typed, but the judgement nat : ∗,array : nat →∗,z : nat,nil : (array z z) ⊢ nil :

(array z z) is not because this term (array z z) is not well-typed.
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(sort’) 〈s1,s2〉 ∈ A
Γ ⊢ s1 : s2

Γ,x : A,Γ′ ⊢ A : s
(var’) x ∈ Vs

Γ,x : A,Γ′ ⊢ x : A

Γ ⊢ A : s1 Γ,x : A ⊢ B : s2 (prod) 〈s1,s2,s3〉 ∈ R
Γ ⊢ (x : A)→ B : s3

Γ ⊢ A : s1 Γ,x : A ⊢ B : s2 Γ,x : A ⊢ t : B
(abs) 〈s1,s2,s3〉 ∈ R

Γ ⊢ λx : A t : (x : A)→ B

Γ ⊢ t : (x : A)→ B Γ ⊢ u : A
(app)

Γ ⊢ t u : (u/x)B

Γ ⊢ t : A Γ ⊢ B : s
(conv) A ≡ B

Γ ⊢ t : B

Figure 1: Pure type systems with arbitrary contexts

Yet, with the rule (start) and this strong weakening rule, the judgement nat : ∗,z : nat,nil : (array z),
array : nat → ∗ ⊢ nil : (array z) is not derivable, because the judgement nat : ∗,z : nat ⊢ (array z) : ∗ is

not derivable. Thus, to make this judgement derivable, we should not use a weakening rule that erases

all the declarations to the right of the declaration of nil and the rule (start). But we should instead use a

rule that keeps the full context to type the term (array z). Yet, like the rule (start), this rule should not

check that the context is well-formed, but that the type of the variable is a well-typed term

Γ,x : A,Γ′ ⊢ A : s
(var’)

Γ,x : A,Γ′ ⊢ x : A

This leads to the six-rule system described in Figure 1.

As the order of declarations in a context is now immaterial, contexts can indifferently be defined as

sequences or as sets of declarations.

1.3 Previous Work

There are several reasons for using arbitrary contexts. One of them is that, as already noticed by Sacerdoti

Coen [3], when we have two contexts Γ and Γ′, for instance developed by different teams in different

places, and we want to merge them, we should not have to make a choice between Γ,Γ′, and Γ′,Γ. We

should just be able to consider the unordered context Γ∪Γ′, provided it is a context, that is if x : A is

declared in Γ and x : A′ is declared in Γ′ then A = A′.

Another is that, when we extend Pure type systems with computation rules, like in the logical frame-

work DEDUKTI, we additionally want to declare constants in a signature Σ and then add computation

rules. For instance, we want to be able to declare constants in a signature Σ = nat : ∗,a : nat,b : nat,P :

nat →∗,Q : (P a)→∗,e : (P b),h : (Q e),c : nat and then computation rules a −→ c, b −→ c. Because,

unlike in [5], the term (Q e) is not well-typed without the computation rules, we cannot check the that the

signature is well-formed before we declare the rules. But, because the rules use the constants declared in

Σ, we cannot declare the rules before the signature, in particular the rules do not make sense in the part

of the signature to the left of the declaration of h, that is in nat : ∗,a : nat,b : nat,P : nat →∗,Q : (P a)→
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∗,e : (P b), where the constant c is missing. And, because we sometimes want to consider rules l −→ r

where l and r are not well-typed terms [2], we cannot interleave constant declarations and computation

rules. Note that in Blanqui’s Calculus of algebraic constructions [2], the contexts are required to be

well-formed, but the signatures are not.

Another source of inspiration is the presentation of Pure type systems without explicit contexts [6],

where Geuvers, Krebbers, McKinna, and Wiedijk completely drop contexts in the presentation of Pure

type systems. In particular, Theorem 3.1 below is similar to their Theorem 19. The presentation of

Figure 1 is however milder than their Pure type systems without explicit contexts, as it does not change

the syntax of terms, avoiding, for instance, the question of the convertibility of xB and x(λ Ȧ:∗Ȧ) B. In

particular, if Γ ⊢ t : A is derivable in the usual formulation of Pure type systems, it is also derivable in the

system of Figure 1.

We show, in this note, that the system presented in Figure 1 indeed allows to interact safely with

an unsafe environment, in the sense that if a judgement Γ ⊢ t : A is derivable in this system, then there

exists ∆, such that ∆ ⊆ Γ and ∆ ⊢ t : A is derivable with the usual Pure type system rules. The intuition is

that, because of the rule (var’), the structure of a derivation tree induces a dependency between the used

variables of Γ that is a partial order, and as already noticed by Sacerdoti Coen [3], a topological sorting

of the used variables yields a linear context ∆. Topological sorting is the key of Lemma 3.4.

So this paper build upon the work of Coquand and Huet [4], Geuvers and Nederhof [7], Barendregt

[1], Blanqui [2], Sacerdoti Coen [3], and Geuvers, Krebbers, McKinna, and Wiedijk [6]. Its main con-

tribution is to show that Pure type systems can be defined with six rules only, without a primitive notion

of well-formed context, and without changing the syntax of terms.

2 Pure Type Systems

Let us first recall a usual definition of (functional) Pure type systems [7, 1]. To define the syntax of terms,

we consider a set S of sorts and a family of Vs of infinite and disjoint sets of variables of sort s. The

syntax is then

t = x | s | (x : A)→ B | λx : A t | t u

A context Γ is a sequence x1 : A1, ...,xn : An of pairs formed with a variable and a term, such that the

variables x1, ...,xn are distinct. So, when we write the context Γ,y : B, we implicitly assume that y is not

already declared in Γ.

A context Γ is said to be included into a context Γ′ (Γ ⊆ Γ′) if every x : A in Γ is also in Γ′.

Two contexts Γ and Γ′ are said to be compatible if each time x : A is in Γ and x : A′ is in Γ′, then

A = A′.

To define the typing rule, we consider a set A of axioms, that are pairs of sorts and a set R of rules,

that are triple of sorts. As we restrict to functional Pure type systems, we assume that the relations A

and R are functional.

Definition 2.1 (The type system T )

(sort) 〈s1,s2〉 ∈ A
⊢ s1 : s2

Γ ⊢ A : s
(start) x ∈ Vs

Γ,x : A ⊢ x : A

Γ ⊢ t : A Γ ⊢ B : s
(weak) x ∈ Vs

Γ,x : B ⊢ t : A
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Γ ⊢ A : s1 Γ,x : A ⊢ B : s2 (prod) 〈s1,s2,s3〉 ∈ R
Γ ⊢ (x : A)→ B : s3

Γ ⊢ A : s1 Γ,x : A ⊢ B : s2 Γ,x : A ⊢ t : B
(abs) 〈s1,s2,s3〉 ∈ R

Γ ⊢ λx : A t : (x : A)→ B

Γ ⊢ t : (x : A)→ B Γ ⊢ u : A
(app)

Γ ⊢ t u : (u/x)B

Γ ⊢ t : A Γ ⊢ B : s
(conv) A ≡ B

Γ ⊢ t : B

Example. Consider two sorts ∗ and � and an axiom ∗ : �. The judgement nat : ∗,z : nat ⊢ z : nat is

derivable in T . But the judgements z : nat,nat : ∗ ⊢ z : nat is not because z is declared before nat and the

judgement nat : ∗,x : (∗ ∗),z : nat ⊢ z : nat is not because (∗ ∗) is not well-typed.

Definition 2.2 (Well-formed) Well-formed contexts are inductively defined with the rules

• the empty context is well-formed,

• if Γ is well-formed and Γ ⊢ A : s is derivable in T , then Γ,x : A is well-formed.

Lemma 2.1 If Γ ⊢ t : A is derivable, then Γ is well-formed. Conversely, if Γ is well-formed, then there

exist two terms t and A, such that Γ ⊢ t : A is derivable.

Proof. We prove that Γ is well-formed, by induction on the derivation of Γ ⊢ t : A. Conversely, if Γ is

well-formed and s1 and s2 are two sorts, such that 〈s1,s2〉 ∈ A then Γ ⊢ s1 : s2 is derivable with the rules

(sort) and (weak).

We will use the two following lemmas. The first is Lemma 18 in [7] and 5.2.12 in [1] and the second

Lemma 26 in [7] and 5.2.17 in [1].

Lemma 2.2 (Thinning) If Γ⊢ t : A is derivable, Γ⊆Γ′, and Γ′ is well-formed, then Γ′ ⊢ t : A is derivable.

Lemma 2.3 (Strengthening) If Γ,x : A,Γ′ ⊢ t : B is derivable and x does not occur in Γ′, t, and A, then

Γ,Γ′ ⊢ t : B is derivable.

Lemma 2.4 (Strengthening contexts) If Γ1,x : A,Γ2 is well-formed and x does not occur in Γ2 then

Γ1,Γ2 is well-formed.

Proof. By induction on the structure of Γ2. If Γ2 is empty, then Γ1,Γ2 = Γ1 is well-formed. Otherwise,

Γ2 = Γ′
2,y : B. By induction hypothesis, Γ1,Γ

′
2 is well-formed. As Γ1,x : A,Γ′

2,y : B is well-formed,

Γ1,x : A,Γ′
2 ⊢ B : s is derivable. By Lemma 2.3, Γ1,Γ

′
2 ⊢ B : s is derivable. Thus, Γ1,Γ

′
2,y : B is well-

formed.

If Γ1 and Γ2 are two well-formed contexts with no variables in common, then the concatenation

Γ1,Γ2 also is well-formed. This remark extend to the case where Γ1 and Γ2 have variables in common,

but are compatible.

Lemma 2.5 (Merging) If Γ1 and Γ2 are two well-formed compatible contexts, then there exists a well-

formed context Γ, such that Γ1 ⊆ Γ, Γ2 ⊆ Γ, and Γ ⊆ (Γ1,Γ2).

Proof. By induction on of Γ2.

• If Γ2 is empty, we take Γ = Γ1. The context Γ is well-formed, Γ1 ⊆ Γ, Γ2 ⊆ Γ, and Γ ⊆ (Γ1,Γ2).
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• If Γ2 = (Γ′
2,x : A), then Γ′

2 is well-formed and, by induction hypothesis, there exists a well-formed

context Γ′, such that Γ1 ⊆ Γ′, Γ′
2 ⊆ Γ′, and Γ′ ⊆ (Γ1,Γ

′
2).

– If x : A ∈ Γ′, then we take Γ = Γ′. The context Γ is well-formed, Γ1 ⊆ Γ, Γ2 ⊆ Γ, and

Γ ⊆ (Γ1,Γ2).

– Otherwise, as Γ1 and Γ2 are compatible, Γ′ contains no other declaration of x. We take

Γ = Γ′,x : A. We have Γ1 ⊆ Γ, Γ2 ⊆ Γ, Γ ⊆ (Γ1,Γ2). By Lemma 2.2, as Γ′
2 ⊢ A : s, and

Γ′
2 ⊆ Γ′, and Γ′ is well-formed, Γ′ ⊢ A : s is derivable , thus Γ is well-formed.

Example. Consider two sorts ∗ and � and an axiom ∗ : �. If Γ1 = nat : ∗,bool : ∗,z : nat and Γ2 = bool :

∗, true : bool,nat : ∗, the context Γ is nat : ∗,bool : ∗,z : nat, true : bool.

3 Arbitrary Contexts

Definition 3.1 (The type system T ′) The system T ′ is formed with the rules of Figure 1. With respect

to the system T , the rule (sort) is replaced with the rule (sort’), the rule (start) is replaced with the rule

(var’), and the rule (weak) is dropped.

Example. Consider two sorts ∗ and � and an axiom ∗ : �. The judgement nat : ∗,z : nat ⊢ z : nat is

derivable in T ′. So are the judgements z : nat,nat : ∗ ⊢ z : nat and nat : ∗,x : (∗ ∗),z : nat ⊢ z : nat.

Lemma 3.1 (Thinning) If Γ and Γ′ are two contexts, such that Γ ⊆ Γ′ and Γ ⊢ t : A is derivable in T ′,

then Γ′ ⊢ t : A is derivable in T ′.

Proof. By induction on the derivation of Γ ⊢ t : A in T ′.

Lemma 3.2 (Key lemma) If Γ is well-formed and Γ ⊢ t : A is derivable in T ′, then Γ ⊢ t : A is derivable

in T .

Proof. By induction on the derivation of Γ ⊢ t : A in T ′.

• If the derivation ends with the rule (sort’), then t = s1, A = s2, and 〈s1,s2〉 ∈ A . As Γ is well-

formed, Γ ⊢ s1 : s2 is derivable in T with the rules (sort) and (weak).

• If the derivation ends with the rule (var’), then t is a variable x, Γ = Γ1,x : A,Γ2, and Γ ⊢ A : s is

derivable in the system T ′. As Γ is well-formed, Γ1 ⊢A : s′ is derivable in T . Thus, Γ1,x : A⊢ x : A

is derivable in T with the rule (start). And, as Γ is well-formed, Γ1,x : A,Γ2 ⊢ x : A is derivable

with the rule (weak).

• If the derivation ends with the rule (prod), then t = (x : C)→ D, A = s3, Γ ⊢C : s1 is derivable in

T ′, Γ,x : C ⊢D : s2 is derivable in T ′, and 〈s1,s2,s3〉 ∈R. Then, as Γ is well-formed, by induction

hypothesis, Γ ⊢C : s1 is derivable in T . Thus, Γ,x : C is well-formed and, by induction hypothesis

again, Γ,x : C ⊢ D : s2 is derivable in T . So, Γ ⊢ (x : C)→ D : s3 is derivable in T with the rule

(prod).

• If the derivation ends with the rule (abs), then t = λx : C u, A = (x : C)→ D, Γ ⊢C : s1 is derivable

in T ′, Γ,x : C ⊢ D : s2 is derivable in T ′, Γ,x : C ⊢ u : D is derivable in T ′, and 〈s1,s2,s3〉 ∈R. By

induction hypothesis, Γ ⊢C : s1 is derivable in T . Thus, Γ,x : C is well-formed and, by induction

hypothesis again, Γ,x : C ⊢ D : s2 is derivable in T and Γ,x : C ⊢ u : D is derivable in T . So,

Γ ⊢ λx : C u : (x : C)→ D is derivable in T with the rule (abs).
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• If the derivation ends with the rule (app), then t = u v, A = (v/x)D, Γ ⊢ u : (x : C)→ D is derivable

in T ′ and Γ ⊢ v : C is derivable in T ′. By induction hypothesis Γ ⊢ u : (x : C)→ D is derivable in

T and Γ ⊢ v : C is derivable in T . Hence Γ ⊢ u v : (v/x)D is derivable in T , with the rule (app).

• If the derivation ends with the rule (conv), then Γ ⊢ t : C is derivable in T ′, Γ ⊢ A : s is derivable

in T ′, and C ≡ A. By induction hypothesis, Γ ⊢ t : C is derivable in T and Γ ⊢ A : s is derivable

in T . Thus, Γ ⊢ t : A is derivable in T , with the rule (conv).

Lemma 3.3 (Reordering) Let Γ be a context, x a variable that does not occur in Γ, and Γ′ a well-formed

context, such that Γ′ ⊆ (Γ,x : C) and Γ′ ⊢ t : A is derivable in T ′. Then, there exists a well-formed context

Γ′′, such that Γ′′,x : C ⊢ t : A is derivable in T ′.

Proof. If x : C is in Γ′, then we have Γ′ = Γ′
1,x : C,Γ′

2, and as Γ′
2 ⊆ Γ, x does not occur in Γ′

2. We take

Γ′′ = Γ′
1,Γ

′
2. By Lemma 2.4, Γ′′ is well-formed and, by Lemma 3.1, Γ′′,x : C ⊢ t : A is derivable in T ′.

Otherwise, we take Γ′′ = Γ′. This context is well-formed and, by Lemma 3.1, Γ′′,x : C ⊢ t : A is

derivable in T ′.

Lemma 3.4 (Context curation) If Γ ⊢ t : A is derivable in T ′, then there exists a well-formed context

∆, such that ∆ ⊆ Γ and ∆ ⊢ t : A is derivable in T ′.

Proof. By induction on the derivation of Γ ⊢ t : A.

• If the derivation ends with the rule (sort’), then t = s1 and A = s2, such that 〈s1,s2〉 ∈ A . We take

the empty context for ∆, ∆ ⊆ Γ, ∆ is well-formed, and ∆ ⊢ s1 : s2 is derivable in T ′, with the rule

(sort’).

• If the derivation ends with the rule (var’), then t is a variable x, x : A is an element of Γ and

Γ ⊢ A : s is derivable in T ′. By induction hypothesis, there exists a well-formed context ∆1, such

that ∆1 ⊆ Γ and ∆1 ⊢ A : s is derivable in T ′.

If x : A is an element of ∆1, we take ∆ = ∆1. We have ∆ ⊆ Γ and ∆ is well-formed. Moreover

∆ ⊢ A : s is derivable in T ′ and ∆ contains x : A, thus ∆ ⊢ x : A is derivable in T ′, with the rule

(var’).

Otherwise, as ∆1 ⊆ Γ, ∆1 contains no declaration of x, we take ∆ = ∆1,x : A. We have ∆ ⊆ Γ. By

Lemma 3.2, ∆1 ⊢ A : s is derivable in T , thus ∆ is well-formed. Moreover, by Lemma 3.1, the

judgement ∆ ⊢ A : s is derivable in T ′ and, as ∆ contains x : A, ∆ ⊢ x : A is derivable in T ′, with

the rule (var’).

• If the derivation ends with the rule (prod) then t = (x : C)→ D, A = s3, the contexts Γ ⊢C : s1 and

Γ,x : C ⊢ D : s2 are derivable in T ′, and 〈s1,s2,s3〉 ∈ R. Modulo α-equivalence, we can assume

that x does not occur in Γ. By induction hypothesis, there exist two well-formed contexts Γ1 and

Γ2, such that Γ1 ⊆ Γ, Γ2 ⊆ (Γ,x : C), and the judgements Γ1 ⊢C : s1 and Γ2 ⊢ D : s2 are derivable

in T ′.

By Lemma 3.3, there exists a well-formed context Γ′
2 such that Γ′

2,x : C ⊢ D : s2 is derivable in T ′.

As Γ1 and Γ′
2 contain no declaration of x, by Lemma 2.5, there exists a well-formed context ∆, such

that Γ1 ⊆ ∆, Γ′
2 ⊆ ∆, and ∆ contains no declaration of x. We have Γ1 ⊆ ∆ and Γ′

2,x : C ⊆ ∆,x : C.

Thus, by Lemma 3.1, ∆ ⊢C : s1 and ∆,x : C ⊢ D : s2 are derivable in T ′. Thus, ∆ ⊢ (x : C)→ D : s3

is derivable in T ′, with the rule (prod).
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• If the derivation ends with the rule (abs), then t = λx : C u, A = (x : C) → D, the judgements

Γ ⊢ C : s1, Γ,x : C ⊢ D : s2, and Γ,x : C ⊢ u : D are derivable in T ′, and 〈s1,s2,s3〉 ∈ R. Modulo

α-equivalence, we can assume that x does not occur in Γ. By induction hypothesis, there exist

three well-formed contexts Γ1, Γ2, and Γ3, such that Γ1 ⊆ Γ, Γ2 ⊆ (Γ,x : C), Γ3 ⊆ (Γ,x : C), and

the judgements Γ1 ⊢C : s1, Γ2 ⊢ D : s2, and Γ3 ⊢ u : D are derivable in T ′.

By Lemma 3.3, there exists well-formed contexts Γ′
2 and Γ′

3, such that the judgements Γ′
2,x : C ⊢

D : s2 and Γ′
3,x : C ⊢ u : D are derivable in T ′. As Γ1, Γ′

2, and Γ′
3 contain no declaration of x, using

Lemma 2.5 twice, there exists a well-formed context ∆, such that Γ1 ⊆ ∆, Γ′
2 ⊆ ∆, Γ′

3 ⊆ ∆, and ∆

contains no declaration of x. We have Γ1 ⊆ ∆, Γ′
2,x : C ⊆ ∆,x : C, and Γ′

3,x : C ⊆ ∆,x : C. Thus,

by Lemma 3.1, the judgements ∆ ⊢C : s1, ∆,x : C ⊢ D : s2, and ∆,x : C ⊢ u : D are derivable in T ′.

Thus, ∆ ⊢ λx : C u : (x : C)→ D is derivable in T ′, with the rule (abs).

• If the derivation ends with the rule (app) then t = u v, A = (v/x)D, and the judgements Γ ⊢ u :

(x : C) → D and Γ ⊢ v : C are derivable in T ′. By induction hypothesis, there exists two well-

formed contexts Γ1 and Γ2, such that Γ1 ⊆ Γ, Γ2 ⊆ Γ, and the judgements Γ1 ⊢ u : (x : C)→ D and

Γ2 ⊢ v : C are derivable in T ′.

By Lemma 2.5, there exists a well-formed context ∆, such that Γ1 ⊆ ∆, and Γ2 ⊆ ∆. By Lemma

3.1, the judgements ∆ ⊢ u : (x : C)→ D and ∆ ⊢ v : C are derivable in T ′. Thus, ∆ ⊢ (u v) : (v/x)D
is derivable in T ′, with the rule (app).

• If the derivation ends with the rule (conv) then the judgements Γ ⊢ t : C and Γ ⊢ A : s are derivable

in T ′, and C ≡ A. By induction hypothesis, there exists two well-formed contexts Γ1 and Γ2, such

that Γ1 ⊆ Γ, Γ2 ⊆ Γ, and the judgements Γ1 ⊢ t : C and Γ2 ⊢ A : s are derivable in T ′.

By Lemma 2.5, there exists a well-formed context ∆, such that Γ1 ⊆ ∆ and Γ2 ⊆ ∆. By Lemma

3.1, the judgements ∆ ⊢ t : C and ∆ ⊢ A : s are derivable in T ′. Thus, ∆ ⊢ t : A is derivable in T ′,

with the rule (conv).

Theorem 3.1 If Γ ⊢ t : A is derivable in T ′, then there exists ∆, such that ∆ ⊆ Γ and ∆ ⊢ t : A is derivable

in T .

Proof. By Lemma 3.4, there exists a well-formed context ∆, such that ∆ ⊆ Γ and ∆ ⊢ t : A is derivable in

T ′. By Lemma 3.2, ∆ ⊢ t : A is derivable in T .

Example. Consider two sorts ∗ and � and an axiom ∗ : �. From the derivation of the judgement,

z : nat,nat : ∗ ⊢ z : nat, we extract the context nat : ∗,z : nat.

And from the derivation of nat : ∗,x : (∗ ∗),z : nat ⊢ z : nat, we also extract the context nat : ∗,z : nat.
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