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Subexponential logic is a variant of linear logic with a fanif exponential connectives—called
subexponentialsthat are indexed and arranged in a pre-order. Each suberpahhas or lacks
associated structural properties of weakening and cdidtradMe show that classical propositional
multiplicative linear logic extended with one unrestrittend two incomparable linear subexponen-
tials can encode the halting problem for two register Mingiachines, and is hence undecidable.

1 Introduction

The decision problem for classical propositional multative exponential linear logiovELL), consist-
ing of formulas constructed from propositional atoms usheyconnectiveg®,1,7%?,L,!,7}, is perhaps
the longest standing open problem in linear logieLL is bounded below by the purely multiplicative
fragment §/LL), which is decidable even in the presence of first-order tifization, and above byiELL
with additive connectivesMAELL ), which is undecidable even for the propositional fragnieht This
paper tries to make the undecidable upper bound a bit tighyteonsidering the question of the deci-
sion problem for a family of propositional multiplicatisibexponentialogics (WSeL) [8, [10], each of
which consists of formulas constructed from propositioa@ms using the (potentially infinite) set of
connectived®,1,78, L} U Uyes {!", 7"}, whereX is a pre-ordered set of subexponentiddels called a
subexponential signaturehat is a parameter of the family of logics. In particulag show that a par-
ticular MSEL with a subexponential signature consisting of exactlyehabels can encode a two register
Minsky machine ¢rM), which is Turing-equivalent. This is the same strategyduse5] to show the
undecidability ofMAELL , but the encoding imsEL is different—simpler—for the branching instructions,
and shows that additive behaviour is not essential to imetgrbranching. We use the classical dialect
of linear logic to show these results. The intuitionistialdct has the same decision problem because it
is possible to faithfully encode.€., linearly simulate the sequent proofs of) the classicdedtan the
intuitionistic dialect without changing the signature.[2]

This short note is organized as follows: in secfion 2 we $kéte one-sided sequent formulation
of MSEL and recall the definition of arM. In section B we encode the transition system akRal in
a MSEL with a particular signature. In sectioh 4 we argue that thepdimg isadequatei.e., that the
halting problem for &@rRm is reduced to the proof search problem for thigeL-encoding, by appealing
to a focused sequent calculus f@seL. The final sectionl5 discusses some of the ramifications sf thi
result.

2 Background

2.1 Propositional Subexponential Logic

Let us quickly recall propositional subexponential logseK) and its associated sequent calculus proof
system. This logic is sometimes called subexponelfitiabr logic (SELL), but since it is possible for
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2 Undecidability of Multiplicative Subexponential Logic
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Figure 1: Inference rules for a cut-free one-sided sequantius formulation ofSEL. Only the rules on
the last line are sensitive to the signature.

the subexponentials to have linear semantics it is reduridanclude both adjectives. Formulas SfL
(A,B,...) are built fromatomic formulaga, b,...) according to the following grammar:

AB,... :== a | A®B| 1 | A@B | 0 | !"A
| "a | ABB | L | A&B | T | 7'A

ATOMIC MULTIPLICATIVE ADDITIVE SUBEXPONENTIAL

Each column in the grammar above is a De Morgan dual papogitive formuladepicted withP or Q
when relevant) is a formula belonging to the first line of thangmar, and aegative formulgdepicted
with N or M) is a formula belonging to the second line. Théels (u,v,...) on the subexponential
connectived" and?" belong to asubexponential signatugefined below. The additive fragment of this
syntax is just used in this section for illustration; we widit be using the additives in our encodings. The
fragment without the additives will be calledultiplicative subexponential logi@/SEL).
Definition 1. A subexponential signatui®is a structurdA\,U, <) where:

e A is a countable set débels

e U C A, called theunbounded labejsand

e < C AxAisapre-order omM— i.e, it is reflexive and transitive—and-upwardly closed with
respect tdJ, i.e, for anyu,ve A, if ue U andu <v, thenve U. J
We will assume an ambient signatizainless we need to disambiguate particular instancessat, in
which case we will us& in subscripts. For instanc#|SELs is a particular instance afseL for 2.

The true formulas ofSEL are derived from @&equent calculuproof system consisting of sequents
of the formkAg, ..., A, (with n > 0) and abbreviated asl'. The contexts(l',A,...) are multi-sets of
formulas ofseL, andl",A andl™, A stand as usual for the multi-set unionfofvith A and{A}, respectively.
The inference rules fosEL sequents are displayed in figlile 1. Most of the rules are dhmaBveernseL
and linear logic and will not be elaborated upon here. Thiemdihces are with the subexponentials, for
which we use the following definition.

Definition 2. For anyn € N and liststi = [uy, ..., Un] andA = [Ay, ..., A, we write?Y A to stand for the
context?" Ay,...,?" A, Forv = [vy,...,Vy], we writeu < Vto mean thati < vy, ..., andu < v,. 5

The rule for!, sometimes calleggromotion has a side condition that checks that the label of the
principal formula is less than the labels of all the othenfalas in the context. This rule cannot be used
if there are nori>formulas in the context, nor if the labels of some of thisrmulas are strictly smaller
or incomparable with that of the principgeformula. Both these properties will be used in the encoding
in the next section. The structural rules of weakening amdraotion apply to those principatformulas
with unbounded labels.
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2.2 Two Register Minsky Machines

Like Turing machines, Minsky register machines have a figitde diagram and transitions that can
perform I/0O on some unbounded storage device, in this casaladf registers that can store arbitrary
natural numbers. We shall limit ourselves to machines with tegisters £rRM) a andb, which are
sufficient to encode Turing machines.

Definition 3. A 2RMis a structurgQ, x, 4, —) where:
e Qis a non-empty finite set citates
e x € Qis adistinguishedhalting state

e ¢ is a set ofconfigurations each of which is a structure of the for(g,v), with g€ Q andv :
{a,b} — N, that assigns values (natural numbers) to the registarglb in stateq;

e —» C % x| x% is adeterministic labelled transition relation betweenfigurations where the
label setl = {halt,incra,incrb,decra,decrb,isza,iszb} (called theinstructions.

By usual convention, we write» infix with the instruction atop the arrow. We require thatgvelement
of — fits one of the following schemas, where in each agses Q andq # r:

halt

(q,V) . (x,{a:0,b:0}) (with q # x)
(q,{a:mb:n}) —, (r{a:m+1b:n})
(@{a:mb:in}) —2 4 (r{a:mb:n+1})
(@{a:m+1b:n}) —= 5 (r{a:mb:n}) 1)
(g,{a:mb:n+1}) d‘ecrb r,{a:mb:n})
(q,{a:0,b:n}) & (r,{a:0,b:n})
(@{a:mb:0}) —= 5 (r{a:mb:0})
For atracei = [iy,...,in], We write <q0,v0>i><qn,vn> if <q0,v0>i—1>---i—”><qn,vn>. The 2rM halts

from an initial configuration(go,vo) if there is a tracd such that(g,vo) — (*,{a:0,b:0}). (The
configuration(x,{a : 0,b : 0}) will be called thehalting configuration) The halting problemfor a 2rRm
is the decision problem of whether the machine halts frormaii configuration. J

The requirement that> be deterministic amounts tdg, V) — gz, v1) and (g, V) — (g, v2) imply
thati = j, g1 = O, andvy; = v». Note that a trace that does not end with a halting configumatiill not
be considered to be halting, even if there is no possibleessor configuration. It is an easy exercise
to transform a givererRM into one where every configuration has a successor excephdohalting
configuration.

Theorem 4([[7]). The halting problem foerMs is recursively unsolvable. O

3 The Encoding

For a givenzrm, which we fix in this section, we will encode its halting preirl as the derivability of a
particularMSEL sequent that encodes its labelled transition system ariditte configuration. We will
use the following subexponential signature in the restisfdbction.
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Definition 5. Let = stand for the signaturg «, a,b},{e}, <) where< is the reflexive-transitive closure
of <g defined bya <g o andb <g . 2
Definition 6 (encoding configurations)Forc = (g, V), we write&’(c) for the following MSEL= context:

b b b
?%—ra,?*-ra,...,?*-ra,?’~rb,?°=rb,...,?° ~rb, 1 N

length= v(a) length= v(b)

Definition 7 (encoding transitions)The transitions[ (1) of therm are encoded as a contdXtwith:

e torepresentq,V) =21 (x,{a: 0,b: 0}), the elementsq® —h,h®*ra® —h,h® °rb® —h,h®

1”1 (for someh ¢ Q):

e torepresentg,{a: mb:n}) ——(r,{a: m+1b:n}), the elemeny® (—r 8 ?* —ra);

incrb

)
e torepresentq, {a:mb:n}) "5 (r,{a:mb:n+1}), the elementg® (—r ® ?° —~rb);
)

decra

e torepresentg,{a: m+1,b:n}) ——(r,{a: m,b:n}), the elementg® *ra® —r;

e torepresentq,{a: mb:n+1}) deerd, (r,{a:mb:n}), the elementq® I°rb® —r;

isza

e torepresentq,{a:0,b:n}) =22, (r,{a:0,b:n}), the elementg® " —r; and

iszb

e torepresentg,{a: mb:0}) ——(r,{a:mb:0}), the elementg® !* —r.
Note thatl1 contains a finite number of elements. a
Definition 8 (encoding the halting problem)f T is Ay, ..., A, then let?"T stand for?" Ay, ..., 7" A,.
The encoding of the halting problem for them from the initial configuratioreo = (qo, Vo) is theMSEL=
sequent-?"T1,&(co). 3
Theorem 9. If the 2rRM halts from @, then-= 7’1, & (o) is derivable.

Proof. We will show that ifc = (qi,v1) LN (g2,V2) = d (for somei), then the followingMsEL= rule is

derivable: Lo M, &(d)
F?%M,&(c)

This is largely immediate by inspection. Here are threeasgmtative cases.
e The case of = incra: it must be thats(a) = vi(a) + 1 andva(b) = vi(b), so&(d) = &(c) \
{=m},~q,?*ra. Moreover,g; ® (28 ?*—ra) € N. So:

- F?2°N, &)\ {~a},~ G, ?* ~ra 7?

F-01, "?mn75(c)\{ﬁQ1}FQ275’?aﬁra®

F?"N,8(c),q1® (— 2 ?° —ra)
F?°N,&(c)

contr,?

The cases foincrb, decra, anddecrb are similar.

e The case of = isza: it must be thatv;(a) = vi(a) = 0 andvz(b) = vi(b). Hence,&(d) =
&)\ {~q},~q and??ra ¢ &(c) U&(d). Moreover,gy ® I° —qp € M. So:

F27 0,60\ w} G
F7N.6(0) \ (-}, P,
F?2°M,&00),m®!° -
F?7°N,&(c)
The instance of is justified because < « andb < b, and there are n@-formulas labellech or
non-? formulas in the sequent. The caseiekb is similar.

init

F=q, 01

contr,?
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e The case of = halt. Here, we know thatdl; ® —h € 1, so:

Fogna™ F7°N,80\{-~a},~h
I—?°°I'I,éo(c),q1®ﬂh

F?7°N,&(c)

contr,?

Now, as long as there are any occurrenced“afa or ?*rb in £(c), we can apply one of the
decrementing rules® !*ra® —h orh® !°rb® —h € IN. The general case looks something like
this, where\\,, = {—ra,...,—ra} andAy, = {—rb,...,~rb}.
I——|ra,raInlt
. F?”®-rara
Fh,—h"™ F?iora,Pra  F?°M,E(c)\{~01,7%Ara, Ay, ?* —ra},—h
7% Mn,&c)\{— ql,?aAra,?bArb,?a—'ra},?a—|ra,—|h,h® ra® —h
7% n,&(c)\{—a, 72 Asa, ?bArb, ?a—|ra} ,?7%*—-ra,—h

®,®

contr,?

There is a symmetric case for contracting the@ 1°rb® —h. Eventually, the right branch just
becomes- 771, —h, at which point we have:
—
Eweak
71,1
Fo—n ™ Fm,°1
F?°M,-h,h®!"1
|—?°° |_|,—|h contr,? 0

4 Adequacy of the Encoding via Focusing

By the contrapositive of theorefm 9, if the sequen®” M, &(co) is not derivable, then therm does not
halt fromcy. This gives half of the reduction. For the converse of thedg we need to show how to
recover a halting trace by searching for proofs eigeL= encoding of a halting problem. The best way
to do this is to build a focused proof which will have the dedvinference rules in the above proof as
the only possiblesyntheticrules, in a sense made precise below. We will begin by skagdiie focused
proof system foisEL that is sound and complete for the unfocused system of figuardithen show how
the synthetic rules for the encoding are in bijection forimdtructions (with a small correction needed
for halt).

Focusing is a general technique to restrict the non-detesmiin a cut-free sequent proof system.
Though originally defined for classical linear logic If [1]is readily extended to many other logi¢s [3,
4,18]. This section sketches the basic design of a focusesibveof the rules of figurel 1, and omits most
of the meta-theoretic proofs of soundness and completefugsshich the general proof techniques are
by now well known [3| 6, 13]. To keep things simple, we will defia focused calculus by adding to the
unfocused system a new kind fofcused sequenit Q, [A], where the formula is under focus Contexts
written with Q, which we callneutral contextscan contain only positive formulas, atoms, negated atoms,
and?-formulas. The rules of the focused proof systemdsr are depicted in figurie 2.

Focused sequents are created—reading from conclusionrdgwa premises—from unfocused se-
qguents with neutral contexts by means of the rulesde, Idecide, or udecide. In a focused sequent,
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(Uels) - (€U F A0 (B H?"AQy[C] o (d€Us) "
-5 ?YA —a,[d] Fs 7R Q1,Q2,[BRC] Fs YA (1]
(U<szV) .
FQ,[A] - FQ,[B] ©,  norulefor0 (W€ Us) Fz?VA’C[.] FQ,N bl
FQ,[AeB] " FQ,[A®B] - YAMWB ') FQIN]
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Figure 2: Inference rules for a focused sequent calculusdtation of SEL

only the formula under focus can be principal, and the foarsipts on the immediate subformulas of
this formula in the premises, with the exception of the flfle In the base case, fdinit], the focused
atom must find its negation in the context, while all formutaghe context must be-formulas with un-
bounded labels. When the focused formula is negative, thesfis released with thelur] rule, at which
point any of the unfocused rulds, L, &, T} of figure[1 can be used to decompose the formula and its
descendants further. Eventually, when there are no mor&timeglescendantske., the whole context
has the forrQ—a new focused phase is launched again and the cycle repéates that the structural
rulescontr andweak of the unfocused calculus are removed in the focused systestead, weakening

is folded into[init], [!], and[1], and contraction is folded int@®] andudecide. The rulescontr andweak
remain admissible for either sequent form in the focusecubas.

Theorem 10. TheseL sequent-T is provable in the unfocused system of figure 1 iff it is préeabthe
focused system of figuré 2.

Sketch. Straightforward adaptation of existing proofs of the smass and completeness of focusing,
such as[[3,16, 13]. An instance feeL can be found in[8, chapter 5]. O

Theorem 11. The2rm halts from g if == 7", &(co) is derivable.

Proof. We will show instead that therm halts fromcy if the sequent-=?*T1,&(co) is derivable in the
focused calculus, and we will moreover extract the haltrage from such a focused proof. The required
result will then follow immediately from theorem 110, sinagyarovableseL sequent has a focused proof.
Let a focused proof of--?"M,&(c) (for c = (qg,v)) be given. We proceed by induction on the
lowermost instance afdecide in this proof. Note that therseL= context?” I, & (c) is neutral; moreover,
all the elements of’(c) are either negated atoms dprefixed negated atoms with bounded labels. So,
the only rules of the focusing system that apply to this setjaeeldecide or udecide. However, if we
useldecide, then the premise becomes unprovable, as there is no wayntovesan occurrence eira
or —rb from a context that also containgg. Thus, the only possible rule will be an instanceudécide,
with the focused formula in the premise being one oftheFirst, consider the case where the focused
formula does not contaih, i.e., it corresponds to one of the instructionsl in{halt}. In each of these
cases, the focused phase that immediately follows is detestin. As a characteristic case, suppose the
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focused formula i§|® !° —r; then we have:

. I—?“ﬂ,g(c)\{ﬂq},ﬂr

=99 7N\ {~a}, [P ]

F?°N,&(c),[q®1° -]
F?M,&(c)

('
[©]

udecide

The right premise is now itself neutral and an encoding offamint configuration. We can appeal to the
inductive hypothesis to find a halting trace for it, to which wan prepend the instructiasza to get the
halting trace front. A similar argument can be used for the other instructions\ifhalt}.

This leaves just the formulas involvirtgfor the lowermosudecide. We cannot select any formula
butg® —h from I, for the derivation would immediately fail because Q and there is ne-h in £(c)
to use with[init]. So, as the formula selectedg® —h, we have:

'_?oorl»éo(c)\{_'q}?_'h
F77N,&(c)\ {~a},[~h]
F?%M,&(c),[q® —h]
F?°M,&(c)

[init] [blur]

l__'qv [q] ®

udecide

The context of the right premise is now neutral, so the onlg that applies to it isidecide. A simple
nested induction will show that sequents of this fdri" M1, &(c) \ {—q},—h are always derivable in
the focused calculus. Therefore, the trace that corresptmthe configuratiort is just the singleton
halt. O

Corollary 12. The derivability ofvSEL= sequents is recursively unsolvable.

Proof. Directly from theoremBl4,]9, and111. O

5 Conclusion and Perspectives

We have given a fairly obvious encoding of2am in a suitable instance afiSEL containing a three
element subexponential signature. The encoding ofaehalting problem is very similar to that ofl[5]
for MAELL; the main difference is in the encoding of thez transitions where we can directly check
for emptiness of the relevant zone instead of making an imddibpy of the world and checking this
property in the copy. Additives are therefore not necesgaryndecidability.

Yet, this conclusion is not entirely satisfactory.MEEL= can simulate Turing machines, then it can
obviously simulate a theorem prover that implements a cetaearch procedure foAELL. Thus, in
an indirect fashion, this paper establishes that addittrabiour can be encoded using subexponentials
and multiplicatives alone. It would be interesting to bulds encoding of additives more directly as an
embedding ofMAELL —or even justVALL —in MSEL.

This work leaves open the questions of decidability of aiti@ty MSEL with a two-element signature
or a one-element signature; the latter is equivalent to dogddbility of MELL itself. We also conjecture
that the decision problem for an arbitramseL with no unbounded subexponentials is PSPACE-hard,
because it is very likely possible to polynomially and sdyrehcode avALL sequent in such amSEL.

Finally, this undecidability result should be taken as adwoi caution for the increasingly popular
uses ofSEL as a logical framework for the encodings of other systemsh &$ [11/ 1P]. If one is to
avoid encoding a decidable problem in terms of an undeadai, subexponentials must be used very
carefully.
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