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Subexponential logic is a variant of linear logic with a family of exponential connectives—called
subexponentials—that are indexed and arranged in a pre-order. Each subexponential has or lacks
associated structural properties of weakening and contraction. We show that classical propositional
multiplicative linear logic extended with one unrestricted and two incomparable linear subexponen-
tials can encode the halting problem for two register Minskymachines, and is hence undecidable.

1 Introduction

The decision problem for classical propositional multiplicative exponential linear logic (MELL), consist-
ing of formulas constructed from propositional atoms usingthe connectives{⊗⊗⊗,1,

&

,⊥⊥⊥, !,?}, is perhaps
the longest standing open problem in linear logic.MELL is bounded below by the purely multiplicative
fragment (MLL ), which is decidable even in the presence of first-order quantification, and above byMELL

with additive connectives (MAELL ), which is undecidable even for the propositional fragment[5]. This
paper tries to make the undecidable upper bound a bit tighterby considering the question of the deci-
sion problem for a family of propositional multiplicativesubexponentiallogics (MSEL) [8, 10], each of
which consists of formulas constructed from propositionalatoms using the (potentially infinite) set of
connectives{⊗⊗⊗,1,

&

,⊥⊥⊥}∪
⋃

u∈Σ {!
u,?u}, whereΣ is a pre-ordered set of subexponentiallabels, called a

subexponential signature, that is a parameter of the family of logics. In particular, we show that a par-
ticular MSEL with a subexponential signature consisting of exactly three labels can encode a two register
Minsky machine (2RM), which is Turing-equivalent. This is the same strategy used in [5] to show the
undecidability ofMAELL , but the encoding inMSEL is different—simpler—for the branching instructions,
and shows that additive behaviour is not essential to implement branching. We use the classical dialect
of linear logic to show these results. The intuitionistic dialect has the same decision problem because it
is possible to faithfully encode (i.e., linearly simulate the sequent proofs of) the classical dialect in the
intuitionistic dialect without changing the signature [2].

This short note is organized as follows: in section 2 we sketch the one-sided sequent formulation
of MSEL and recall the definition of a2RM. In section 3 we encode the transition system of a2RM in
a MSEL with a particular signature. In section 4 we argue that the encoding isadequate, i.e., that the
halting problem for a2RM is reduced to the proof search problem for thisMSEL-encoding, by appealing
to a focused sequent calculus forMSEL. The final section 5 discusses some of the ramifications of this
result.

2 Background

2.1 Propositional Subexponential Logic

Let us quickly recall propositional subexponential logic (SEL) and its associated sequent calculus proof
system. This logic is sometimes called subexponentiallinear logic (SELL), but since it is possible for
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Figure 1: Inference rules for a cut-free one-sided sequent calculus formulation ofSEL. Only the rules on
the last line are sensitive to the signature.

the subexponentials to have linear semantics it is redundant to include both adjectives. Formulas ofSEL

(A,B, . . . ) are built fromatomic formulas(a,b, . . . ) according to the following grammar:

ATOMIC MULTIPLICATIVE ADDITIVE SUBEXPONENTIAL

A,B, . . . ::= a | A⊗⊗⊗B | 1 | A⊕⊕⊕B | 0 | !
uA

| ¬a | A

&

B | ⊥⊥⊥ | A&B | ⊤⊤⊤ | ?
uA

Each column in the grammar above is a De Morgan dual pair. Apositive formula(depicted withP or Q
when relevant) is a formula belonging to the first line of the grammar, and anegative formula(depicted
with N or M) is a formula belonging to the second line. Thelabels (u,v, . . . ) on the subexponential
connectives!u and?u belong to asubexponential signaturedefined below. The additive fragment of this
syntax is just used in this section for illustration; we willnot be using the additives in our encodings. The
fragment without the additives will be calledmultiplicative subexponential logic(MSEL).
Definition 1. A subexponential signatureΣ is a structure〈Λ,U,≤〉 where:

• Λ is a countable set oflabels;

• U ⊆ Λ, called theunbounded labels; and

• ≤ ⊆ Λ×Λ is a pre-order onΛ— i.e., it is reflexive and transitive—and≤-upwardly closed with
respect toU , i.e., for anyu,v∈ Λ, if u∈U andu≤ v, thenv∈U . y

We will assume an ambient signatureΣ unless we need to disambiguate particular instances ofMSEL, in
which case we will useΣ in subscripts. For instance,MSELΣ is a particular instance ofMSEL for Σ.

The true formulas ofMSEL are derived from asequent calculusproof system consisting of sequents
of the form⊢A1, . . . ,An (with n > 0) and abbreviated as⊢Γ. Thecontexts(Γ,∆, . . .) are multi-sets of
formulas ofSEL, andΓ,∆ andΓ,A stand as usual for the multi-set union ofΓ with ∆ and{A}, respectively.
The inference rules forSEL sequents are displayed in figure 1. Most of the rules are shared betweenSEL

and linear logic and will not be elaborated upon here. The differences are with the subexponentials, for
which we use the following definition.
Definition 2. For anyn∈ N and lists~u= [u1, . . . ,un] and~A= [A1, . . . ,An], we write?~u~A to stand for the
context?u1 A1, . . . ,?

un An. For~v= [v1, . . . ,vn], we writeu≤~v to mean thatu≤ v1, . . . , andu≤ vn. y

The rule for!, sometimes calledpromotion, has a side condition that checks that the label of the
principal formula is less than the labels of all the other formulas in the context. This rule cannot be used
if there are non-?-formulas in the context, nor if the labels of some of the?-formulas are strictly smaller
or incomparable with that of the principal!-formula. Both these properties will be used in the encoding
in the next section. The structural rules of weakening and contraction apply to those principal?-formulas
with unbounded labels.
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2.2 Two Register Minsky Machines

Like Turing machines, Minsky register machines have a finitestate diagram and transitions that can
perform I/O on some unbounded storage device, in this case a bank of registers that can store arbitrary
natural numbers. We shall limit ourselves to machines with two registers (2RM) a andb, which are
sufficient to encode Turing machines.

Definition 3. A 2RM is a structure〈Q,∗,C ,−→〉 where:

• Q is a non-empty finite set ofstates;

• ∗ ∈ Q is a distinguishedhalting state;

• C is a set ofconfigurations, each of which is a structure of the form〈q,v〉, with q ∈ Q andv :
{a,b}→ N, that assigns values (natural numbers) to the registersa andb in stateq;

• −→ ⊆ C × I ×C is a deterministic labelled transition relation between configurations where the
label setI = {halt,incra,incrb,decra,decrb,isza,iszb} (called theinstructions).

By usual convention, we write−→ infix with the instruction atop the arrow. We require that every element
of −→ fits one of the following schemas, where in each caseq, r ∈ Q andq 6= r:

〈q,v〉
halt

−−−−−→ 〈∗,{a : 0,b : 0}〉 (with q 6= ∗)

〈q,{a : m,b : n}〉
incra

−−−−−→ 〈r,{a : m+1,b : n}〉

〈q,{a : m,b : n}〉
incrb

−−−−−→ 〈r,{a : m,b : n+1}〉

〈q,{a : m+1,b : n}〉
decra

−−−−−→ 〈r,{a : m,b : n}〉

〈q,{a : m,b : n+1}〉
decrb

−−−−−→ 〈r,{a : m,b : n}〉

〈q,{a : 0,b : n}〉
isza

−−−−−→ 〈r,{a : 0,b : n}〉

〈q,{a : m,b : 0}〉
iszb

−−−−−→ 〈r,{a : m,b : 0}〉

(1)

For a trace~i = [i1, . . . , in], we write 〈q0,v0〉
~i
−→〈qn,vn〉 if 〈q0,v0〉

i1−−→·· ·
in−−→〈qn,vn〉. The 2RM halts

from an initial configuration〈q0,v0〉 if there is a trace~i such that〈q0,v0〉
~i
−→〈∗,{a : 0,b : 0}〉. (The

configuration〈∗,{a : 0,b : 0}〉 will be called thehalting configuration.) Thehalting problemfor a 2RM

is the decision problem of whether the machine halts from an initial configuration. y

The requirement that−→ be deterministic amounts to:〈q,v〉
i
−→〈q1,v1〉 and〈q,v〉

j
−→〈q2,v2〉 imply

that i = j, q1 = q2, andv1 = v2. Note that a trace that does not end with a halting configuration will not
be considered to be halting, even if there is no possible successor configuration. It is an easy exercise
to transform a given2RM into one where every configuration has a successor except forthe halting
configuration.

Theorem 4([7]). The halting problem for2RMs is recursively unsolvable.

3 The Encoding

For a given2RM, which we fix in this section, we will encode its halting problem as the derivability of a
particularMSEL sequent that encodes its labelled transition system and theinitial configuration. We will
use the following subexponential signature in the rest of this section.
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Definition 5. Let Ξ stand for the signature〈{∞,a,b} ,{∞} ,≤〉 where≤ is the reflexive-transitive closure
of ≤0 defined bya≤0 ∞ andb≤0 ∞. y

Definition 6 (encoding configurations). For c= 〈q,v〉, we writeE (c) for the followingMSELΞ context:

?
a¬ra,?a¬ra, . . . ,?a¬ra
︸ ︷︷ ︸

length= v(a)

,?b¬rb,?b¬rb, . . . ,?b¬rb
︸ ︷︷ ︸

length= v(b)

,¬q y

Definition 7 (encoding transitions). The transitions (1) of the2RM are encoded as a contextΠ with:

• to represent〈q,v〉
halt
−−−→〈∗,{a : 0,b : 0}〉, the elements:q⊗⊗⊗¬h,h⊗⊗⊗!

a
ra⊗⊗⊗¬h,h⊗⊗⊗!

b
rb⊗⊗⊗¬h,h⊗⊗⊗

!
∞
1 (for someh /∈ Q):

• to represent〈q,{a : m,b : n}〉
incra
−−−−→〈r,{a : m+1,b : n}〉, the elementq⊗⊗⊗ (¬ r

&

?
a¬ra);

• to represent〈q,{a : m,b : n}〉
incrb
−−−−→〈r,{a : m,b : n+1}〉, the element:q⊗⊗⊗ (¬ r

&

?
b¬rb);

• to represent〈q,{a : m+1,b : n}〉
decra
−−−−→〈r,{a : m,b : n}〉, the element:q⊗⊗⊗ !

a
ra⊗⊗⊗¬ r;

• to represent〈q,{a : m,b : n+1}〉
decrb

−−−−→〈r,{a : m,b : n}〉, the element:q⊗⊗⊗ !
b
rb⊗⊗⊗¬ r;

• to represent〈q,{a : 0,b : n}〉
isza

−−−→〈r,{a : 0,b : n}〉, the element:q⊗⊗⊗ !
b¬ r; and

• to represent〈q,{a : m,b : 0}〉
iszb

−−−→〈r,{a : m,b : 0}〉, the element:q⊗⊗⊗ !
a¬ r.

Note thatΠ contains a finite number of elements. y

Definition 8 (encoding the halting problem). If Γ is A1, . . . ,An, then let?u Γ stand for?uA1, . . . ,?
uAn.

The encoding of the halting problem for the2RM from the initial configurationc0 = 〈q0,v0〉 is theMSELΞ
sequent⊢?∞ Π,E (c0). y

Theorem 9. If the 2RM halts from c0, then⊢Ξ ?
∞ Π,E (c0) is derivable.

Proof. We will show that ifc = 〈q1,v1〉
i
−→〈q2,v2〉 = d (for somei), then the followingMSELΞ rule is

derivable:
⊢?∞ Π,E (d)
⊢?∞ Π,E (c)

This is largely immediate by inspection. Here are three representative cases.
• The case ofi = incra: it must be thatv2(a) = v1(a)+ 1 andv2(b) = v1(b), soE (d) = E (c) \

{¬q1} ,¬q2,?
a
ra. Moreover,q1⊗⊗⊗ (¬q2

&

?
a¬ra) ∈ Π. So:

⊢¬q1,q1
init

⊢?∞ Π,E (c)\{¬q1} ,¬q2,?
a¬ra

⊢?∞ Π,E (c)\{¬q1} ,¬q2

&

?
a¬ra

&

⊢?∞ Π,E (c),q1⊗⊗⊗ (¬q2

&

?
a¬ra)

⊗⊗⊗

⊢?∞ Π,E (c)
contr,?

The cases forincrb, decra, anddecrb are similar.

• The case ofi = isza: it must be thatv2(a) = v1(a) = 0 andv2(b) = v1(b). Hence,E (d) =
E (c)\{¬q1} ,¬q2 and?ara /∈ E (c)∪E (d). Moreover,q1⊗⊗⊗ !

b¬q2 ∈ Π. So:

⊢¬q1,q1
init

⊢?∞ Π,E (c)\{¬q1} ,¬q2

⊢?∞ Π,E (c)\{¬q1} , !
b¬q2

!

⊢?∞ Π,E (c),q1⊗⊗⊗ !
b¬q2

⊗⊗⊗

⊢?∞ Π,E (c)
contr,?

The instance of! is justified becauseb ≤ ∞ andb ≤ b, and there are no?-formulas labelleda or
non-? formulas in the sequent. The case ofiszb is similar.
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• The case ofi = halt. Here, we know thatq1⊗⊗⊗¬h ∈ Π, so:

⊢¬q1,q1
init

⊢?∞ Π,E (c)\{¬q1} ,¬h
⊢?∞ Π,E (c),q1⊗⊗⊗¬h

⊗⊗⊗

⊢?∞ Π,E (c)
contr,?

Now, as long as there are any occurrences of?
a
ra or ?arb in E (c), we can apply one of the

decrementing rulesh⊗⊗⊗ !
a
ra⊗⊗⊗¬h or h⊗⊗⊗ !

b
rb⊗⊗⊗¬h ∈ Π. The general case looks something like

this, where∆ra = {¬ra, . . . ,¬ra} and∆rb = {¬rb, . . . ,¬rb}.

⊢h,¬h
init

⊢¬ra,ra
init

⊢?a¬ra,ra
?

⊢?a¬ra, !a ra
!

⊢?∞ Π,E (c)\{¬q1,?
a ∆ra,?

b ∆rb,?
a¬ra} ,¬h

⊢?∞ Π,E (c)\{¬q1,?
a∆ra,?

b∆rb,?
a¬ra} ,?a¬ra,¬h,h⊗⊗⊗ !

a
ra⊗⊗⊗¬h

⊗⊗⊗,⊗⊗⊗

⊢?∞ Π,E (c)\{¬q1,?
a ∆ra,?

b ∆rb,?
a¬ra} ,?a¬ra,¬h

contr,?

There is a symmetric case for contracting theh⊗⊗⊗ !
b
rb⊗⊗⊗¬h. Eventually, the right branch just

becomes⊢?∞ Π,¬h, at which point we have:

⊢h,¬h
init

⊢1
1

.... weak
⊢?∞ Π,1
⊢?∞ Π, !∞ 1

!

⊢?∞ Π,¬h,h⊗⊗⊗ !
∞
1

⊗⊗⊗

⊢?∞ Π,¬h
contr,?

4 Adequacy of the Encoding via Focusing

By the contrapositive of theorem 9, if the sequent⊢Ξ ?
∞ Π,E (c0) is not derivable, then the2RM does not

halt from c0. This gives half of the reduction. For the converse of theorem 9, we need to show how to
recover a halting trace by searching for proofs of aMSELΞ encoding of a halting problem. The best way
to do this is to build a focused proof which will have the derived inference rules in the above proof as
the only possiblesyntheticrules, in a sense made precise below. We will begin by sketching the focused
proof system forSEL that is sound and complete for the unfocused system of figure 1, and then show how
the synthetic rules for the encoding are in bijection for allinstructions (with a small correction needed
for halt).

Focusing is a general technique to restrict the non-determinism in a cut-free sequent proof system.
Though originally defined for classical linear logic in [1],it is readily extended to many other logics [3,
4, 8]. This section sketches the basic design of a focused version of the rules of figure 1, and omits most
of the meta-theoretic proofs of soundness and completeness, for which the general proof techniques are
by now well known [3, 6, 13]. To keep things simple, we will define a focused calculus by adding to the
unfocused system a new kind offocused sequent, ⊢Ω, [A], where the formulaA is under focus. Contexts
written withΩ, which we callneutral contexts, can contain only positive formulas, atoms, negated atoms,
and?-formulas. The rules of the focused proof system forSEL are depicted in figure 2.

Focused sequents are created—reading from conclusion upwards to premises—from unfocused se-
quents with neutral contexts by means of the rulesdecide, ldecide, or udecide. In a focused sequent,
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(~u∈UΣ)

⊢Σ ?
~u~A,¬a, [a]

[init]
(~u∈UΣ) ⊢Σ ?

~u~A,Ω1, [B] ⊢Σ ?
~u~A,Ω2, [C]

⊢Σ ?
~u~A,Ω1,Ω2, [B⊗⊗⊗C]

[⊗⊗⊗]
(~u∈UΣ)

⊢Σ ?
~u~A, [1]

[1]

⊢Ω, [A]
⊢Ω, [A⊕⊕⊕B]

[⊕⊕⊕1]
⊢Ω, [B]

⊢Ω, [A⊕⊕⊕B]
[⊕⊕⊕2] no rule for0

(u≤Σ~v)
(~w∈UΣ) ⊢Σ ?

~v~A,C

⊢Σ ?
~v~A,?~w~B, [!uC]

[!]
⊢Ω,N
⊢Ω, [N]

[blur]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rules

&

,⊥⊥⊥, &,⊤⊤⊤ shared with the unfocused system

⊢Ω, [P]
⊢Ω,P

decide

(u /∈UΣ) ⊢Σ Ω, [A]
⊢Σ Ω,?uA

ldecide

(u∈UΣ) ⊢Σ Ω,?u A, [A]
⊢Σ Ω,?uA

udecide

Figure 2: Inference rules for a focused sequent calculus formulation ofSEL.

only the formula under focus can be principal, and the focus persists on the immediate subformulas of
this formula in the premises, with the exception of the rule[!]. In the base case, for[init], the focused
atom must find its negation in the context, while all formulasin the context must be?-formulas with un-
bounded labels. When the focused formula is negative, the focus is released with the[blur] rule, at which
point any of the unfocused rules{

&

,⊥⊥⊥,&,⊤⊤⊤} of figure 1 can be used to decompose the formula and its
descendants further. Eventually, when there are no more negative descendants—i.e., the whole context
has the formΩ—a new focused phase is launched again and the cycle repeats.Note that the structural
rulescontr andweak of the unfocused calculus are removed in the focused system.Instead, weakening
is folded into[init], [!], and[1], and contraction is folded into[⊗⊗⊗] andudecide. The rulescontr andweak
remain admissible for either sequent form in the focused calculus.

Theorem 10. TheSEL sequent⊢Γ is provable in the unfocused system of figure 1 iff it is provable in the
focused system of figure 2.

Sketch.Straightforward adaptation of existing proofs of the soundness and completeness of focusing,
such as [3, 6, 13]. An instance forSEL can be found in [8, chapter 5].

Theorem 11. The2RM halts from c0 if ⊢Ξ ?
∞ Π,E (c0) is derivable.

Proof. We will show instead that the2RM halts fromc0 if the sequent⊢Ξ ?
∞ Π,E (c0) is derivable in the

focused calculus, and we will moreover extract the halting trace from such a focused proof. The required
result will then follow immediately from theorem 10, since any provableSELsequent has a focused proof.

Let a focused proof of⊢Ξ ?
∞ Π,E (c) (for c = 〈q,v〉) be given. We proceed by induction on the

lowermost instance ofudecide in this proof. Note that theMSELΞ context?∞ Π,E (c) is neutral; moreover,
all the elements ofE (c) are either negated atoms or?-prefixed negated atoms with bounded labels. So,
the only rules of the focusing system that apply to this sequent areldecide or udecide. However, if we
useldecide, then the premise becomes unprovable, as there is no way to remove an occurrence of¬ra
or¬rb from a context that also contains¬q. Thus, the only possible rule will be an instance ofudecide,
with the focused formula in the premise being one of theΠ. First, consider the case where the focused
formula does not containh, i.e., it corresponds to one of the instructions inI \{halt}. In each of these
cases, the focused phase that immediately follows is deterministic. As a characteristic case, suppose the
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focused formula isq⊗⊗⊗ !
b¬ r; then we have:

⊢¬q,q
init

⊢?∞ Π,E (c)\{¬q} ,¬ r
⊢?∞ Π,E (c)\{¬q} , [!b¬ r]

[!]

⊢?∞ Π,E (c), [q⊗⊗⊗ !
b¬ r]

[⊗⊗⊗]

⊢?∞ Π,E (c)
udecide

The right premise is now itself neutral and an encoding of a different configuration. We can appeal to the
inductive hypothesis to find a halting trace for it, to which we can prepend the instructionisza to get the
halting trace fromc. A similar argument can be used for the other instructions inI \{halt}.

This leaves just the formulas involvingh for the lowermostudecide. We cannot select any formula
but q⊗⊗⊗¬h from Π, for the derivation would immediately fail becauseh /∈ Q and there is no¬h in E (c)
to use with[init]. So, as the formula selected isq⊗⊗⊗¬h, we have:

⊢¬q, [q]
[init]

⊢?∞ Π,E (c)\{¬q} ,¬h
⊢?∞ Π,E (c)\{¬q} , [¬h]

[blur]

⊢?∞ Π,E (c), [q⊗⊗⊗¬h]
⊗⊗⊗

⊢?∞ Π,E (c)
udecide

The context of the right premise is now neutral, so the only rule that applies to it isudecide. A simple
nested induction will show that sequents of this form⊢?∞ Π,E (c) \ {¬q} ,¬h are always derivable in
the focused calculus. Therefore, the trace that corresponds to the configurationc is just the singleton
halt.

Corollary 12. The derivability ofMSELΞ sequents is recursively unsolvable.

Proof. Directly from theorems 4, 9, and 11.

5 Conclusion and Perspectives

We have given a fairly obvious encoding of a2RM in a suitable instance ofMSEL containing a three
element subexponential signature. The encoding of the2RM halting problem is very similar to that of [5]
for MAELL ; the main difference is in the encoding of theisz transitions where we can directly check
for emptiness of the relevant zone instead of making an additive copy of the world and checking this
property in the copy. Additives are therefore not necessaryfor undecidability.

Yet, this conclusion is not entirely satisfactory. IfMSELΞ can simulate Turing machines, then it can
obviously simulate a theorem prover that implements a complete search procedure forMAELL . Thus, in
an indirect fashion, this paper establishes that additive behaviour can be encoded using subexponentials
and multiplicatives alone. It would be interesting to buildthis encoding of additives more directly as an
embedding ofMAELL —or even justMALL —in MSEL.

This work leaves open the questions of decidability of an arbitrary MSEL with a two-element signature
or a one-element signature; the latter is equivalent to the decidability ofMELL itself. We also conjecture
that the decision problem for an arbitraryMSEL with no unbounded subexponentials is PSPACE-hard,
because it is very likely possible to polynomially and soundly encode aMALL sequent in such anMSEL.

Finally, this undecidability result should be taken as a word of caution for the increasingly popular
uses ofSEL as a logical framework for the encodings of other systems, such as [11, 12]. If one is to
avoid encoding a decidable problem in terms of an undecidable one, subexponentials must be used very
carefully.
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