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Linear and substructural types are powerful tools, but adding them to standard functional program-
ming languages often means introducing extra annotations and typing machinery. We propose a
lightweight substructural type system design that recasts the structural rules of weakening and con-
traction as type classes; we demonstrate this design in a prototype language, Clamp.

Clamp supports polymorphic substructural types as well as an expressive system of mutable
references. At the same time, it adds little additional overhead to a standard Damas–Hindley–Milner
type system enriched with type classes. We have established type safety for the core model and
implemented a type checker with type inference in Haskell.

1 Introduction

Type classes [12, 19] provide a way to constrain types by the operations they support. If the type class
predicate Dupα indicates when assumptions of type α are subject to contraction (duplication), and
Dropα indicates whether they are subject to weakening (dropping), then linear, relevant, affine, and
unlimited typing disciplines are all enforced by some subset of these classes. Linear types, then, are
types that satisfy neither Dup nor Drop. This idea, suggested in one author’s dissertation [16], forms the
basis of our prototype substructural programming language Clamp.

Clamp programs are written in a Haskell-like external language in which weakening and contraction
are implicit. This is easier for programmers to work with, but to specify the type system and semantics
the external language is elaborated into an internal language that is linear (i.e. variables are used exactly
once.) The internal language provides explicit dup and drop operations, which impose the corresponding
type class constraints on their arguments. Thus, in the internal language one might think of dup and drop
as functions with these qualified types:

dup : ∀α.Dupα ⇒ α → α×α

drop : ∀αβ .Dropα ⇒ α → β → β

In the internal language all nonlinear usage is mediated by the dup and drop operations. For example,
the internal language term λx.x+ x is ill formed because it uses variable x twice, but the term

λx. let (x1,x2) = dup x in x1 + x2

is well typed. Because elaboration into the internal language ensures that the resulting program is linear,
it can then be checked using nearly-standard Damas–Hindley–Milner type reconstruction [8] with type
classes [12, 19]; improper duplication and dropping is indicated by unsatisfiable type class constraints.

http://dx.doi.org/10.4204/EPTCS.176.4
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fst :: Drop b => (a , b ) -U> a
fst = \(x , y ) -U> x

constU :: (Dup a , Drop a , Drop b ) => a -U> b -U> a
constU = \x -U> \y -U> x

constL :: Drop b => a -U> b -L> a
constL = \x -U> \y -L> x

Figure 1: Prelude functions with inferred signatures

Contributions. We believe that Clamp offers substructural types with less fuss than many prior ap-
proaches to programmer-facing substructural type systems. Throughout the design, we leverage standard
type class machinery to deal with most of the constraints imposed by substructural types. Implementing
type inference for Clamp (§3) is straightforward and it is also easy to extend the system with custom
resource aware structures (§2.4). The specific contributions in this paper include:

• a type system design with polymorphic substructural types and a type safety theorem (§2);

• a flexible system for managing weak and strong references (§2.4);

• a type checker with type inference derived from a type checker for Haskell (§3); and

• a dup-and-drop–insertion algorithm that is in some sense optimal (§3.1).

1.1 Clamp Basics

In this section, we introduce the Clamp external language, in which dup and drop operations are implicit.
The concrete syntax is borrowed from Haskell, but one prominent difference in Clamp is that each
function type and term must be annotated with one of four substructural qualifiers: U for unlimited, R for
relevant, A for affine, or L for linear.

Three examples of Clamp functions, translated from the Haskell standard prelude, appear in figure 1.
Their types need not be written explicitly, and are inferred by Clamp’s type checker.

Consider the fst function, which projects the first component of a pair. Because we would like be
able to use library functions any number of times or not at all, we annotate the arrow in the lambda ex-
pression with qualifier U. This annotation determines the function type’s structural properties—meaning,
in this case, that fst satisfies both Dup and Drop. (Note that this is a property of the function itself, not
of how it treats its argument.) Because fst does not use the second component of the pair, this induces
the Drop b constraint on type variable b . In particular, elaboration into the internal language inserts
a drop operation for y to make the term linear: \(x , y ) -U> drop y x . The presence of drop ,
which disposes of its first argument and returns its second, causes the Drop type class constraint to be
inferred.

Function constU imposes a similar constraint on its second argument, but it also requires the type of
its first argument be unlimited. This is because constU returns an unlimited closure containing the first
argument in its environment. The argument is effectively duplicated or discarded along with the closure,
so it inherits the same structural restrictions. Alternatively, we can lift this restriction with constL ,
which returns a linear closure and thus allows the first argument to be linear.
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e ::= x | v | e1 e2 | e [τi] | (e1,e2) | letp (x1,x2) = e in e2 | Inl e | Inr e (terms)
| case e of Inl x1→ e1; Inr x2→ e2 | newrq e | releaserq e | swaprq e1 with e2

| dup e1 as x1,x2 in e2 | drop e1 in e2

v ::= λ aqx:τ.e | Λαi [P] .v | (v1,v2) | Inl v | Inr v | ` | () (values)

τ ::= α | τ1
aq−→ τ2 | τ1× τ2 | τ1 + τ2 | Unit | Ref rq

τ | ∀αi.P⇒ τ (types)

P ::= (K1τ1, . . . ,Knτn) (constraints)
rq ::= s (strong) | w (weak) (reference qualifiers)
aq ::= U (unlimited) | R (relevant) | A (affine) | L (linear) (arrow qualifiers)
K ::= Dup | Drop (predicate constructors)

Figure 2: Syntax of λcl

2 Formalizing λcl

To validate the soundness of our approach, we have developed λcl, a core model of the Clamp internal
language. λcl is based on System F [11] with a few modifications: variable bindings are treated linearly,
arrows are annotated with qualifiers, and type class constraints [12, 19] are added under universal quan-
tifiers. As an example of how one can define custom usage-aware datatypes in Clamp, λcl also includes
a variety of operations for working with mutable references.

The λcl type system shares many similarities with Tov’s core Alms calculus: aλms [17]. Unlike the
external Clamp language prototype (§3), λcl provides first-class polymorphism and does not support type
inference.

2.1 Syntax of λcl

The syntax of λcl appears in figure 2. Most of the language is standard, but notably arrow types and
λ terms in Clamp are annotated with an arrow qualifier (aq). These annotations determine which struc-
tural operations a function supports, as well as the corresponding constraints imposed on the types in
its closure environment. Unlike some presentations of linear logic,

aq−→ here constrains usage of the
function itself, not usage of the function’s argument. Thus one can call dup on a U−→ arrow but not on an
L−→ arrow. Type abstractions specify the type class constraints that they abstract over; their bodies are

restricted to values, so unlike λ terms, type abstractions do not need an arrow qualifier.
The newrq e and releaserq e forms introduce and eliminate mutable references. Each comes in two

flavors depending on its reference qualifier (rq), which records whether the reference supports strong
or merely weak updates. Weak (conventional) updates must preserve a reference cell’s type, but strong
updates can modify both the value and type of a cell.

Form swaprq e1 with e2 provides linear access to a reference by exchanging its contents for a different
value. The release operator deallocates a cell and returns its contents if it is not aliased. Store locations
(`) appear at run time but are not written by the programmer.

To incorporate type classes, universal types may include constraints on their type variables. A con-
straint P denotes a set of atomic predicate constraints Kτ , each of which is a predicate constructor K
applied to a type. For the sake of our current analysis, K is either Dup or Drop.
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E ::= [·] | E e | vE | E [τi] | (E,e) | (v,E) | Inl E | Inr E (evaluation contexts)
| case E of Inl x1→ e1; Inr x2→ e2 | letp (x1,x2) = E in e | newrq E | releaserq E
| swaprq E with e | swaprq v with E | dup E as x1,x2 in e | drop E in e

µ ::= ` 7→i v,µ | · (stores)

Figure 3: Runtime structures

(µ ; (λx:τ.e)v) 7−→ (µ ; {v/x}e)

(µ ; (Λαi [P] .v) [τi]) 7−→ (µ ; {τi/αi}v)
(µ ; newrq v) 7−→ (µ, ` 7→1 v ; `) ` fresh

(µ, ` 7→i v1 ; swaprq ` with v2) 7−→ (µ, ` 7→i v2 ; (`,v1))

(µ, ` 7→1 v ; releasew `) 7−→ (µ ; Inl v)

(µ, ` 7→i v ; releasew `) 7−→ (µ, ` 7→i−1 v ; Inr ()) when i > 1

(µ, ` 7→1 v ; releases `) 7−→ (µ ; v)

(µ ; dup v as x1,x2 in e) 7−→ (incr(locs(v) ; µ) ; {v/x2}{v/x1}e)

(µ ; drop v in e) 7−→ (decr(locs(v) ; µ) ; e)

(µ1 ; E [e1]) 7−→ (µ2 ; E [e2]) when (µ1 ; e1) 7−→ (µ2 ; e2)

Figure 4: Small-step relation

2.2 Semantics

The execution of λcl terms can be defined by a call-by-value small-step semantics with evaluation con-
texts and a global, reference-counted store µ . The run-time structures needed to define this small step
relation are given in figure 3. Reference counts are used to track when reference cells can be safely
deallocated in the presence of aliasing. Exchange properties for the store are implicitly assumed. A
selection of the small step relation rules are given in figure 4, focusing on the rules for reference cells
and substructural operations. Most of the complexity here comes from the reference counts.

The swap operator exchanges the contents of a cell in the heap with a different value. The release
operator deallocates a cell and returns its contents if it is not aliased. However, if a cell has been aliased
it decrements the reference count and returns a unit. The dup and drop operators manipulate reference
counts as expected.

A few metafunctions given in figure 5 are necessary to maintain reference counts, similar to those
in [7]. The functions incr(`; µ) and decr(`; µ) allow us to increment and decrement reference counts in
the heap. Incrementing a location is straightforward, but a decrement must be defined recursively since
deallocating the last pointer to a reference cell involves decrementing the reference counts of all cells the
deallocated contents originally pointed to.

The locs meta-function is a convenient way of extracting the multiset of locations that a value uses.
Note that the + (or ]) operator is a multiset operator which additively combines occurrences, and is used
again in section 3.1. The locs function is also designed to operate on well-typed terms, so it only looks
at one branch of a case expression, assuming that the other branch must share the same location typing
context.
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incr(`;` 7→ j v,µ) = ` 7→ j+1 v,µ

decr(`;` 7→ j v,µ) =

{
decr(locs(v) ; µ) j = 1
` 7→ j−1 v,µ j > 1

incr({`1, . . . , `k}; µ) = incr(`1; · · · incr(`k; µ))

decr({`1, . . . , `k}; µ) = decr(`1; · · ·decr(`k; µ))

locs(`) = {`}
locs(λ aqx:τ.e) = locs(e)

locs(e1 e2) = locs(e1)+ locs(e2)

locs

case e of
Inl x1→ e1;
Inr x2→ e2

= locs(e)+ locs(e1)

· · ·

Figure 5: Reference count management

VAR

P;x:τ; · ` x : τ

TABS
P1,P2;Γ;Σ ` v : τ domP2 ⊆ αi

P1;Γ;Σ ` Λαi [P2] .v : ∀αi.P2⇒ τ

TAPP

P1;Γ;Σ ` e : ∀αi.P2⇒ τ P1  {τi/αi}P2

P1;Γ;Σ ` e [τi] : {τi/αi}τ

ABS
P;Γ,x:τ1;Σ ` e : τ2 P  Constrainaq(Γ;Σ)

P;Γ;Σ ` λ
aqx : τ1.e : τ1

aq−→ τ2

APP

P;Γ1;Σ1 ` e1 : τ2
aq−→ τ P;Γ2;Σ2 ` e2 : τ2

P;Γ1 +Γ2;Σ1 +Σ2 ` e1 e2 : τ

CASE
P;Γ1;Σ1 ` e1 : τ11 + τ12 P;Γ2,x21:τ11;Σ2 ` e21 : τ2 P;Γ2,x22:τ12;Σ2 ` e22 : τ2

P;Γ1 +Γ2;Σ1 +Σ2 ` case e1 of Inl x21→ e21; Inr x22→ e22 : τ2

DUP
P;Γ1;Σ1 ` e1 : τ1

P;Γ2,x1:τ1,x2:τ1;Σ2 ` e2 : τ2 P  Dupτ1

P;Γ1 +Γ2;Σ1 +Σ2 ` dup e1 as x1,x2 in e2 : τ2

DROP
P;Γ1;Σ1 ` e1 : τ1

P;Γ2;Σ2 ` e2 : τ2 P  Dropτ1

P;Γ1 +Γ2;Σ1 +Σ2 ` drop e1 in e2 : τ2

Figure 6: Selected λcl term typing rules

2.3 Term Typing

Variable contexts Γ ::= x1:τ1, . . . ,xn:τn associate variables with types, where each variable appears at
most once. Location contexts (store typings) Σ ::= `s 7→s τs, . . . , `w 7→kw

w τw, . . . associate locations (`)
with their reference types Ref τ , and distinguish between strong and weak locations; weak locations
carry a reference count k to track aliasing.

Linearity is enforced in λcl via standard context-splitting. Because Γ and Σ are linear environments,
we need operations to join them. The join operation + is defined only on pairs of compatible environ-
ments, written Γ1 ^ Γ2 and Σ1 ^ Σ2. Two variable contexts are compatible so long as they are disjoint.
Two location contexts are compatible if the strong locations are disjoint and the weak locations in their
intersection agree on their types. Joining variable contexts appends the two sets of bindings together,
while joining location contexts also involves adding the reference counts of any shared weak locations.
Contexts are identified up to permutation.

The term typing judgment (P;Γ;Σ ` e : τ) assigns term e type τ under constraint, variable, and
location contexts P, Γ, and Σ. Selected typing rules for the core language appear in figure 6, and the
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NEW
P;Γ;Σ ` e : τ

P;Γ;Σ ` newrq e : Ref rq
τ

LOCW

P; ·;` 7→1
w τ ` ` : Refw τ

LOCS

P; ·;` 7→s τ ` ` : Ref s τ

RELEASEW
P;Γ;Σ ` e : Ref rq

τ

P;Γ;Σ ` releasew e : Unit+ τ

RELEASES
P;Γ;Σ ` e : Ref s τ

P;Γ;Σ ` releases e : τ

SWAPW
P;Γ1;Σ1 ` e1 : Ref rq

τ P;Γ2;Σ2 ` e2 : τ

P;Γ1 +Γ2;Σ1 +Σ2 ` swapw e1 with e2 : Ref rq
τ× τ

SWAPS
P;Γ1;Σ1 ` e1 : Ref s τ1 P;Γ2;Σ2 ` e2 : τ2

P;Γ1 +Γ2;Σ1 +Σ2 ` swaps e1 with e2 : Ref s τ2× τ1

Figure 7: λcl term reference cell typing rules

typing rules for reference cells are given in figure 7. Consistency conditions Σ1 ^ Σ2 and Γ1 ^ Γ2 are
assumed whenever contexts are combined. The core language typing rules split and share the linear
contexts as needed, but are otherwise a natural extension of System F to support type class constraints.

We impose a syntactic restriction, similar to Haskell 98’s context reduction restrictions [15], on the
form of constraints in type schemes introduced by the TABS rule: type abstractions may only constrain
the type variables that they bind, and not compound or unrelated types. This simplifies induction over
typing derivations for TABS since it means that no constraints on external type variables can be intro-
duced by a type abstraction. Additionally, in rule ABS, the variable and location contexts are constrained
by the function’s arrow qualifier, to ensure that values captured by the closure support any structural
operations that might be applied to the closure itself; this constraint must be entailed () by the con-
straint context. Here Constrainaq(Γ;Σ) is shorthand for the appropriate set of Dup and Drop constraints
applied to every type mapped in Γ and Σ, so that for instance ConstrainL imposes no constraints, while
ConstrainR imposes only Dup constraints.

The dup and drop forms constrain the types of their parameters in the expected way, by requiring
their types to be members of the Dup or Drop type classes, respectively (again entailed by the constraint
context).

Since λcl supports both strong and weak references with different substructural properties, there are
a variety of typing rules governing their usage. The swap operation needs to return both an updated
reference and the old contents, so it packages those in a pair. Weak and strong forms of reference cell
operations are provided, and it is safe to apply the weak operations to both strong and weak references.
The releaserq e forms are used to deallocate a reference cell and possibly retrieve its contents. Notably, in
the case of a weak reference, since the contents could be linear, we preserve its linearity while allowing
for aliasing by returning the contents of the reference only when the last alias to the cell is released, and
unit otherwise.
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(Dupα1,Dupα2)⇒ Dup(α1×α2) (Dropα1,Dropα2)⇒ Drop(α1×α2)

(Dupα1,Dupα2)⇒ Dup(α1 +α2) (Dropα1,Dropα2)⇒ Drop(α1 +α2)

()⇒ Dup(α1
U−→ α2) ()⇒ Drop(α1

U−→ α2) ()⇒ DupUnit ()⇒ DropUnit

()⇒ Dup(α1
R−→ α2) ()⇒ Drop(α1

A−→ α2) ()⇒ Dup(Refw α) (Dropα)⇒ Drop(Ref rq
α)

Figure 8: Dup and Drop instances

2.4 Type Class Instances

Throughout the type system, type class constraints are propagated via entailment, P1 P2, which specifies
when one set of type class predicates (P2) is implied by another (P1) in the context of the fixed background
instance environment Γis. For example, entailment allows our type system to derive that Unit×Unit is
duplicable because Unit is. Rules for entailment are given by Jones [12] and adapt naturally to this
setting. The substructural essence of the type class system in Clamp is the set of base Dup and Drop
instances Γis, which appears in figure 8.

Since pairs and sums contain values that might be copied or ignored along with the pair or sum value,
their instance rules require instances for their components. Functions impose constraints on their closure
environments when they are assigned a qualifier during term typing, so the instance rules for arrows
depend only on the arrow qualifier.

Dealing correctly with references is more subtle, as seen in λ refURAL [2]. In Clamp, some references
support strong updates, which can change not only the value but the type of a mutable reference. However
it is unsafe to alias a reference cell whose type might change.

In λ refURAL, the restrictions on reference types are given in a sizable table, but Dup and Drop in-
stances make it easy to express these restrictions in Clamp. Clamp classifies references by the kind of
updates they support: strong or weak. This is specified by the rq qualifier in the Ref rq type.

Qualitatively, the constraints we impose are that:

• Strong references may not be duplicated.

• Only references with droppable contents may be dropped.

• Only strong references support direct deallocation.

• Weak references can be deallocated, but only return their contents when unaliased.

The above four rules capture the same restrictions as λ refURAL references. They also increase the
expressiveness of the system by explicitly distinguishing weak and strong references and allowing for
the deallocation of weak references. They are expressed in λcl with two type class instances and the
typing judgments RELEASEW and RELEASES.

As an example of the kinds of structures we can build using these rules, consider the type

Refw (fhandle)

for a linear file handle fhandle. This weak reference can be aliased to provide shared access to the
file handle, but cannot be dropped based on the type class instances, since fhandle cannot be dropped.
Anyone that uses this reference must release the reference and close the file if necessary.
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2.5 Type Safety

Here we sketch part of the type safety proof; more details may be found in Gan’s thesis [9].
The bulk of the work goes into proving preservation, and the key lemma in proving preservation

relates constraints to bindings. Intuitively, this lemma says that structural constraints on a value’s type
respect the structural constraints of everything the value contains or points to, via the variable and loca-
tion contexts. Syntactic forms like DupΓ are used to denote the set of Dup constraints on all types in Γ,
and similarly DupΣ applies Dup to all of the Ref rq

τ types mapped by Σ. Note that the lemma does not
hold for arbitrary expressions.

Lemma 1 (Constraints capture bindings). Suppose that P;Γ;Σ` v : τ . If PDupτ then P  (DupΣ,DupΓ);
if P  Dropτ then P  (DropΣ,DropΓ).

Proof. By induction on the typing derivation for v.

Lemma 1 is essential to proving the substitution lemma (Lemma 2).

Lemma 2 (Substitution). If

• P;Γ,x:τx;Σ1 ` e : τ ,

• P; ·;Σ2 ` v : τx , and

• Σ1 ^ Σ2,

then P;Γ;Σ1 +Σ2 ` {v/x}e : τ

Proof. By induction on the typing derivation for e, making use of lemma 1 in the λ case.

In proving Preservation, it is also useful to separate out a Replacement Lemma which specifies ex-
actly how substitution interacts with evaluation contexts.

Lemma 3 (Replacement). If P;Γ;Σ ` E [M] : τ then ∃τ ′,Σ1,Σ2,Γ1,Γ2 such that

• Σ = Σ1 +Σ2 and Γ = Γ1 +Γ2 and P;Γ1;Σ1 `M : τ ′ and furthermore

• If P;Γ
′
1;Σ

′
1 ` M′ : τ ′ with Γ

′
1 ^ Γ2 and Σ

′
1 ^ Σ2, then P;Γ

′
1 + Γ2;Σ

′
1 + Σ2 ` E [M′] : τ for any

M′,Γ
′
1,Σ

′
1

Proof. By induction on E.

Another key lemma for proving preservation relates the locs function used to maintain dynamic
reference counts with the store context that a value requires. To state this lemma, we overload the locs
function to also return the multiset of occurrences (multiple for reference counted weak location stores)
of locations in the domain of a store context.

Lemma 4 (Store Contexts map Free Locations). If P;Γ;Σ ` e : τ then locs(e) = locs(Σ).

Finally, to prove preservation and type soundness we need to introduce store and configuration typ-
ings which are given in Figure 9. The remainder of the type soundness proof is then mostly standard.

Lemma 5 (Preservation). If c̀ (µ1 ; e1) : τ and (µ1 ; e1) 7−→ (µ2 ; e2) then c̀ (µ2 ; e2) : τ

Theorem 1 (Type soundness). If c̀ (· ; e) : τ then either it diverges or it reduces to a value configuration
(µ ; v) such that c̀ (µ ; v) : τ .
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ST-NIL

Σ s̀ · : ·

ST-CONSW
Σ1 s̀ µ : Σ2 ·; ·;Σv ` v : τ

Σ1 +Σv s̀ µ, ` 7→i v : Σ2, ` 7→i
w τ

ST-CONSS
Σ1 s̀ µ : Σ2 ·; ·;Σv ` v : τ

Σ1 +Σv s̀ µ, ` 7→1 v : Σ2, ` 7→s τ

CONF
Σ1 s̀ µ : Σ1 +Σ2 ·; ·;Σ2 ` e : τ

c̀ (µ ; e) : τ

Figure 9: Store and configuration typing

3 Implementing the Clamp Type Checker

We have implemented a type checker that infers Damas–Hindley–Milner style type schemes for Clamp
terms. The type checker is an extension of Jones’s “Typing Haskell in Haskell” type checker [13]. Its
source code may be found at https://github.com/edgan8/clampcheck.

The process of modifying a Haskell type checker to support Clamp was straightforward and illustrates
one of the strengths of Clamp’s design: It requires only small and orthogonal additions to a language like
Haskell. Besides adding qualifiers to arrow types, we made three additions to a Haskell type checker:

1. an elaboration pass that inserts dups and drops,

2. Dup and Drop type classes and instances, and

3. substructural qualifiers and constraints on arrow types.

3.1 Inferring dups and drops.

The elaboration pass is the bridge between a concise user-facing language and leveraging conventional,
nonlinear type checking techniques. The pass takes as input a term with arbitrary variable usages; it
inserts the appropriate dup and drop operations and renames the duplicated copies so that in the resulting
term all variable usage is strictly linear. Structural properties are then enforced by the constraints imposed
by dup and drop.

Since different elaborations can lead to different static and dynamic semantics, we have proven that
our algorithm generates an optimal elaboration in two senses:

• It minimizes the program’s live variables.

• It imposes minimal type class constraints.

In what follows we define a core linear language to formalize and estabilsh these two points.

An Abstract Linear Language To focus on the essential problems, we can work with an abstraction
of the linear λ calculus, λ̂lin. By modeling only usage and binding, λ̂lin allows us to focus on inserting
dup and drop operations independently of the particular types and term forms of a language. Its syntax
is given in figure 10. Extending the results to cover other term forms is straightforward.

The product expression e1⊗e2 abstracts multiplicative forms such as pairs and function applications—
that is, pairs of expressions where both will be evaluated. The sum expression e1 & e2 abstracts additive
forms such as linear logic’s additive conjuction, and the relationship between the branches of a case—
that is, pairs of expressions where exactly one will be evaluated.

https://github.com/edgan8/clampcheck
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e ::= x | λx.e | e1⊗ e2 | e1 & e2 (unannotated terms)
ae ::= x | λx.ae | ae1⊗ae2 | ae1 & ae2 | dup Γ in ae | drop Γ in ae (annotated terms)

Figure 10: λ̂lin syntax

L-VAR

{x} ` x

L-ABS
Γ+{x} ` ae x /∈ Γ

Γ ` λx.ae

L-PAIR
Γ1 ` ae1 Γ2 ` ae2

Γ1 +Γ2 ` ae1⊗ae2

L-CHOICE
Γ ` ae1 Γ ` ae2

Γ ` ae1 & ae2

L-DUP
Γ1 +Γ2 +Γ2 ` ae

Γ1 +Γ2 ` dup Γ2 in ae

L-DROP
Γ1 ` ae

Γ1 +Γ2 ` drop Γ2 in ae

Figure 11: Annotated expression well-formedness

Expressions, e, are unannotated and don’t explicitly satisfy linear usage constraints. Annotated ex-
pression, ae, use dup and drop operations to explicitly specify nonlinear usage of variables. The dup and
drop operations work over contexts, Γ, which are multisets of variables

The contexts Γ in λ̂lin manage scope and binding by restricting contraction and weakening to explicit
dup and drop annotations, but do not track the types of variables. In order to avoid the messy but
straightforward process of generating names and renaming variables when inserting a dup, we think
of contexts as multisets (e.g., {x,x,y,z, . . .}) of in-scope variables, or equivalently as functions from
variables to natural numbers. Thus Γ(x) will be used to denote the number of times x appears in Γ.

We use these multiset contexts to define a notion of well-formedness in figure 11, which describes
when an annotated term ae in λ̂lin properly accounts for all nonlinear usage of its variables through
explicit dup and drop operations.

Inference Algorithm An inference algorithm for annotating terms is given in figure 12. The strategy
is to recursively transform a term bottom-up based on the free variables fv in each recursively trans-
formed sub-term. Note that the fv function always returns a set and that ∩ and \ denote the standard set
intersection and difference operators.

Dup operations are inserted where the free variables of two sub-terms of a multiplicative form (e.g.,
application, but not branching) are discovered to intersect; drops are added under binders when the bound
variable is not free in its scope, and when a variable used in one branch (say, of an if-then-else) is not
free in the other.

We outline the key steps in our optimality argument here; additional details may be found in [9].
Lemma 6 states that the algorithm is sound.

Lemma 6 (Soundness). fv(e) ` infer(e)

If ae is an annotation of e, then fv(e)v fv(ae), so lemma 7 shows that our algorithm in fact generates
an annotation which requires a minimal context Γ for well-formedness.

Lemma 7 (Minimal contexts). If Γ ` ae then fv(ae)v Γ.

With some technical lemmas, we can then prove that the algorithm introduces no unnecessary dups
or drops on variables. In order to compare different potential annotations of the same term, we de-
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infer(x) = x

infer(λx.e) =

{
λx. infer(e) if x ∈ fv(e);
λx.drop x in infer(e) otherwise

infer(e1⊗ e2) = dup fv(e1)∩ fv(e2) in infer(e1)⊗ infer(e2)

infer(e1 & e2) = (drop fv(e2)\ fv(e1) in infer(e1))& (drop fv(e1)\ fv(e2) in infer(e2))

Figure 12: Inference algorithm

fine a function erase : ae→ e, which removes dup and drop annotations from an annotated term in the
straightforward way, yielding an unannotated term. It should be evident that erase(infer(e)) = e.
Lemma 8 (Forced drop). If Γ ` ae, Γ(x) ≥ 1, and x /∈ fv(erase(ae)), then ae contains a subterm
drop Γ′ in ae′ such that x ∈ Γ′.
Lemma 9 (Forced dup). If Γ ` ae, Γ(x) ≤ 1, and there exists a subderivation Γs ` aes of Γ ` ae with
Γs (x)≥ 2, then ae contains a subterm dup Γ′ in ae′ such that x ∈ Γ′

Lemma 10 (No Unnecessary Drops). Let ae = infer(e). If ae contains a subterm drop Γd in aes with
x∈ Γd then any other well-formed ae′ with erase(ae′) = e contains a subterm drop Γ

′
d in ae

′
s with x∈ Γ

′
d .

Lemma 11 (No Unnecessary Dups). Let ae = infer(e). If ae contains a subterm dup Γd in aes with
x∈ Γd then any other ae′ with erase(ae′) = e and Γ

′ ` ae′ for Γ
′
(x)≤ 1 contains a subterm dup Γ

′
d in ae

′
s

with x ∈ Γ
′
d .

3.2 Constraint processing.

After the dup and drop insertion pass, type inference can proceed without needing to count variable
usages or split contexts, since the insertion pass has made every dup and drop operation explicit. With
the exception of the extra constraints imposed on closure environments, inferring types for the Clamp
internal language is like inferring types for Haskell. For the constraint solver, the type classes Dup and
Drop and their instances are no different than any other type class.

Type checking in this system is thus separated into two self-contained steps: first, usage analysis
as performed by elaboration, and second, checking substructural constraints in the same manner as any
other type class system. A similar division was used by de Vries et al. to integrate a uniqueness typing
system into Damas–Hindley–Milner [18].

In Table 1 we present the sizes of the components of our Clamp implementation. It compares favor-
ably to the implementation of languages such as Alms [17], whose type inference engine is 15,000 lines
of Haskell. The dup/drop insertion sits on top of the stack and is the main addition we have had to make
to a Haskell type checker design. Besides that, we have included the base set of type class instances and
altered arrow kinds throughout.

4 Related Work

Of the existing work in linear type systems, we will focus here on those which develop general purpose
polymorphic linear types. Research on the mathematical expressiveness of linearity [3] or more tailored
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Component Lines of code

Dup/drop insertion 160
Type class instances 60

Syntax and Types 703
Parser/Lexer 319
Unification Engine 373

Table 1: Type checker code breakdown

use cases [10] for instance often do not aim at broad usability and polymorphism.
The first linear type systems derive directly from intuitionistic linear logic, and use the exponen-

tial “!” to indicate types that support structural operations [1, 6]. Some later type systems, in order to
support parametric polymorphism over linearity, replace “!” with types composed of a qualifier and a
pretype [2, 20], so that all types in these languages have a form like qτ . Similarly, the Clean programming
language makes use of qualifier variables and inequalities to capture a range of substructural polymor-
phism [5, 18]. Though Clean uses uniqueness rather than linear types, many of its design decisions can
be applied in a linear settings as well.

More recent languages such as Alms [17] and F◦ [14] eliminate the notational overhead of annotating
every type with substructural qualifiers by using distinct kinds to separate substructural types. Thus,
rather than working with types like Afile, a file type in Alms can be defined to have kind A. Like Clean,
Alms is highly polymorphic, but it makes use of compound qualifier expressions on function types, as
well as dependent kinds and sub-kinding.

Compared to type systems like those of Clean and Alms, we believe Clamp offers advantages in
simplicity and extensibility. Like Alms and F◦, Clamp avoids the burden in Clean of annotating every
type with a qualifier. Type classes themselves are a general and powerful feature; for a language that is
going to have type classes anyway, the Clamp approach allows adding the full spectrum of URAL types
with little additional complexity for programmers and type checkers. Programmers already familiar with
type classes will be well prepared to understand Clamp-style substructural types.

Further, type classes provide a clean formalism for constraining state-aware datatypes such as the
system of weak and strong mutable references found in Clamp (§2.4). Finally, we anticipate that user-
defined Dup and Drop instances, not yet supported by Clamp, will allow defining custom destructors and
copy constructors, which should enable a variety of resource management strategies.

However, compared to Alms and Clean, Clamp does not provide as much polymorphism because
each arrow is assigned a concrete qualifier. Consider, for instance, a curry function in Clamp. Unlike in
Alms or Clean, Clamp requires different versions for different desired structural properties. For instance,
two possible type schemes for a curry function are

(Dup a , Drop a ) => ((a , b ) -U> c ) -U> a -U> b -U> c

and

((a , b ) -L> c ) -U> a -L> b -L> c.

We believe that extending Clamp with qualifier variables and type class implications could increase its
expressiveness to the point where curry has a principal typing.
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5 Future Work

5.1 Custom dup and drop

In Clamp’s current design, the semantics of dup and drop are fixed. Allowing programmers instead to
define their own implementations of dup and drop on user-defined types would enable scenarios similar
to those possible in C++ via copy constructors and destructors. Programmers could then define data types
that automatically manage resources in ways that meet particular needs; but unlike in C++, we believe
this could be done without unsafe operations.

Programmers could define types and instances to manage their memory in whatever way is most
appropriate, for instance by choosing between deep-copy and shallow-copy dup operations (or perhaps
some hybrid approach), or between eager and lazy drop operations. For such a system to be practical, it
is important that the dup/drop-insertion algorithm be easy to understand, since the insertion of dups and
drops can affect the dynamic semantics of the language.

5.2 Polymorphic Arrows

In most cases, Clamp allows programmers to define functions that are inherently polymorphic over the
substructural properties of their arguments. In these cases, a function that uses one of its arguments
linearly can accept any type, whether it satisfies Dup or Drop, for that argument. However, this is not the
case for function types, which are annotated with fixed qualifiers determined at the function definition
point.

Alms is able to accommodate more polymorphic arrow types by introducing a subtyping relation on
qualified arrows [17], and it refines the types of arrows further by introducing usage qualifiers that depend
on the substructural properties of type variables. This allows one to write a function whose qualifier is
inferred from the closure environment and inherits any polymorphism present in that environment.

There are many options for increasing the polymorphic expressiveness of Clamp without resorting to
the complexities of subtyping. One could make qualifiers into first class types and allow quantification
over qualifiers in arrow types. This is implemented in an ad-hoc way in our current type checker.

The idea of expanding the language of qualifiers could also be profitable in Clamp. This often means
annotating arrow types with the types of their closure environments, and in a sense assigning them a
closure-converted type. The dup and drop instances for arrows could then use the closure environment
types to determine the arrow type’s substructural properties.

5.3 Implementation

The current implementation of the Clamp type checker reflects λcl, and could benefit from the addition of
some standard language features found in full Haskell. In particular, the addition of algebraic datatypes,
user-defined instance rules, and a module system would allow programmers to define libraries that expose
custom types with varying substructural properties.

It would also be interesting to implement a compiler for Clamp that takes advantage of substructural
properties for reference-counted memory management [7]. Eagerly reusing the storage occupied by
linear and affine values may offer particular performance advantages, and substructural analyses can
enable a variety of other optimizations as well [4, 21].
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6 Conclusion

Clamp introduces techniques that make it easier and more desirable to add substructural types to func-
tional programming languages. The external / internal language distinction gives us both a programmer
friendly syntax and a direct path to type inference. The Dup and Drop classes also support polymor-
phism over the URAL lattice and can represent state aware types such as strong and weak references.
Type classes are an expressive and well-established language feature, and Clamp shows that they can
serve as a base for substructural types.
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