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The original idea of proof nets can be formulated by means of interaction nets syntax. Additional
machinery as switching, jumps and graph connectivity is needed in order to ensure correspondence
between a proof structure and a correct proof in sequent calculus.

In this paper we give an interpretation of proof nets in the syntax of string diagrams. Even though
we lose standard proof equivalence, our construction allows to define a framework where soundness
and well-typeness of a diagram can be verified in linear time.

Introduction

Proof nets are a geometrical representation oflinear logicproofs introduced by J-Y.Girard [5]. The build-
ing blocks of proof nets are calledproof structuresthat have been generalized by Y. Lafont [11] in the
so-calledinteraction nets. To recognize if a proof structure is a proof net one needs to verify its sequen-
tializability property, that is, whether it corresponds to a linear logic proof derivation. Following Girard’s
original correction criterion, others methods have been introduced, notably by Danos-Regnier [4], that
ensures graph acyclicity by a notion ofswitchingson ⊗ cells, and by Guerrini [7], that reformulates
correction by means of graph contractability.

Proof structures allow to recover the semantic equivalenceof derivation under commutation and
permutation of some inference rules. Unfortunately this property makes ineffective the aforementioned
criteria in presence of the multiplicative unit⊥. In order to recover a sequentialization condition for the
multiplicative fragment with units, Girard has introducedthe notion ofjumps[6]. These are untyped
edges between two cells which express adependencyrelation of the respective rules in sequentialization.

In this work we reformulate the proof net idea of a 2-dimensional representation of proofs by re-
placing the underlying interaction nets syntax with that ofstring diagrams in order to achieve a new
sequentialization criterion. String diagrams [2] are a syntax for 2-arrows (or 2-cells) of a 2-category with
a rigid structure. Although the two syntaxes may graphically look similar, string diagrams’stringsdo
not just denote connections between cells but they represent morphisms. Since crossing strings is not
allowed without the introduction oftwisting operators, we introduce the notion oftwisting relationsin
order to equate diagrams by permitting cells to cross certain strings.

We study several diagram rewriting systems given bytwisting polygraphs, a particular class of poly-
graph [3] where string crossings are restrained by the introduction of some non-crossingcontrol strings
in the syntax.

As soon as one considers proof derivations as sequences ofn-ary operators applications over lists
of formulas, then control strings intuitively represent their correct parenthesization. In particular these
strings disallow non-sequentializable diagram compositions, lastly resulting, thanks to negative units’
fixed position, into a sound framework where sequentializability depends on diagram inputs and outputs
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pattern only. Moreover, this model gives a categorical semantics for linear logic proofs different from
the standard one (see [15]).

1 String diagrams

1.1 Monochrome String Diagrams

We now recall some basic notions in string diagram rewritingby considering themonochrome string
diagramssettings, where there are no labels on backgrounds or strings. For an introduction to string
diagrams, see J. Baez’s notes [2].

Given p and q natural numbers, a diagramφ : p ⇒ q with p inputsand q outputsis pictured as
follows:

p
︷︸︸︷

φ
︸︷︷︸

q

Diagrams may be composed in two different ways. Ifφ : p⇒ q andφ ′ : p′ ⇒ q′ are diagrams, we define:
• sequentialcomposition: ifq= p′, the diagramφ ′ ◦φ : p⇒ q′ corresponds to usual composition of

maps.

This composition is associative with unitidp : p ⇒ p for eachp ∈ N. In other words, we have
φ ◦ idp = φ = idq◦φ . Theidentity diagram idp is pictured as follows:

︸︷︷︸

p

• parallel composition: the diagramφ ∗φ ′ : p+ p′ ⇒ q+q′ is always defined. This composition is
associative with unitid0 : 0⇒ 0. In other words, we haveid0∗φ = φ = φ ∗ id0. This id0 is called
theempty diagram.

These two compositions are respectively represented as follows:

p+p′
︷ ︸︸ ︷

φ φ ′

︸ ︷︷ ︸

q+q′

p
︷︸︸︷

φ

φ ′

︸︷︷︸

q′

.

Our two compositions satisfy theinterchange rule: if φ : p⇒ q andφ ′ : p′ ⇒ q′, so(idq∗φ ′)◦ (φ ∗
idp′) = φ ∗φ ′ = (φ ∗ idq′)◦ (idp∗φ ′) that corresponds to the following picture:

φ
φ ′ = φ φ ′ =

φ ′

φ

Monochrome string diagrams can be interpreted as morphismsin a PRO, that is a strict monoidal
category whose objects are natural numbers and whose product on objects is addition. To be coherent
with the cellular notation we use in next sections, diagramsrepresent 2-arrows in the2−PRO obtained
by suspension of a regularPRO (see [8]).
Definition 1 (Signature). A signatureS is a finite set ofatomic diagrams(or gates type). Given a
signature, a diagramφ : p⇒ q is a morphism in thePRO S ∗ freely generated byS , i.e. by the two
compositions and identities. Agate is an occurrence of an atomic diagram, we noteg : α if g is an
occurrence ofα ∈ S .



Matteo Acclavio 13

Definition 2. We say thatφ is asubdiagramof φ ′ whenever there existψu,ψd ∈ S ∗ andk,k′ ∈ N such
thatφ ′ = ψd ◦ (idΓ ∗φ ∗ id∆)◦ψu.

Notation. Givenφ ∈ S ∗ andS ′ ⊆ S , we write|φ |S ′ the number of gates inφ with gate typeα ∈ S ′.

Definition 3. We callhorizontala diagramφ generated by parallel composition (and identities) only in
S ∗. It is elementaryif |φ |S = 1.

1.2 Diagram rewriting

Definition 4 (Diagram Rewriting System). A diagram rewriting systemis a couple(S ,R) given by a
signatureS and a setR of rewriting rules of the form

p
︷︸︸︷

φ
︸︷︷︸

q

❴ *4

p
︷︸︸︷

φ ′

︸︷︷︸

q

whereφ ,φ ′ : p⇒ q are diagrams inS ∗.

Definition 5. We allow each rewriting rules under any context, that is, ifφ ❴ *4 φ ′ in R then, for every
χu,χd ∈ S ∗,

χu

φ

χd

❴ *4

χu

φ ′

χd

.

We say thatψ reduces, or rewrites, to ψ ′ (denoted ψ ∗
❴ *4 ψ ′ ) if there is arewriting sequence P:

ψ = ψ0 ❴ *4 ψ1 ❴*4 . . . ❴ *4 ψn = ψ ′ .

We here recall some classical notions in rewriting:

• A diagramφ is irreducible if there is noφ ′ such thatφ ❴ *4 φ ′ ;

• A rewriting systemterminatesif there is no infinite rewriting sequence;

• A rewriting system isconfluentif for all φ1,φ2 andφ such thatφ ❴ *4 φ1 and φ ❴*4 φ2 , there exists

φ ′ such thatφ1
∗
❴*4 φ ′ and φ2

∗
❴*4 φ ′ ;

• A rewriting system isconvergentif both properties hold.

2 Polygraphs

In this section we formulate some basic notion by using the language ofpolygraphs. Introduced by Street
[16] ascomputads, later reformulated and extended by Burroni [3], polygraphs can be considered as the
generalization, for higher dimensional categories, of thenotion of monoid presentation.

Here we study some diagram rewriting systems with labels on strings in terms of 3-polygraphs,
which are denotedΣ = (Σ0,Σ1,Σ2,Σ3). In particular, we consider polygraphs with just one 0-cellin Σ0

in order to avoid background labeling. The set of 1-cellsΣ1 represents string labels, the 2-cells inΣ2 are
the signatureSΣ of our rewriting system with rulesRΣ = Σ3, the set of 3-cells. We say that a polygraph
Σ exhibits some computational properties when the relative diagram rewriting system does.
Notation. We denoteφ ∈ Σ wheneverφ is a diagram generated by the associated signatureSΣ.
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2.1 Twisting Polygraph

In this section we introduce a notion of polygraph which generalizes polygraphic presentations of sym-
metric monoidal categories.

Definition 6 (Symmetric polygraph). We call thepolygraph of permutationthe following monochrome

3-polygraph:S=

(

Σ0 = {�},Σ1 = {},Σ2 = { },Σ3 =

{

❴*4 , ❴*4

})

.

We callsymmetrica 3-polygraphΣ with one 0-cell, one 1-cell (i.e.Σ1 = {}), containing one 2-cell
∈ Σ2 and such that the following holds

= , α
= α and α

= α for all α ∈ Σ2

in the 2-categoryΣ∗.

Theorem 1(Convergence ofS). The polygraphS is convergent.

Proof. As in [12], in order to prove termination we interprete everydiagramφ : n → m∈ S∗ with a
monotone function[φ ] : Nn → N

m. These have a well founded order induced by product order onN
p:

f ,g : N∗p → N
∗p then f ≥ g iff f (x̄)≥ g(x̄) for all x̄∈ N

∗p.

We interprete the gate by the function[ ](x,y)→ (y,x+y). This allow as to associate to any 3-cell
φ ❴*4 ψ two monotone maps[φ ] and[ψ ] such that[φ ]> [ψ ]:

[ ]

(x,y) = (2x+y,x+y)> (x,y) =
[ ]

(x,y),
[ ]

(x,y,z) = (2x+y+z,x+y,x)> (x+y+z,x+y,x) =

[ ]

(x,y,z)

By the compatibility of the order with sequential and parallel composition, this suffice to prove that, for
any couple of diagrams,[φ ] > [ψ ] holds if φ →∗ ψ . Since there exists no infinite decreasing suite of
monotone maps on positive integers, infinite reduction paths can not exist.

In order to prove convergence, it suffices to check the confluence of the following critical peaks, that
are minimal critical branchings (see [1], App.A for details):

Each diagram inS can be interpreted as a permutation in thegroup of permutations over n elements
Sn with product◦ defined as their function composition. On the other hand, each σ ∈ Sn corresponds
to some diagrams inS. In particular, we interpret the diagramidk−1 ∗ ∗ idn−(k+1) : n → n as the
transposition(k,k+1) ∈ Sn.

Proposition 1. For any permutationσ ∈ Sn there is a unique diagram in normal form̂φσ : n⇒ n∈S

corresponding toσ . We call it thecanonical diagram ofσ .
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Proof. We defineS1 = {} andSn+1 the set of diagrams inS of the form:

σ ′

= φ̂σ : n+1⇒ n+1

with σ ′ ∈ Sn and = = Ladl
k ∗ id(n+1−k). We have|Sn| = n! since |S1| = 1 and

|Sn+1|= (n+1)|Sn| on account ofn+1= |{Ladl
k}1≤k≤n+1|= |{Ladl

k ∗ id(n+1−k)}1≤k≤n+1|.
To exhibit a one-to-one correspondence betweenSn+1 andSn+1, for anyσ ∈Sn+1 we defineEr(σ)∈

Sn the permutation

Er(σ) =

{

i → σ(i +1) i f σ(i +1)< σ(1)

i → σ(i +1)+1 i f σ(1)< σ(i +1)
.

andφ̂σ = (Ladl
k ∗ id(n+1−σ(1)))◦ (id1∗ φ̂Er(σ)).

Any element inSn contains no subdiagram of the form nor meaning that it is irreducible

and so, by the confluence ofS, in normal form.

Notation. We note : n⇒ n and : n⇒ n the diagrams corresponding respectively to the permu-
tations(1,n,n−1, . . . ,2) and(n,1,2, . . . ,n−1) in Sn.

Definition 7 (Twisting polygraph). A twisting polygraphis a 3-polygraphΣ with one 0-cell equipped
with a setTΣ ⊆ Σ1 called twisting familysuch that for eachA,B∈ TΣ there is atwisting operator TA,B :
A∗B⇒ B∗A∈ Σ2 andΣ3 includes the following familiesTR of twisting relations:

• For all A,B,C∈ TΣ:

A B
❴*4 A B and

A B C

C B A

❴ *4

A B C

C B A

; (1)

• For all α : Γ → Γ′ ∈ Σ2 with Γ,Γ′ ∈ T∗
Σ , A∈ TΣ, at least one of the two possible orientation of the

following rewriting rules is inΣ3:
Γ A

α

A Γ′

❱%/
Γ A

α

A Γ′

❱eo
and

A Γ

α

Γ′ A

❱%/
A Γ

α

Γ′ A

❱eo
. (2)

Moreover, if φ ,ψ are twisting diagrams(i.e. diagrams made only of twisting operators)φ ∗

RΣ
❴ *4 ψ iff

φ ∗

RT

❴ *4 ψ whereRT is the set given by rewriting rules of (1). Atotal-twisting polygraphyis a twisting

polygraph withTΣ = Σ1.

The idea behind twisting polygraphs is to present diagram rewriting systems where, in equivalence
classes modulo rewriting, the crossings of strings labeledby the twisting family are not taken into ac-
count. In fact, the family of relations (1) says that these crossings are involutive and satisfy Yang-Baxter
equation [10] for braidings, while relations in (2) allow gates to “cross” a string in case of fitting labels.

We interpret a twisting diagramφσ : Γ ⇒ σ(Γ) as the permutations inS|Γ| acting over the order of
occurrence of 1-cells in the wordΓ ∈ T∗

Σ . For this reason, as inS, we define left ladders, right ladders
and the standard diagramsφ̂Γ

σ : Γ → σ(Γ) (or simply φ̂σ ) with source and target inT∗
Σ . In conformity

with the twisting polygraph restrictions overΣ3, we can prove the uniqueness ofφ̂σ as in Proposition 1.
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3 Multiplicative Linear Logic sequent calculus

In this paper we focus on the multiplicative fragment of linear logic sequent calculus with or without
units. We here we recall the usual inference rules:

Identity or Axiom Cut
Structural

Ax
⊢ A,A⊥ ⊢ Σ,A ⊢ Γ,A⊥

Cut
⊢ Σ,Γ

Tensor Par
Multiplicative

⊢ Σ,A ⊢ B,Γ
⊗

⊢ Σ,(A⊗B),Γ
⊢ Σ,A,B

`
⊢ Σ,A`B

Bottom 1
Units

⊢ Σ
⊥

⊢ Σ,⊥
1

⊢ 1

We also consider the usually omitted exchange rule:

⊢ A1, . . . ,Ak σ ∈ Sk⊢ Aσ(1), . . . ,Aσ(k)

We finally recall that themultiplicative linear logic fragment with units(MLLu) is given by the
aforementioned inference rules while themultiplicative fragment(MLL) is the one given by the inference
rulesAx,Cut,⊗,` (and exchange) only.

Remark 1 (On Negation). We assume negation is involutive, i.e. A⊥⊥=A and the De-Morgan laws apply
with respect tò and⊗, i.e. (A♥B)⊥ = B⊥♥⊥A⊥ for any formulas A,B where♥ = ` and♥⊥ = ⊗ or
vice versa♥=⊗ and♥⊥ =`. Moreover1⊥ =⊥.

Remark 2 (On Rules). In this work we interpret inference rules as operations withspecific arities over
the set of sequents: Ax and1 are0-ary,` and⊥ are unary and⊗ and Cut are binary.

Notation. We indicate withFMℓℓ andFMℓℓu the set of formulas respectively inMLL andMLLu.

4 String diagram syntax for proof net
In this section we give two particular 3-polygraphs forMLL andMLLu respectively, i.e. string diagrams
representing linear logic derivations that we callproof diagrams. To these latter, we then add two non-
twisting colors and we replace certain 2-cells in order to define what we callcontrol polygraphs. In
these polygraphs we are able to characterize diagrams corresponding to correct proof structures by just
checking their inputs and outputs patterns.
Notation. In order to unify sequent and 1-cell composition notations,we replace the∗ symbol of parallel
composition with a comma.

4.1 Proof diagrams forMLL

Definition 8. The 3-polygraphΣMLL is thepolygraph of multiplicative linear logic with cut-elimination.
It is given by the following sets of cells:
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• ΣM
0 = {� }; • ΣM

1 = FMℓℓ;

• ΣM
2 =







⊗A,B : A,B ⇒ A⊗B =

A B

⊗

A⊗B

`A,B : A,B ⇒ A`B =

A B

`

A`B

AxA : � ⇒ A,A⊥ =
A

A A⊥

CutA : A,A⊥ ⇒ � =
A A⊥

A

TA,B : A,B ⇒ B,A =
A B

B A







A,B∈FMℓℓ

If there is no ambiguity we note and instead of A and A .

• ΣM
3 = ΣM

Twist∪ΣM
Cut where:

– ΣM
Twist is given by the following twisting relations:

A B

A B

❴*4 A B ,

A B C

C B A

❴*4

A B C

C B A

,

B

B A A⊥

❴*4
B

B A A⊥
,

B

A A⊥ B

❴ *4
B

A A⊥ B
,

A A⊥ B

B

❴*4
A A⊥ B

B
,

B A A⊥

B

❴ *4
B A A⊥

B
,

A B C

⊗

C A⊗B

❴ *4

A B C

⊗

C A⊗B

,

A B C

⊗

B⊗C A

❴*4

A B C

⊗

B⊗C A

,

A B C

`

C A`B

❴*4

A B C

`

C A`B

,

A B C

`

B`C A

❴*4

A B C

`

B`C A

;

together with two rules representing the involutionA⊥⊥ =A: A

A A⊥

❴*4 A⊥

A⊥ A

,

A A⊥

A
❴ *4

A⊥ A

A⊥ ;

– ΣM
Cut is the set of rules for the cut elimination:

A B B⊥A⊥

` ⊗
❴*4

A B B⊥A⊥

,

A B B⊥A⊥

⊗ `
❴ *4

A B B⊥A⊥

,

Γ A

A Γ

❴*4

Γ A

A Γ
,

A Γ

Γ A

❴ *4

A Γ

Γ A

, for anyΓ ∈ FMℓℓ
∗

A

A

❴*4 A ,

A Γ

σ

A σ(Γ)

❴*4

A Γ

σ

A σ(Γ)
, for any

Γ

σ

σ(Γ)
canonical diagram ofσ .

Theorem 2 (Interpretation of proofs inΣMLL). For any derivation d(Γ) of ⊢ Γ in MLL there is a proof
diagramφd(Γ) : � ⇒ Γ ∈ ΣMLL.
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Proof. Let d(Γ) be a derivation inMLL of ⊢ Γ. First we observe that, if there is a diagramφ : ∆ ⇒ Γ so
there is a diagramφσ = φ̂σ ◦φ : ∆ ⇒ σ(Γ) for all permutationσ ∈ S|Γ|. By this fact we can proceed by
induction on the number of inference rules appearing ind(Γ):

• If just one inference rule occurs ind(Γ), it must be anAx rule,Γ = A,A⊥ andφd(Γ) = AxA : � ⇒

A,A⊥;

• If n+1 inference rules occur ind(Γ), then we consider the last one and we distinguish two cases
in base of its arity (see Rem. 2):

– If it is unary andΓ = Γ′,A`B, then, by inductive hypothesis, there is a diagramφd(Γ′,A,B) :
� → Γ′,A,B of the derivationd(Γ′,A,B) with n inference rules. Therefore

φd(Γ) = (idΓ′ ,`A,B)◦φd(Γ′,A,B) : � ⇒ Γ;

– If it is binary andΓ = ∆,A⊗B,∆′, then, by inductive hypothesis, there are two diagrams
φd(∆,A) : � ⇒ ∆,A and φd(B,∆′) : � ⇒ B,∆′ relative to the two derivationsd(∆,A) and
d(B,∆′) with at mostn inference rules. Therefore

φd(Γ) = (id∆,⊗A,B, id∆′)◦ (φd(∆,A),φd(B,∆′)) : � ⇒ Γ;

– Similarly, if it is binary andΓ = ∆,Cut(A,A⊥),∆′, then

φd(Γ) = (id∆,cutA, id∆′)◦ (φd(∆,A),φd(A⊥,∆′)) : � ⇒ Γ.

4.2 Proof diagram with control for MLL

In order to have a correctness criterion forMLL proof diagrams, we enrich the set of string labels with
two new non-twisting colorsL (left) andR (right) and re-define some 2-cells.

The idea is to use these latter to introduce a notion of well-paranthesization in a setting where a proof
derivation can be seen as a sequence of operations over listsof sequents: unary derivation rules act on
single sequents (as in the case of`), binary ones act on two sequent (as in the case of⊗ andCut) and
the 0-ary one, that isAx, generates a new sequent.

Definition 9. The control polygraph of multiplicative linear logic̃M is given by the following sets of
cells:

• M̃0 = {� }; • M̃1 = FMℓℓ∪{L = ,R= };

• M̃2 =







⊗A,B : A,R,L,B ⇒ A⊗B =

A B

⊗

A⊗B

`A,B : A,B ⇒ A`B =

A B

`

A`B

AxA : � ⇒ L,A,A⊥,R =
A

A A⊥

CutA : A,R,L,A⊥ ⇒ � = A A⊥

TA,B : A,B ⇒ B,A =
A B

B A







A,B∈FMℓℓ
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• M̃3 = M̃Twist is given by the following twisting relations:

A B

A B

❴*4 A B ,

A B C

C B A

❴ *4

A B C

C B A

,

A B C

`

C A`B

❴*4

A B C

`

C A`B

,

A B C

`

B`C A

❴ *4

A B C

`

B`C A

;

together with one rule representing the involutionA⊥⊥ = A:
A

A⊥ A

❴ *4
A⊥

A⊥ A
.

Remark 3. The polygraphM̃ is twisting with twisting familyFMℓℓ.

Theorem 3(Proof diagrams correspondence inM̃).

⊢MLL Γ ⇔∃φ ∈ M̃ such thatφ : � ⇒ L,Γ,R.

Proof. To prove the left-to-right implication⇒, as in Teor. 2, we remark that, if there is a diagram
φ : � ⇒ L,Γ,Rwith Γ sequent inMLL, so there is a diagram

φσ = (idL, φ̂σ , idR)◦φ : � ⇒ L,σ(Γ),R

for any permutationσ ∈ S|Γ|. Then we proceed by induction on the number of inference rules in a
derivationd(Γ) in MLL:

• If just one inference rule occursd(Γ), then it is anAx and Γ = A,A⊥ andφd(Γ) = AxA : � ⇒

L,A,A⊥,R;

• If n+1 inference rules appear, then we consider the last one and wedistinguish two cases in base
of its arity:

– If it is an unary` and Γ = Γ′,A` B, then, by inductive hypothesis, there is a diagram
φd(Γ′,A,B) : � ⇒ L,Γ′,A,B,Rof the derivationd(Γ′,A,B) and

φd(Γ) = (idL,Γ′ ,`A,B, idR)◦φd(Γ′,A,B) : � ⇒ L,Γ,R;

– If it is a binary⊗ andΓ = ∆,A⊗B,∆′, then, by inductive hypothesis, there are two diagrams
φd(∆,A) : � ⇒ L,∆,A,Randφd(B,∆′) : � ⇒ L,B,∆′,R relative to the two derivationsd(∆,A)
andd(B,∆′) with at mostn inference rules. Therefore

φd(Γ) = (idL,∆,⊗A,B, id∆′,R)◦ (φd(∆,A),φd(B,∆′)) : � ⇒ L,Γ,R

– Similarly, if it is a binaryCut andΓ = ∆,Cut(A,A⊥),∆′, then

φd(Γ) = (idL,∆,CutA⊥ , id∆′,R)◦ (φd(∆,A),φd(A⊥,∆′)) : � ⇒ L,Γ,R.

In order to prove sequentialization, i.e. the right-to-left implication⇐, we proceed by induction on
the number|φ |S of gates inφ :

• If |φ |M̃ = 0 so φ : idΓ : Γ ⇒ Γ. By hypothesisφ has no input (i.e.s2(φ) = � ) so it is the
identity diagram over the empty string, this is the empty diagram id0 : � ⇒ � which it is not
sequentializable sincet2(φ) = � 6= L,R;
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• If |φ |M̃ = 1 thanφ is an elementary diagram. The elementary diagrams with source � and target
L,Γ,Rwith Γ ∈ FMℓℓ

∗ are atomic made of a unique 2-cell of typeAxA : � ⇒ L,A,A⊥,R for some
A∈ FMℓℓ. The associated sequent⊢ A,A⊥ is derivable inMLL;

• Otherwise there is 2-cell of typeα : Γ′ ⇒ α(Γ′) ∈ M̃2 and Γ = ∆,α(Γ′),∆′. In this caseφ =
(idL,∆,α , id∆,R)◦φ ′ whereφ ′ : � ⇒ L,∆,Γ′,∆′,R. We have the following cases:

– If α = TA,B, Γ′ = A,B and α(Γ′) = B,A. The diagramφ ′ is sequentializable by inductive
hypothesis since|φ |Ũ = |φ ′|M̃+1;

– Similarly if α =`A,B, Γ′ = A,B andα(Γ′) = A`B;
– If α =⊗A,B soΓ′ = A,R,L,B, α(Γ′) = A⊗B and

φ ′ : � ⇒ L,∆,A,R,L,B,∆′,R.

This diagram is a parallel compositionφ = φ ′
l ,φ ′

r with

φ ′
l : � ⇒ L,∆,A,R and φ ′

r : � ⇒ L,B,∆′,R

of two diagrams which satisfy inductive hypothesis since|φ |M̃ = |φ ′
l |M̃+ |φ ′

r |M̃+1;
– Similarly if α =CutA with B= A⊥ we haveΓ′ = A,R,L,A⊥ andα(Γ′) = /0.

4.3 Proof diagrams forMLLu

In this section we extend the signatures of the two previous polygraphs in order to accommodate multi-
plicative units in our syntax of proof diagrams and we enunciate some relation between this syntax and
the multiplicative proof structure’s one.

Definition 10. Thepolygraph of multiplicative linear logic with constants and cut-eliminationΣMLLc is
given by the following sets of cells:

• Σu
0 = {� }; • Σu

1 = FMℓℓu;

• Σu
2 =







1 : � ⇒ 1 = 1

⊥ : � ⇒ ⊥ = ⊥






∪ΣM

2

• Σu
3 = Σu

Twist∪Σu
Cut where:

– Σu
Twist is ΣM

Twist along with the following twisting relations:

A

A ⊥

❴ *4
A

A ⊥
,

A

⊥ A

❴*4
A

⊥ A
,

A

A 1

❴*4
A

A 1
,

A

1 A

❴ *4
A

1 A
;

– Σu
Cut is ΣM

Cut along with the following rules for cut elimination: ❴ *4 /0 , ❴ *4 /0 .

Remark 4. The polygraphΣMLLu is total-twisting.

Theorem 4(Interpretation of proofs inΣMLLu). For any derivation d(Γ) of ⊢ Γ in MLLu there is a proof
diagramφd(Γ) : � ⇒ Γ ∈ ΣMLLu.

Proof. The proof is much like the one we provided for Theorem 2 . In order to accommodate units, we
just need to slightly revisit our inductive reasoning by considering the following two additional cases
(i.e. the remaining cases stay the same):
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• If just one inference rule occurs ind(Γ), then it may be a 1 rule (in addition toAx). It follows that
Γ = 1 andφΓ = 1 : � ⇒ 1;

• If the last of then+ 1 inference rules appearing ind(Γ) is an unary⊥ andΓ = Γ′,⊥, then, by
inductive hypothesis, there is a diagramφΓ′ : � ⇒ Γ′ andφΓ = φΓ′ ,⊥.

In the extended version of this paper1, some relation between 2-cells inΣMLLu and multiplicative
proof structures with units are stated. In particular, we achieve a cut-elimination rules correspondence,
a one-to-one correspondence between proof structures and sets of equivalent 2-cells modulo twisting
relations and a cut-elimination result.

4.4 Proof diagrams with control for MLLu

We finally extend proof diagrams with control to the general case ofMLLu.

Definition 11. Thecontrol polygraph of multiplicative linear logic with constantsŨ is given by

• Ũ0 = {� }; • Ũ1 = FMℓℓu ∪{L = ,R= };

• Ũ2 =







1 : � ⇒ L,1,R = 1

⊥ : � ⇒ ⊥ = ⊥






∪M̃2

• Ũ3 = ŨTwist is made of rules inM̃Twist plus the following twisting relations:

A

A ⊥

❴ *4
A

A ⊥
,

A

⊥ A

❴*4
A

⊥ A
;

Theorem 5(Controlled proof diagram correspondence inŨ).

⊢MLLu Γ ⇔∃φ ∈ Ũ such thatφ : � ⇒ L,Γ,R.

Proof. The proof can be given extending the one of Theorem 3. To provethe left-to-right implication⇒
we should to consider the following two additional cases:

• If just one inference rule occursd(Γ), then it could also be a 1,Γ = 1 andφd(Γ) = 1 : � ⇒ L,1,R;

• If the last of then+1 inference rules appearing ind(Γ) is a⊥ (unary),Γ=Γ′,⊥, then, by inductive
hypothesis, there is a diagramφΓ′ : � ⇒ L,Γ′,RandφΓ = (L,⊥, idΓ′ ,R)◦φΓ′ ;

In order to prove sequentialization, i.e. the right-to-left implication ⇐, we have to consider the
following two additional cases:

• If |φ |Ũ = 1 thenφ is an elementary diagram. The elementary diagrams with source � and target
L,Γ,Rwith Γ ∈ FMℓℓu

∗ are atomic made of a unique 2-cell of typeAxA : � → L,A,A⊥,R for some
A∈ FMℓℓu but also 1 : 0→ L,1,R. The associated sequent⊢ 1 is derivable inMLLu;

• Otherwise we should consider the case if there is 2-cell of type⊥. Thenφ = (idL,∆,⊥, id∆′,R)◦φ ′

with the diagramφ ′ sequentializable by hypothesis since|φ |Ũ = |φ ′|Ũ+1

1https://arxiv.org/abs/1606.09016v2.
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5 Conclusion and future work
We have presentedproof diagrams, a particular class of string diagrams suitable for interpreting linear
logic proof derivations. In particular, such settings exhibit an internal correction criterion as we have
shown a one-to-one correspondence betweenMLL, with or without units, (one-sided) sequent calculus
proof derivations (with explicit exchange rules) and proofdiagrams. Moreover, the sequentializability
of a proof diagram, i.e. whether it corresponds to a proof in sequent calculus, depends on the number of
inputs and outputs only, and can be verified in linear time.

Our results raise an important question about the quotient set over proofs introduced by proof dia-
grams, and how it relates to that performed by proof nets.

For this, let∼ be the equivalence relation over proof derivations inducedby proof diagrams equiv-
alence≃ in (Ũ)∗. Then, one the one hand,∼ captures all commutations of reversible inference rules`

and⊥ by the interchange rule and twisting relations. On the otherhand, this is not the case for⊗ and
Cut: let α ,β ∈ {⊗,Cut}, then∼ equates only permutations of the kind that follows

1

.

.

.

⊢ Σ,A

2

.

.

.

⊢ B,Γ,C
α

⊢ Σ,α(A,B),Γ,C

3

.

.

.

⊢ D,∆
β

⊢ Σ,α(A,B),Γ,β(C,D),∆

∼

1

.

.

.

⊢ Σ,A

2

.

.

.

⊢ B,Γ,C

3

.

.

.

⊢ D,∆
β

⊢ A,Γ,β(C,D),∆
α

⊢ Σ,α(A,B),Γ,β(C,D),∆

,

that is,⊗ orCut permutations that do not change the order of the leafs in a derivation tree.
It follows that proof nets equivalence is coarser than proofdiagrams one, proof nets equate more.

For an actual example, consider the linear logic sequentB⊗C,A⊗D: this latter exhibits two different
derivations that correspond to the following two non-equivalent proof diagrams

1 2 3

A B C D

⊗

⊗

6≃

1 3 2

A B D C

⊗

⊗

.

On the other hand, the two proof derivations have the same proof net.
We conjecture that, in order to recover the whole proof equivalence induced by proof nets, we should

extend control polygraph rewriting with the possibility topermuteAxand 1 gates’ position in a diagram.
Anyway, this is not related to our complexity result for sequentialization. Indeed, proof diagrams exhibit
a local sequentialization criterion which is ruled out in proof nets by complexity arguments (P. Lincoln
and T. Winkler [13], W. Heijltjes [9]), due to the number of jumps to check. Crucial in our settings is
the fact that⊥ gates have a specific position in diagrams, that one can interpret as a jump assignment:
for example, given a⊥ gate, we can point its jump to the unique gate of typeAx or 1 connected to the
left-nearestL string. In particular, this means that equivalent proof diagrams in(Ũ)∗ may correspond to
different jump assignments on the same proof net.

We believe this work suggests several future research directions. In particular, in the near future, we
will focus on extending the present results to the multiplicative-exponential linear logic fragment.
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