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DAIS, Università Ca’ Foscari Venezia, Italia

salibra@dsi.unive.it

We introduce a functional calculus with simple syntax and operational semantics in which the calculi
introduced so far in the Curry–Howard correspondence for Classical Logic can be faithfully encoded.
Our calculus enjoys confluence without any restriction. Itstype system enforces strong normalization
of expressions and it is a sound and complete system for full implicational Classical Logic. We
give a very simple denotational semantics which allows easycalculations of the interpretation of
expressions.

1 Introduction

The Curry–Howard correspondence [16] was first designed as the isomorphism between natural deduc-
tion for minimal Intuitionistic Logic [28] and the simply typedλ -calculus, and for a long time no one
thought this isomorphism could be extended to Classical Logic, until Griffin [14] proposed that natural
deduction for Classical Logic could be viewed as a type system for a λ -calculus extended with a con-
trol operatorC , introduced by Felleisen in hisλC -calculus [10]. There are also other operators that
correspond to logical axioms that, once added to minimal Intuitionistic Logic, give proof systems of
different power, from minimal to full implicational Classical Logic. Felleisen’sC , corresponding to the
Double-Negation Elimination law, gives full implicational Classical Logic; less powerful operators are
K (a.k.a.call/cc), typable withPeirce’s law, andA (a.k.a.abort) typable with theEx-Falso Quodlibet
law. On the programming side, this classification corresponds to the different expressive power of the
operators as control primitives. Ariola and Herbelin [1] survey and classify these logical systems and
introduce a refinement ofλC -calculus which aims at resolving a mismatch between the operational and
proof-theoretical interpretation of Felleisen’sλC -reduction theory.

Another extension of theλ -calculus is Parigot’sλ µ-calculus [27] which introduces a Natural Deduc-
tion with multiple conclusions. This system implements minimal Classical Logic and it is able to encode
the primitivecall/cc; Ariola and Herbelin [1] extend it to cover full Classical Logic and compare their
system with Felleisen’sλC -calculus: similar studies are made by De Groote [7]. The correspondence
between classical principles and functional control operators is further stressed by De Groote’s extension
of λ -calculus withraise/handleprimitives [8]. While the untyped version ofλ µ-calculus enjoys con-
fluence, its extensional version is only confluent on closed terms via the addition of a rewrite rule that
destroys the strong normalization of typable terms [6].

Gentzen’s sequent calculusLK [11] is put in correspondence with a reduction system by Urban [32];
the type system of Curien–Herbelin’s̄λ µµ̃-calculus [3] corresponds to its implicational fragment. These
two approaches are compared in detail by Lengrand [24]. These calculi highlight the duality between
call-by-value and call-by-name cut-elimination (or evaluation): confluence is not achievable without
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choosing one of the two strategies. Other computational interpretations of Classical sequent calculus
are Girard’s LC [13] and the translations of Classical Logicin Linear Logic [5], based upon linear dual
decomposition of classical implication.

In this paper we introduce thestack calculus. The idea of this calculus comes from a synthesis of
Krivine’s extension of theλ -calculus withstacksandcall/cc [18] with Parigot’sλ µ-calculus. It also
bears similarities with the call-by-name variant ofλ̄ µµ̃-calculus. In Krivine’s Classical Realizability
[18] classical implication is associated to a stack constructor, while inλ µ-calculus (as inλC -calculus)
the arrow-type is introduced by an intuitionisticλ -abstraction: the role of theµ-abstraction is to make it
classical by “merging together” many intuitionistic arrows. Theµ-abstraction can then be thought of as a
functional abstraction overlists of inputs, corresponding to a list of consecutiveλ -abstractions. This idea
is used in the design of Löw–Streicher’sCPS∞-calculus [25] which is an infinitary version ofλ -calculus
that allows only infinite abstractions and infinite applications.

The stack calculus is a finitary functional language in whichstacks are first-class entities, and many
of the previously-mentioned calculi can be faithfully translated. The stack calculus enjoys confluence
without any restriction, also in its extensional version. We type the stack calculus with a propositional
language with implication and falsity, to be associated to stack construction and empty stack, respec-
tively. As a consequence one obtains a sound and complete system for full implicational Classical Logic.
In our case the realizability interpretation of types à la Krivine matches perfectly the logical meaning
of the arrow in the type system: proofs of soundness and strong normalization of the calculus are both
given by particular realizability interpretations. The simplicity of the stack calculus, which does not
use at the same timeλ - andµ-abstractions allows an easy encoding of control primitives like call/cc,
label/resume, raise/catch.

Many researchers contributed to the study of proof semantics of Classical Logic. From Girard [13], to
Reus and Streicher [29], to Selinger [30] who gives a generalpresentation in terms ofcontrol categories.
It is also very interesting the work by Laurent and Regnier [23] which shows in detail how to extract a
control category out of a categorical model of Multiplicative Additive Linear Logic (MALL).

Inspired by Laurent and Regnier’s work [23] we give a minimalframework in which the stack cal-
culus can be soundly interpreted. The absence of theλ -abstraction, allows us to focus on the minimal
structure required to interpret Laurent’s Polarized Linear Logic [21] and to use it to interpret the stack
calculus. The simplicity of the framework gives an easy calculation of the semantics of expressions.

2 The untyped stack calculus

The stack calculus has three syntactic categories:termsthat are in functional position,stacksthat are
in argument position and represent streams of arguments,processesthat are terms applied to stacks.
The basis for the definition of the stack calculus language isa countably infinite set ofstack variables,
ranged over by the initial small lettersα ,β ,γ , . . . of the greek alphabet. The language is then given by
the following grammar:

π,ϖ ::= α | nil | M�π | cdr(π) stacks
M,N ::= µα .P | car(π) terms
P,Q ::= M ⋆π processes

We use lettersE,E′ to range overexpressionswhich are either stacks, terms or processes. We denote by
Σp, Σs, Σt, andΣe the sets of all processes, stacks, terms, and expressions respectively. The operatorµ is
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a binder. An occurrence of a variableα in an expressionE is boundif it is under the scope of aµα ; the
set FV(E) of free variablesis made of those variables having a non-bound occurrence inE.
Stacksrepresent lists of terms:nil is the empty stack. A stackM1� · · ·�Mk�nil, stands for a finite list while
a stackM1� · · ·�Mk�α stands for a non-terminated list that can be further extended.
Termsare entities that wait for a stack to compute. A termµα .P is theµ-abstractionof α in P.
Processesresult from theapplication M⋆ π of a termM to a stackπ. This application, unlike inλ -
calculus, has to be thought asexhaustiveand gives rise to an evolving entity that does not have any
outcome.

Application has precedence overµ-abstraction and the stack constructor has precedence overappli-
cation, so that the termµα .M ⋆N�π unambiguously abbreviatesµα .(M ⋆(N�π)). As usual, the calculus
involves a substitution operator. ByE{π/α} we denote the (capture-avoiding) substitution of the stack
π for all free occurrences ofα in E. The symbol ‘≡’ stands for syntactic equality, while ‘:=’ stands for
definitional equality.

Lemma 1 (Substitution Lemma). For E ∈ Σe, π,ϖ ∈ Σs, α 6∈ FV(ϖ) andα 6≡ β we have
E{π/α}{ϖ/β} ≡ E{ϖ/β}{π{ϖ/β}/α}.

Definition 2. The reduction rules of the stack calculus are the following ones:

(µ) (µα .P)⋆π →µ P{π/α}
(car) car(M�π)→car M
(cdr) cdr(M�π)→cdr π

Adding the following rules we obtain theextensionalstack calculus:

(η1) µα .M ⋆α →η1 M if α 6∈ FV(M)
(η2) car(π)� cdr(π)→η2 π

We simply write→s for the contextual closure of the relation(→µ ∪→car ∪ →cdr). Moreover we
write →η for the contextual closure of the relation(→η1 ∪→η2) and finally we set→sη= (→s ∪→η).
For example, ifI := µα .car(α)⋆ cdr(α), thenI ⋆ I �nil→s I ⋆nil→s car(nil)⋆ cdr(nil) and the reduction
does not proceed further. Ifω := µα .car(α) ⋆α , thenω ⋆ω �nil →s ω ⋆ω �nil; this is an example of a
non-normalizing process. The stack calculus enjoys confluence, even in its extensional version, as the
following theorems state.

Theorem 3. The→s-reduction is Church-Rosser.

Theorem 4. The→sη-reduction is Church-Rosser.

We observe that Theorem 4 holds despite the non left-linearity of the reduction rules of the exten-
sional stack calculus. In other calculi, like theλ -calculus with surjective pairing, the interaction of the
extensionality rule with the projection rules breaks the Church-Rosser property for the calculus [17].

2.1 Translation of lambda-mu-calculus

Many calculi have been introduced so far to extend the Curry–Howard correspondence to classical logic
[14, 27, 8, 32, 3]. Since we cannot attempt to report a comparison with the stack calculus for each one
of them, so we choose probably the best known, i.e. Parigot’sλ µ-calculus. In this section we show how
λ µ-calculus can be faithfully encoded into the stack calculus(in the precise sense of the forthcoming
Theorem 6).
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The basis for the definition of theλ µ-calculus language are two (disjoint) setsλVar andµVar of
λ -variables andµ-variables (a.k.a.names), respectively. The names, ranged over byα ,β ,γ , . . ., are are
taken fromµVar and the usual variables, taken inλVar, are ranged over byx,y,z, . . .. The expressions
belonging to the language ofλ µ-calculus are often divided into two categories,termsandnamed terms,
produced by the following grammar:

s, t ::= x | λx.t | st | µα .p terms
p,q ::= [α ]t named terms

We use letterse,e′ to range overexpressionswhich are either terms or named terms. We denote byΛt,
Λp, andΛe the sets of all terms, named terms and expressions, respectively.

We briefly recall the operational semantics ofλ µ-calculus. In addition to the usual capture-free
substitutione{t/x} of a termt for a variablex in e, λ µ-calculus uses therenaming e{β/α} of α with β
in e and thestructural substitution e{s/∗α} that replaces all named subterms[α ]t of e with the named
term[α ]ts: for example(λy.µβ .[α ]z){λx.x/∗α}≡ λy.µβ .[α ]z(λx.x) (see [27]). Note that we adopt here
the notations of David and Py [6] instead of Parigot’s original ones. The reduction relation characterizing
theλ µ-calculus is given by the contextual closure of the following rewrite rules:

(β ) (λx.t)s→β t{s/x} logical reduction (ρ) [β ](µα .p)→ρ p{β/α} renaming
(µ) (µα .p)s→µ µα .p{s/∗α} structural reduction (θ) µα .[α ]t →θ t if α 6∈ FN(t)

The reduction→β µρθ was proved to enjoy the Church-Rosser property by Parigot [27]. The extensional
λ µ-calculus is obtained by adding the contextual closure of the following reduction rules:

(η) λx.tx→η t if x 6∈ FV(t)
(ν) µα .p→ν λx.µα .p{x/∗α} if x 6∈ FV(p)

We are now going to translateλ µ-expressions into expressions of the stack calculus (stack-expressions,
for short). A minor technical detail for the translation is the need of regarding allλ -variables and all
names as stack variables.

Definition 5. Define a mapping(·)◦ : Λe → Σe by induction as follows:

x◦ = µβ .car(x)⋆β
(λx.t)◦ = µx.t◦ ⋆ cdr(x)
(ts)◦ = µβ .t◦ ⋆s◦�β β 6∈ FV(t◦)∪FV(s◦)
([α ]t)◦ = t◦ ⋆α
(µα .p)◦ = µα .p◦

The translation of Definition 5 preserves the convertibility of expressions and in this sense provides
an embedding ofλ µ-calculus into the stack calculus.

Theorem 6. Let e,e′ ∈ Λe.

(i) If e →β µρθ e′, then e◦ and(e′)◦ have a common reduct in the stack calculus.

(ii) If e →β µρθ ην e′, then e◦ and(e′)◦ have a common reduct in the extensional stack calculus.

Note that the extensionalλ µ-calculus does not enjoy a full Church-Rosser theorem, as witnessed by
the following counterexample [6]:[γ ]y ηρ և [β ]λx.(µα .[γ ]y)x →µ [β ]λx.µα .[γ ]y.

However these kinds of situations do not arise in the stack calculus (by Theorem 4): in this case for
example we have([γ ]y)◦ ։s car(y)⋆ γ sη և ([β ]λx.µα .[γ ]y)◦.

For example(λx.x)◦ = µx.car(x)⋆cdr(x) and(call/cc)◦ = µα .car(α)⋆(µβ .car(β )⋆cdr(α))�cdr(α),
wherecall/cc≡ λ f .µα .[α ]( f (λx.µδ .[α ]x)).
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3 The typed stack calculus

We are now going to look at the stack calculus in the light of the Curry–Howard isomorphism. Since the
stack calculus can encode calculi with control features (such asλ µ-calculus), it can be given a deductive
system of full classical implicational propositional logic ({→,⊥}-fragment).

The type system has judgements that come in three forms:π : A⊢∆,⊢M : A |∆, and⊢P |∆, where as
usual greek capital letters∆,∆′ are used to denotecontexts, that is sets of assumptions{α1:A1, . . . ,αn:An}
(also abbreviated by~α :~A). In a judgement like⊢ M : A | ∆, the vertical bar separates the context∆ from
the active formula A; Theorem 9 can sharpen its role via a comparison with judgements in typedλ µ-
calculus.

⊢ M : A | ∆ π : B⊢ ∆
[→ i]

M�π : A→ B⊢ ∆

α :A∈ ∆
[ax]

α : A⊢ ∆

π : A→ B⊢ ∆
[→ el ]

cdr(π) : B⊢ ∆

π : A→ B⊢ ∆
[→ er ]

⊢ car(π) : A | ∆

⊢ P | ∆,α :A
[µ ,α ]

⊢ µα .P : A | ∆

⊢ M : A | ∆ π : A⊢ ∆
[cut]

⊢ M ⋆π | ∆

[⊥i]
nil : ⊥ ⊢ ∆

Fig 2: Typed stack calculus - propositional{→,⊥}-fragment.

The choice for the forms of the judgements is justified by the forthcoming Theorem 9, where it
will appear that the role of contexts is analogous to that ofname contexts(i.e. right contexts) in typed
λ µ-calculus (see Figure 3).

It is very well-known that by restricting Gentzen’s sequentcalculusLK [11] to manage at most one
formula on the right-hand side of sequents one gets the intuitionistic sequent calculus. On the other
hand, the symmetric restriction (which, by symmetry, is well behaved with respect to cut elimination) is
not so popular. One can find an explicit study of the induced system in Czermak [4]. In [22] Laurent
studies a slight variation of Czermak’s system, that he callsLD0, and explores the logical duality between
LD0 and its symmetrical calculusLJ0. The existence of these two symmetrical (and equivalent, via
duality) systems has its roots in the dual “decomposition” of LK into Danos et. al’s [5]LKQ andLKT
systems, corresponding to call-by-value and call-by-nameevaluation of classical proofs, respectively.
Both systems are as powerful asLK, andLKT can be encoded intoLD0, in which thestoupdisappears,
since there is at most one formula on the left-hand side of sequents. There is a close relationship between
LD0, LKT and the stack calculus, but indeed while the first two are formulated as a sequent calculus (i.e.,
with introduction rules only) the latter has elimination rules. One can translate bothLKT andLD0 into
the stack calculus (and viceversa), somewhat as Gentzen’sLK can be translated into Prawitz’s natural
decuction [28] (and viceversa) but the translations are notmere inclusions.

The judgements in stack calculus have the following intuitive logical interpretation, in terms of the
classical (boolean) notion of semantic entailment “�”. For those of the formπ : A ⊢ β1 :B1, . . . ,βn :Bn,
read “¬B1, . . . ,¬Bn � ¬A”; for those of the form⊢ M : A | β1 :B1, . . . ,βn :Bn, read “¬B1, . . . ,¬Bn � A”;
for those of the form⊢ P | β1 : B1, . . . ,βn : Bn, read “¬B1, . . . ,¬Bn � ⊥”. The above indications will be
restated and proved precisely in Theorem 17.

We now show that the reduction rules specified in Section 2 areindeed reduction rules for the proofs
of the typed system.



98 The stack calculus

Lemma 7 (Typed substitution lemma). Supposeπ : B⊢ ∆.
(i) If ϖ : A⊢ β :B,∆, thenϖ{π/β} : A⊢ ∆
(ii) if ⊢ M : A | β :B,∆, then⊢ M{π/β} : A | ∆
(iii) if ⊢ P | β :B,∆, then⊢ P{π/β} | ∆.

Using Lemma 7, we can prove that the reduction of a typed term preserves the type.
Theorem 8. For all π,π ′ ∈ Σs, all P,P′ ∈ Σp and M,M′ ∈ Σt we have that

(i) if ⊢ P | ∆ and P→sη P′, then⊢ P′ | ∆
(ii) if π : A⊢ ∆ andπ →sη π ′, thenπ ′ : A⊢ ∆
(iii) if ⊢ M : A | ∆ and M→sη M′, then⊢ M′ : A | ∆.

Another way to type the stack calculus is to choose a languagewith negation, conjunction and falsity,
to be associated to abstraction, stack construction and empty stack, respectively. This approach mirrors
the one used by Lafont et al. [19] to type theλ -calculus with explicit pair constructor and projections.
The result is an intuitionistic proof system that can be seenas the target of a CPS translation that embeds
Classical Logic into a fragment of Intuitionistic Logic viaa mapping that transforms the types but not the
proofs; this can be done by two translations(·)+ and(·)− from {→,⊥}-formulas into{∧,¬,⊥}-formulas
as follows:⊥+ = ¬⊥ anda+ = a, for every atoma; (A→ B)+ = A−∧B+; A− = ¬A+. One obtains a
“rule-per-rule” correspondence: under this point of view,the stack calculus is the target-language of a
CPS translation from itself that alters the types but not theproofs, while the translation of Lafont et al.
does change also the terms.

3.1 Translation of typed lambda-mu-calculus

Theλ µ-calculus is endowed with a type system that is a sound and complete Natural Deduction system
for purely implicational classical logic.

The type system has judgements that come in two forms:Γ ⊢λ µ t : A | ∆ andΓ ⊢λ µ p | ∆. On the

left-hand side,Γ represents a context~x:~A of assumptions for the freeλ -variables, while on the right-and
side,∆ represents a context~α :~B of assumptions for the free names.

Γ,x:A⊢λ µ t : B | ∆
[→ i,x]

Γ ⊢λ µ λx.t : A→ B | ∆

Γ ⊢λ µ t : A→ B | ∆ Γ ⊢λ µ s : A | ∆
[→ e]

Γ ⊢λ µ ts : B | ∆

Γ ⊢λ µ t : A | ∆
[⊥i]

Γ ⊢λ µ [α ]t | α :A,∆

Γ ⊢λ µ p | β :B,∆
[⊥e,β ]

Γ ⊢λ µ µβ .p : B | ∆

x:A∈ Γ
[ax]

Γ ⊢λ µ x : A | ∆

Fig. 3: Typedλ µ-calculus - propositional{→}-fragment.
Given a contextΓ = x1 :A1, . . . ,xn :An and a sequence of formulas~C=C1, . . . ,Cn we writeΓ → ~C as

an abbreviation forx1 :A1 →C1, . . . ,xn :An →Cn.
Theorem 9. (i) If Γ ⊢λ µ t : B | ∆, then for all sequences~C of formulas we have⊢ t◦ : B | Γ → ~C,∆.

(ii) If Γ ⊢λ µ p | ∆, then for all sequences~C of formulas we have⊢ p◦ | Γ → ~C,∆.
From Theorem 9 results clearly that when theλ -variables are looked at as stack variables, they are

endowed with a stream type of which only the type of the head isuniquely determined.
Finally we observe that the empty stacknil does not appear in the translations ofλ µ-terms. It is

needed if we want to translate the so-calledλ µ-top calculus [1]: in fact one can naturally set([top]t)◦ =
t◦ ⋆nil.
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3.2 Realizability interpretation of classical logic via stack calculus

In this section we set up a framework which is the analogue of Krivine’s Classical Realizability [18].
Krivine’s idea is to interpret implicational formulas at the same time as sets of stacks and sets of terms of
his modifiedλ -calculus obtaining, respectively, falsehood and truth values for the formulas. This method
has many applications, among which the extraction of programs realizingmathematical theorems in the
context of relevant logical theories such as Zermelo–Frenkel Set Theory and Analysis [18]. We will
apply particular instances of realizability interpretation in Sections 4 and 3.3 to prove soundness and
strong normalization of our typed calculus.

Let T ⊆ Σt and0⊆ Σs be given sets of terms and stacks, respectively, such thatnil ∈ 0 and
if M ∈ T andπ ∈ 0, thenM�π ∈ 0 andcdr(π) ∈ 0.

We define three binary relations≻s, ≻t, ≻p on Σs, Σt andΣp, respectively, as the smallest reflexive
relations satisfying the following conditions:

• ≻s is transitive;

• if M ∈ T, π ∈ 0 andϖ ≻s M�π, thencar(ϖ)≻t M andcdr(ϖ)≻s π;

• if π ∈ 0, then(µα .P)⋆π ≻p P{π/α};

• if M′ ≻t M, thenM′ ⋆π ≻p M ⋆π.

Moreover we let≻e=≻p ∪ ≻s ∪ ≻t and we say that a setX ⊆ Σe is saturatedif E ∈ X andE′ ≻e E
imply E′ ∈ X. ForX ⊆ Σe, we letPs(X) denote the family of all saturated subsets ofX.

Definition 10. A triple ( |= ,T,0) of sets is arealizability tripleif |= ⊆ Σp, T ⊆Σt, 0⊆ Σs are all saturated.

Definition 11 (Realizability relation). Let ( |= ,T,0) be a realizability triple. We define a binary relation
⊆ T ×Ps(0) as M X iff ∀π ∈ X. M ⋆π ∈ |= .

If M  X, we say thatM realizes X, or that M is a realizer of X; the set of realizers ofX is
rea(X) = {M ∈ T : M  X}. We define the following binary operation onP(Σs) as follows:
X ⇒Y = {ϖ ∈ 0 : ∃M ∈ rea(X).∃π ∈Y. ϖ ≻s M�π}.

We indicate byAt the set of all atomic formulas, which includes⊥ and a countable set of atoms.
We indicate byFm the set of all formulas built fromAt with the connective→. We use the following
conventions: lettersA,B,C, . . . range overFm, andF,G,H, . . . range overAt. We let arrows associate to
the right, so thatA→ B→C≡ A→ (B→C). Every formula is of the formB1 → ··· → Bn → G, where
G is atomic. As usual the negation is defined as¬A := A→⊥.

Let R = ( |= ,T,0) be a realizability triple. AnatomicR-interpretationis a functionI : At→ Ps(0)
such thatI (⊥) = 0. ThenI extends uniquely to a map‖·‖I : Fm→ P(Σs) by setting‖A→ B‖I =
‖A‖I ⇒ ‖B‖I . The set‖A‖I is called thefalsehood valueof the formulaA underI . Thetruth value
|A|I of a formulaA underI is given by|A|I = rea(‖A‖I ).

Proposition 12. For every formula A,‖A‖I ∈ Ps(0) and |A|I ∈ Ps(T).

Proof. By induction on the structure of formulas. For falsehood values is suffices to observe thatPs(0)
is closed under the⇒ operation. For truth values, use the fact thatM′ ≻t M impliesM′ ⋆π ≻p M ⋆π and
the saturation of |= .

If ~π = π1, . . . ,πn and ~B = B1, . . . ,Bn are sequences, we write~π ∈ ‖~B‖I as an abbreviation for
π1 ∈ ‖B1‖I , . . . ,πn ∈ ‖Bn‖I . The next theorem is the stack calculus analogue of Krivine’s Adequacy
Theorem [18], which shows that realizability is compatiblewith deduction in classical logic. It is an
essential tool that will be used to obtain, in a uniform way, both soundness and strong normalization of
the typed calculus.
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Theorem 13 (Adequacy theorem). Let R = ( |= ,T,0) be a realizability triple and letI be an R-
interpretation. If~π ∈ ‖~B‖I then

(i) If ϖ : A⊢~α :~B, thenϖ{~π/~α} ∈ ‖A‖I ;

(ii) If ⊢ M : A | ~α :~B, then M{~π/~α} ∈ |A|I ;

(iii) If ⊢ P | ~α :~B, then P{~π/~α} ∈ |= .

One proves all items simultaneously proceeding by induction on the depth of type derivations.

3.3 Normalization in the typed stack calculus

We are now going to prove that the typed stack calculus is strongly normalizing. We prove this fact by
adapting the reducibility candidates technique to our setting. It becomes a sort of instance of Krivine’s
adequacy theorem in the context of Classical Realizability. We let SNe ⊆ Σe be the set of all strongly
normalizing expressions of the stack calculus (w.r.t.→sη-reduction); SNt, SNp, SNs denote the sets all
strongly normalizing terms, processes and stacks, respectively.

Proposition 14. S= (SNp,SNt,SNs) is a realizability triple.

The proof of Proposition 14 consists in showing that ifE′ ≻e E and E ∈ SNp (resp. E ∈ SNt,
E ∈SNs), then alsoE′ ∈SNp (resp.E′ ∈SNt, E′ ∈ SNs). One can proceed by induction on the definition
of ≻e. The main point of such a proof is when we consider the case in which P ≡ M ⋆ π ∈ SNp and
P′ ≡M′⋆π with M′ ≻t M because there there existϖ andπ ′ such thatϖ ≻s M�π ′ andM′ ≡ car(ϖ). Here
one can show that ifM′ ⋆π has an infinite reduction path, thenM ⋆π has an infinite reduction path too.
Note that it is crucial that for the termsM′ ≡ µα .(µβ .β [1]⋆β )⋆(µγ .α [0]⋆α)�nil andM ≡ µα .nil[0]⋆nil
we haveM′ 6≻t M. In fact, settingπ ≡ (µδ .δ [0] ⋆ δ )�nil, we obtain thatM ⋆π is strongly normalizing
but M′ ⋆π is not strongly normalizing.

Let A be a formula. We define itsarity ar(A) by induction settingar(G) = 0 and
ar(A→ B) = 1+ ar(B). It is convenient sometimes to use abbreviationsπ[n) := cdr(· · ·cdr(π) · · · )
(n times) andπ[n] := car(π[n)), in order to make some expressions more readable.

Theorem 15(Strong normalization). Let M∈ Σt, π ∈ Σs and P∈ Σp.

(i) If there exist∆,A such thatπ : A⊢ ∆, thenπ ∈ SNs;

(ii) If there exist∆,A such that⊢ M : A | ∆, then M∈ SNt;

(iii) If there exist∆ such that⊢ P | ∆, then P∈ SNp.

Proof. Let ∆=~α :~B, where~α =α1, . . . ,αn and~B=B1, . . . ,Bn. LetI be theS-interpretation sending ev-
ery atom to SNs and setπi := αi [0]� . . .�αi [ar(Bi)−1]�αi [ar(Bi)), for eachi = 1, . . . ,n and~π = π1, . . . ,πn.
An easy induction on the arity of formulas shows that~π ∈ ‖~B‖I . By Theorem 13 (i),(ii),(iii) respectively
we get that
(i) ϖ{~π/~α} ∈ ‖A‖I ⊆ SNs, (ii) M{~π/~α} ∈ |A|I ⊆ SNt and (iii) P{~π/~α} ∈ SNp.
Finally in each of the above cases we haveE{~π/~α}։η E and sinceE{~π/~α} is strongly normalizing,
then so isE.



A. Carraro, T. Ehrhard, A. Salibra 101

4 Soundness and completeness of typed stack calculus w.r.t.classical se-
mantics

The present section provides soundness and completeness proofs of the stack calculus for the two-valued
semantics of classical propositional logic. We find interesting to report the full completeness proof,
which resembles very much a completeness proof for a tableaux calculus [31]. In fact, as in a tableaux
system there are labeled formulas (withtrue andfalse labels), in the stack calculus we have terms and
stacks which play, respectively, the role of proofs and counter-proofs, exactly in the spirit of Krivine’s
Classical Realizability.

It is easy matter to check thatB = ( /0,Σt,Σs) is a realizability triple. For every formulaA andB-
interpretationI we have

|A|I =

{

Σt if ‖A‖I = /0

/0 otherwise

The induced function| · |I maps formulas into elements of the two-element boolean algebra {Σt, /0},
where the ordering is set-inclusion and the operators are∪, ∩ and complement. In other wordsΣt

represents “true” and /0 represents “false”. The truth values behave as expected w.r.t. negation:|A|I =
/0⇔ |¬A|I = Σt.

Definition 16. Let Φ be a set of formulas and let A be a formula. We say thatΦ semantically entailsA,
notationΦ � A, if for every atomicB-interpretationI we have that

⋂

B∈Φ |B|I ⊆ |A|I .

Theorem 17(Soundness).

(i) If ⊢ M : A | ~β :~B is provable (whereFV(M)⊆ ~β ), then¬B1, . . . ,¬Bn � A.

(ii) If π : A⊢ ~β :~B is provable (whereFV(π)⊆ ~β ), then¬B1, . . . ,¬Bn � ¬A.

(iii) If ⊢ P | ~β :~B is provable (whereFV(P)⊆ ~β ), then¬B1, . . . ,¬Bn �⊥.

Proof. (i) Let I be aB-interpretation. By Theorem 13 (Adequacy) if for alli ∈ [1,n] ‖Bi‖I 6= /0, then
M{~π/~α} ∈ |A|I , i.e., |A|I 6= /0. Since‖Bi‖I 6= /0⇔ |Bi |I = /0⇔ |¬Bi|I = Σt, we conclude that every
derivable judgement⊢ M : A | ~β : ~B has the following property: for everyI , if |¬Bi|I = Σt for all
i ∈ [1,n], then|A|I = Σt. This means, by definition, that¬B1, . . . ,¬Bn � A.
(ii),(iii) Similar to (i), again applying Theorem 13.

The main goal of the rest of the section is to prove that every classical tautology is the type of some
term of the stack-calculus. The proof is supported by some auxiliary definitions and lemmas.

Definition 18. Let A be a formula. We define itsterminal tmn(A) by induction settingtmn(G) = G
and tmn(A → B) = tmn(B). We also define itspremissespr(A) by induction settingpr(G) = /0 and
pr(A→ B) = {A}∪pr(B).

Definition 19. Let Φ be a set of formulas. We define three setstmn(Φ) = {tmn(A) : A∈ Φ},
pr(Φ) =

⋃

A∈Φ pr(A), andprt(Φ) = {A∈ pr(Φ) : tmn(A) ∈ (tmn(Φ)∪{⊥})}.

Definition 20. A setΦ of formulas issaturatedif for every formula A∈ prt(Φ) we havepr(A)∩Φ 6= /0.

It will turn out that, by applying an iterative process, it ispossible to construct saturated sets of
formulas starting from finite sets of formulas which cannot be proved by a sequent of the stack calculus.
The forthcoming Lemmas 21 and 22 are the fundamental ingredients for such construction. We write
0− : A | − :~B to express the fact that there are no variables~β and no termM such that⊢ M : A | ~β :~B.
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Lemma 21. Let Φ = {B0, . . . ,Bn} be a finite set of formulas and suppose0 − : B0 | − : B1, . . . ,− : Bn.
Thenprt(Φ)∩At= /0.

Proof. We prove the contrapositive statement. SupposingA∈ prt(Φ)∩At, we distinguish two possible
cases: (1) and (2). We write~β :~B for the contextβ1 :B1, . . . ,βn :Bn. Let ε be a fresh variable.

(1) There exist somej,k∈ [0,n] such thatB j =C′
1 → ··· →C′

i → ··· →C′
m′ → G′,

Bk =C′′
1 → ··· →C′′

m′′ → G′′, andC′
i = G′′ = A. Then⊢ µβ0.(µε .β j [i −1]⋆ ε [m′′))⋆βk : B0 | ~β :~B.

(2) There exist somej ∈ [0,n] such thatB j =C′
1 → ··· →C′

i → ··· →C′
m′ → G′, andC′

i =⊥= A. Then

⊢ µβ0.(µε .β j [i −1]⋆nil)⋆βk : B0 | ~β :~B.

Lemma 22. Let Φ = {B0, . . . ,Bn} be a finite set of formulas and suppose0 − : B0 | − : B1, . . . ,− : Bn.
Then for every A∈ prt(Φ) there exists a formula C∈ pr(A) such that0− : B0 | − :B1, . . . ,− :Bn,− :C.

Proof. We prove the contrapositive statement. To this end, supposeA ∈ prt(Φ) is a formula that is
a counterexample to the conclusion of the statement. First note thatpr(A) 6= /0, otherwiseA ∈ At, in
contradiction with Lemma 21. ThereforeA=C1 → ··· →Cm → G, with m≥ 1. We write~β :~B for the
contextβ1 :B1, . . . ,βn :Bn.

By our assumption for everyi = 1, . . . ,m (m≥ 1) there existMi,γi such that⊢ Mi : B0 | ~β :~B,γi :Ci

and thus we derive⊢ µγi .Mi ⋆β0 : Ci | β0 : B0,~β :~B for eachi = 1, . . . ,m. Moreover, sinceA ∈ prt(Φ),
there are two cases:

(1) there exist somek,h∈ [0,n] such thatBh =C′
1 → ··· →C′

j → ··· →C′
m′ → G′,

Bk =C′′
1 → ··· →C′′

m′′ → G′′, A=C′
j , andG= G′′.

(2) G=⊥ and there exist someh∈ [0,n] such thatBh =C′
1 → ··· →C′

j → ··· →C′
m′ → G′ andA=C′

j .

Let ε be a fresh variable. In both cases (1) and (2) there exists a stack π such thatπ : G ⊢ ε : Bk is
derivable, whereπ is eithernil or ε [ar(Bk)).

Let γ1, . . . ,γm,δ be fresh variables and letϖ := (µγ1.M1⋆β0)� . . .� (µγm.Mm⋆β0)�π. Then we finally
derive⊢ µβ0.(µδ .(µε .δ [ j −1]⋆ϖ)⋆βk)⋆βh : B0 | ~β :~B.

Thecomplexityof a formulaA is the total number of implications and atomic sub-formulasoccurring
in A. The formulas of complexity one are exactly the atomic ones.

Lemma 23. Let Φ be a saturated set of formulas. Then there exists aB-interpretationI such that
|A|I = /0, for all A ∈ Φ.

Proof. The case in whichΦ = /0 is trivial, so for the rest of the proof we assumeΦ 6= /0. We define a
B-interpretationI as follows:

I (G) =

{

/0 if G∈ tmn(Φ)

Σt otherwise

We now prove that|A|I = /0, for all A∈ Φ. The proof is by induction on the complexity of formulas.
SupposeA∈ At. If A=⊥ the result is obvious; otherwise, sinceA∈ tmn(Φ), we have|A|I = /0.
SupposeA=C1 → ··· →Cm → G (with m≥ 1). We now prove that

(1) |C1|I = · · ·= |Cm|I = Σt; (2) |G|I = /0.
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The items (1) and (2) together yield|A|I = /0.

(1) ForCi ∈ pr(A) we distinguish two cases.
SupposeCi 6∈ prt(Φ). Thentmn(Ci) is not a terminal of a formula inΦ. By definition ofI we have
|tmn(Ci)|I = Σt. We conclude observing that|Ci |I ⊇ |tmn(Ci)|I = Σt.
SupposeCi ∈ prt(Φ). Then, by saturation ofΦ, Ci =C′

1 → ··· →C′
m′ → G′ (with m′ ≥ 1) and there

exists j ∈ [1,m′] such thatC′
j ∈ Φ. SinceC′

j has strictly lower complexity thanA, by induction
hypothesis|C′

j |I = /0. This implies|Ci |I = Σt.

(2) SinceG∈ tmn(Φ)∪{⊥}, evidently|G|I = /0 by the definition of the interpretation| · |I .

Next we give the second main theorem of this section, concerning completeness. The idea of its
proof is thecounter-model construction, typical of Smullyan’s analytic tableaux [31].

Theorem 24(Completeness). Let A be a formula and let~B be a sequence of formulas. If¬B1, . . . ,¬Bn �

A, then there exist M and~β such that⊢ M : A | ~β :~B is provable.

Proof. We proceed to prove the contrapositive statement. Suppose0− : A | −:~B. Then we can construct
a saturated setΦ of formulas containing{A,B1, . . . ,Bn} asΦ :=

⋃

n≥0Φn, where the family{Φn}n≥0 is
inductively defined as follows:

• Φ0 := {A,B1, . . . ,Bn};

• If prt(Φn) = /0, then we defineΦn+1 := Φn. If prt(Φn) = {C1, . . . ,Ck} 6= /0, by Lemma 22 for
eachCi there exists a formulaDi ∈ pr(Ci) such that0− : A | − :B1, . . . ,− :Bn,− :Di . Let Ψn =
{D1, . . . ,Dk}, where eachDi is the leftmost premiss ofCi having the property that0 − : A | − :
B1, . . . ,− :Bn,− :Di. Then we defineΦn+1 := Φn∪Ψn.

By constructionΦ is a saturated set of formulas containing{A,B1, . . . ,Bn}. Finally applying Lemma 23
we obtain someI such that|B1|I = · · ·= |Bn|I = |A|I = /0, meaning that¬B1, . . . ,¬Bn 2 A.

Of course Theorem 24 implies that every classical propositional tautology (of the{→,⊥}-fragment)
is provable by the type derivation of a term.

5 The Krivine machine for stack calculus

In the present section we sketch the definition of a Krivine machine that executes the terms of stack
calculus. Similar machines have been defined by de Groote [9], Laurent [20], Reus and Streicher [29]
for theλ µ-calculus. Using this machine we show how to encode control mechanisms likelabel/resume
andraise/handlein the stack calculus.

In order to define the states of the machine, we need the following mutually inductive definitions.
A stack closureis a pair p = (π,e) consisting of a stackπ and an environmente; a term closureis a
pair m= (M,e) consisting of a stackπ and an environmente; anenvironmentis a partial function (with
finite domain) from the set of stack variables to the set of stack closures. We writee[α 7→p] for the
environmente′ which assumes the same values aseexcept at most onα , wheree′(α) = p.

A stateis a pair〈m, p〉 and the machine consists of the following (deterministic) transitions between
states:

〈(N,e), p〉 −→ 〈(π ′[n],e′), p〉 if α [n] is the ։car,cdr -normal form ofN ande(α) = (π ′,e′)
〈(N,e), p〉 −→ 〈(M,e′),(π,e′)〉 if µα .M ⋆π is the ։car,cdr -normal form ofN ande′ = e[α 7→p]



104 The stack calculus

We let−։ be the reflexive and transitive closure of the relation−→. Consider a state〈(M,e), p〉. The
closurep is the current context of evaluation ofM; the next state may discardp and restore a context
appeared in the past. The environmente is the current state of the memory: it takes into account all side
effects caused by the previous stages of computation. The term M is said to be inexecution positionand
it is the current program acting onp evaluated ine. A computationis a sequence of states sequentially
related by the transition rules.

To explain how the stack calculus achieves the control of theexecution flow, we define label/resume
and raise/handle instructions and show that the machine soundly executes them. We set

labε{M} := µβ .(µε .M ⋆β )⋆ (µδ .δ [0]⋆β )�β with β 6∈ FV(M)
resε{M} := µγ .ε [0]⋆N� γ with ε ,γ 6∈ FV(M)
throwε{M} := µγ .ε [0]⋆M�nil with ε ,γ 6∈ FV(M)
tryε{M}catch{N} := µβ .(µε .M ⋆β )⋆ (µδ .N ⋆δ [0]�β )�nil with β 6∈ (FV(M)∪FV(N)), δ 6∈ FV(N)

We now discuss briefly and informally how the machine executes the above instructions.
Suppose to start the machine in a stateS= 〈(labε{M},e0), p0〉. If no termresε{N} ever reaches the

execution position, then the computation starting atS is equivalent to that starting atS′ = 〈(M,e0), p0〉.
OtherwiseS−։n 〈(µγ .ε [0]⋆N� γ ,en), pn〉−։

2 〈(N,en+1), pn+2〉, and we notice that the computation
starting at〈(resε{N},en), pn〉 is equivalent to that starting at〈(N,en+1), pn+2〉.

Suppose to start the machine in a stateS= 〈(tryε{M}catch{N},e0), p0〉. If no term throwε{M′}
ever reaches the execution position, then the computation starting atS is equivalent to that starting at
S′ = 〈(M,e0), p0〉. OtherwiseS−։n 〈(µγ .ε [0]⋆M′

�nil,en), pn〉−։
3 〈(N,en+2),(δ [0]�β ,en+2)〉 and we

can see that the exception handlerN goes on with the computation, and the valueM′ returned by the
exception is at use ofN, since it is stored in the in the current environmenten+2 in a cell that is present
in the current evaluation context.

We conclude remarking that all the above constructions can be typed by derived rules. Informally
one may assert that Theorem 17 and Theorem 8, together, ensure that the execution of well-typed term
always ensures that all the “resume” and “raise” instructions are always handled correctly.

6 Denotational semantics of stack calculus

Girard’scorrelation spaces[13] are (one of) the first denotational models of Classical Logic: they refine
coherence spaces [12] with some additional structure. Intuitively, these richer objects come with the
information required to interpret structural rules (weakening and contraction) on the right-hand side of
sequents in classical sequent calculus. Girard’s construction hints that Classical Logic may be encoded
into Linear Logic, a result achieved by Danos et al. [5] via a dual linear decomposition of classical
implication. In [29] the authors interpret theλ µ-calculus in the Cartesian closed category of “negated
domains”, i.e. the full subcategory ofCPO determined by the objects of the formRA, whereA is a
predomain andR is some fixed domains of “responses”. The category of negateddomains is a particular
category of continuations[19] and categories of continuations arecomplete[15] for theλ µ-calculus, in
the sense that every equational theory forλ µ-calculus is given by the kernel relation of the interpreta-
tion in some category of continuations. Selinger [30] givesa general presentation in terms ofcontrol
categories, which are easily seen to subsume categories of continuations. However via a categorical
structure theorem he also shows that every control categoryis equivalent to a category of continuations.
This structure theorem implies the soundness and completeness of the categorical interpretation of the
λ µ-calculus with respect to a natural CPS semantics.



A. Carraro, T. Ehrhard, A. Salibra 105

In brief, a control category is a Cartesian closed category(C,N,⊤,⇒) which is also a symmet-
ric premonoidal category(C,O,⊥). The binoidal functorO distributes overN and there is a natural
isomorphismsA,B,C : BAOC → (BOC)A in A,B andC satisfying some coherence conditions. Selinger
distinguishes a subcategoryC♯ of C, called thefocusof C, which have the same objects asC but fewer
arrows. OnC♯ the functorO restricts to a coproduct. It is very important to remark thatin any control
categoryC there exists an isomorphismϕ : C(⊤,BOA) ∼= C♯(⊥A,B) natural in centralB (see [30] for
the details). IfC is a control category we map falsity to the object⊥ and set|A → B| = ⊥|A|O|B|; a
context∆ = ~α :~A is mapped to|∆|= |A1|O · · ·O|An|. Then the judgements are interpreted as morphisms
Jπ : A ⊢ ∆K : |A| → |∆|, J⊢ M : A | ∆K : ⊥|A| → |∆| andJ⊢ P | ∆K : ⊤ → |∆|, using the coproduct struc-
ture and the isomorphismϕ . The above intepretation issound, in the sense that it is invariant under
→sη -reduction of expressions.

Very interesting is the work of Laurent and Regnier [23] which shows in detail how to extract a
control category out of a categorical model of MALL. This constribution gives a general framework
under which falls the correlation spaces model construction by Girard and at the same time constitutes
the categorical counterpart of Danos–Joinet–Schellinx’s[5] call-by-name encoding of Classical logic
into Linear Logic.

A ∗-autonomous category is a symmetric monoidal category withtwo monoidal structures(C,⊗,1)
and(C,O,⊥) possessing adualizingendofunctor(·)⊥ which mapsf : A→ B to f⊥ : B⊥ → A⊥.

Let C be a∗-autonomous category. When the forgetful functor from the category MonO(C) (of O-
monoids andO-monoid morphisms) to the categoryC has a right adjoint, thenC is aLafont category.
We recall that the co-Kleisli categoryKC of a monoidal categoryC via a comonad(!,δ ,ε) has the
same objects asC andKC(A,B) = C(!A,B); the composition of morphisms is defined using the monad
structure (see [26]).One of the main results of [23] is that if C is a∗-autonomous Lafont category with
finite products, then then the co-Kleisli categoryKC′ of the full-subcategoryC′ of C whose objects are
theO-monoids is a control category.

6.1 A simple interpretation of stack calculus

Inspired by Laurent and Regnier’s work [23] we give a minimalframework in which the stack calculus
can be soundly interpreted. The absence of theλ -abstraction, allows us to focus on the minimal structure
required to interpret Laurent’s Polarized Linear Logic [21] and to use it to interpret the stack calculus.

Let C be a∗-autonomous category. We denote byρA : A → AO⊥, λA : A → ⊥OA, α , γ andτ the
usual natural isomorphisms related to the monoidal structure of (C,O,⊥).

A linear categoryis a symmetric monoidal category together with a symmetric monoidal comonad
((!,m),δ ,ε) such that there are monoidal natural transformations with componentseA : !A → 1 and
dA : !A →!A⊗!A which are coalgebra morphisms and make each free !-coalgebra a commutative⊗-
comonoid(!A,dA,eA); moreoverδA : !A→!!A is a comonoid morphism, for every objectA.

In the sequel we letC be a∗-autonomous linear category, so that by duality we can turn the above
definition in terms of a monad((?,m),δ ,ε), ?-algebras andO-monoids. In this case there are monoidal
natural transformations with componentswA : ⊥ →?A andcA :?AO?A →?A which are ?-algebra mor-
phisms and make each free ?-algebra a commutativeO-monoid(?A,cA,wA); δA :??A→?A is a monoid
morphism, for every objectA. Under these hypotheses all ?-algebrasA, being retract of a the free al-
gebra ?A, have a multiplicationcA, and a unitwA (see [26] for further details). The categoryC? of
Eilenberg-Moore algebras is symmetric monoidal, with (co)tensor product of(A,algA), (B,algB) given
by (AOB,(algAOalgB)◦m

2) and unit given by(⊥,m1). The∗-autonomous structure ofC yields a natu-
ral isomorphismΛ : C(1,BOA)→ C(A⊥,B) that we will use to interpret abstraction (a natural retraction
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C(1,BOA)⊳C(A⊥,B) would suffice anyway).
Starting from a valuation that associates ?-algebras to atomic types and the object⊥ to falsity, the

arrow-types are mapped as follows:|A → B| =?|A|⊥O|B|. Given a context∆ = ~α :~A we set|∆| =
|A1|O · · ·O|An|. Note that all types are interpreted by ?-algebras. Then thetype judgements with assump-
tions ∆ can be easily interpreted as morphisms with target|∆|; for exampleJnil : ⊥ ⊢ ∆K : ⊥ → |∆| is
the unit of the monoid|∆|. We describe such interpretation for the particular case ofthe untyped stack
calculus, for which we need a ?-algebraU of C together with two ?-algebra morphisms La :?U⊥OU →U
and Ap :U →?U⊥OU satisfying Ap◦La= id?U⊥OU and a ?-algebra morphismϑ : U →⊥ (needed for
the stacknil). We writeUn for the n-fold O-product ofU . Such product inherits a ?-algebra structure
algUn defined using the algebraalgU and the monoidality of the monad; as a consequence it also inherits

a multiplicationcUn and a unitwUn. We also defineι j
n : U ∼=⊥ j−1OUO⊥n− j

wU j−1OidUOwUn− j
−−−−−−−−−−−→Un.

For all expressionsE with FV(E)⊆~α we define the interpretationJMK~α : U⊥ →Un, JπK~α : U →Un

andJPK~α : 1→Un as follows (n= ♯~α):

JαiK~α = ι j
n JM�πK~α = [algUn◦?JMK~α ,JπK~α ]◦Ap Jcdr(π)K~α = JπK~α ◦La◦ (wU⊥OidU)◦ρU

JnilK~α = wUn ◦ϑ Jcar(π)K~α = JπK~α ◦La◦ (εU⊥OwU)◦λU⊥ Jµβ .PK~α = Λ(JPK~α,β )

JM ⋆πK~α = [idUn,JπK~α ]◦Λ−1(JMK~α)

Note that the denotations of stacks are ?-algebra morphismsand it is not difficult to verify that
the above interpretation is invariant under→s-reduction. To see that check before thatJE{π/β}K~α =
[id~α ,JπK~α ]◦JEK~α,β . The categoryRelof sets and relations is a∗-autonomous linear category that satisfies
all our requirements [26]. IfS is a set, we denote byMf(S)(ω) the set of all theN-indexed sequences
σ = (a1,a2, . . . ) of multisets overSsuch thatai = [] holds for all but a finite number of indicesi ∈N. The
setMf(S)(ω) is a simple example of ?-algebra ofRel. Forσ = (a1,a2, . . . ) andτ =(b1,b2, . . . ), we define
σ +τ = (a1⊎b1,a2⊎b2, . . . ) and∗=([], [], . . . ). Then the relationsw= {(1,∗)} andc= {((σ ,τ),σ +τ) :
σ ,τ ∈ Mf(S)(ω)} make(Mf(S)(ω),c,w) a O-monoid inRel. The operation+ on Mf(S)(ω) can also
be extended componentwise to(Mf(S)(ω))k (whose elements are ranged over by~σ ,~τ , . . .) transferring
thereby the monoid structure. In order to model the untyped calculus we need aO-monoidU of together
with two relations La⊆ (Mf(U)×U)×U and Ap⊆U × (Mf(U)×U) satisfying Ap◦La= idMf(U)×U

and a relationϑ ⊆U ×{1}. In the categoryRel lives one such objectD = (D,Ap,La) that has already
been encountered many times in the literature (see for example [2]) as a model of the ordinaryλ -calculus
(as well as of some of its extensions). The object is constructed as unionD =

⋃

n∈N Dn of a family of
sets(Dn)n∈N defined byD0 = /0 andDn+1 = Mf(Dn)

(ω). Givenσ = (a1,a2,a3, . . .) ∈ D anda∈ Mf(D),
we write a :: σ for the element(a,a1,a2,a3, . . .) ∈ D. SinceD = Mf(D)(ω), as previously observed it
has a standard monoid structure and we can set La= {((a,σ),a:: σ) : a ∈ Mf(D), σ ∈ D} and Ap=
{(a::σ ,(a,σ)) : a∈Mf(D), σ ∈ D} satisfying the desired equation; as a matter of fact also theequation
La◦Ap = idU holds and the interpretation of expressions is invariant under →sη -reduction. Finally
ϑ = {(∗,1)}.

The isomorphismΛ : C(1,UOU)→C(U⊥,U) is trivially given byΛ( f ) = {(α ,β ) : (1,(β ,α)) ∈ f}.
The interpretation is concretely defined as follows:

JαiK~α = {(σ ,(∗, ..,σ , ..,∗)) : σ ∈ D}; Jcdr(π)K~α = {(σ ,~τ) : ([] ::σ ,~τ) ∈ JπK~α};
Jcar(π)K~α = {(σ ,~τ) : ([σ ] ::∗,~τ) ∈ JπK~α}; Jµβ .PK~α = {(σ ,~τ) : (1,(~τ ,σ)) ∈ JPK~α,β};
JM�πK~α = {([σ1, ..,σk] ::σ ,Σk

i=0~τi) : k≥ 0,∀i = 1, ..,k. (σi ,~τi) ∈ JMK~α , (σ ,~τ0) ∈ JπK~α};
JM ⋆πK~α = {(1,~τ +~τ ′) : ∃σ ∈ D. (σ ,~τ) ∈ JMK~α , (σ ,~τ ′) ∈ JπK~α}; JnilK~α = {(∗,(∗, ..,∗))}.
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For example for the stack calculus version ofcall/cc we have
Jµα .α [0]⋆ (µβ .β [0]⋆α [1))�α [1)K = {[[[σ1] ::∗, .., [σk] ::∗] ::σ0] ::(Σk

i=0σi) : k≥ 0, σ0, ..,σk ∈ D}.

7 Conclusions

We introduced the stack calculus, a finitary functional calculus with simple syntax and rewrite rules
in which the calculi introduced so far in the Curry–Howard correspondence for classical logic can be
faithfully encoded; instead of exhibiting comparisons with all the existing formalisms, we just showed
how Parigot’sλ µ-calculus can be translated into our calculus. We proved that the untyped stack cal-
culus enjoys confluence, and that types enforce strong normalization. The typed fragment is a sound
and complete system for full implicational Classical Logic. The type system that Lafont et al. [19] use
for the λ -calculus with pairs may be used to type stack expressions within the{∧,¬,⊥}-fragment of
Intuitionistic Logic: under this point of view, the stack calculus is the target-language of a CPS trans-
lation from itself that alters the types but not the expressions of the calculus. In the classically-typed
system ({→,⊥}-fragment of Classical Logic) the arrow type corresponds tothe stack constructor; for
this reason the realizability interpretation of types à laKrivine matches perfectly the logical meaning of
the arrow in the type system. The proofs of soundness and strong normalization of the calculus are both
given by particular realizability interpretations. We defined a Krivine machine that executes the terms
of stack calculus. We showed how to encode control mechanisms like label/resumeandraise/handlein
the stack calculus which are soundly executed by our machine. This approach seems to be simpler than
the extension of ML with exceptions studied in De Groote [8].Inspired by Laurent and Regnier’s work
[23], we give a simple categorical framework to interpret the expressions of both typed and untyped stack
calculus. We show how, in the case of a relational semantics,this famework allows a simple calculation
of the interpretation of expressions.
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