Non determinism through type isomorphism

Alejandro Diaz-Card Gilles Dowek
Université Paris 13, Sorbonne Paris Cité, LIPN INRIA
Université Paris-Ouest Nanterre La Défense 23 avenue d'ltalie, CS 81321,
INRIA 75214 Paris Cedex 13

We define an equivalence relation on propositions and a [systém where equivalent propositions
have the same proofs. The system obtained this way reses#slesal known non-deterministic and
algebraic lambda-calculi.

1 Introduction

Several non-deterministic extensions to thealculus have been proposed, e®.7, 10-12, 24]. In
these approaches, the parallel composition (sometimkesidaemust-convergerarallel composition)
is such that ifr ands are twoA -terms, the ternn + s (also writtenr ||) represents the computation that
runs either or s non-deterministically. It is common to consider in thesprapches the associativity
and commutativity of the operater. Indeed the interpretation “eitheror sruns” shall not prioritise any
of them, and so “eithes or r runs” must be represented by the same term. Moredgrer,s)t can run
eitherrt or st, which is the same expressed ty+ st. Extra equivalences (or rewrite rules, depending
on the presentation) are set up to account for such an ietatpm, e.g(r + s)t <> rt +st. This right
distributivity can alternatively be seen as the one of fismcsum: (f + g)(x) is defined pointwise as
f(x) +g(x). This is the approach of the algebraic lambda-calci2], two independently introduced
algebraic extensions which resulted strongly relatedaéteds f,15]. In these algebraic calculi, a scalar
pondering each ‘choice’ is considered in addition to the sfiterms.

Because of these equivalences between terms, it is natutlaihk that a typed version must allow
some equivalences at the type level. Definitely, @&nds are typed with type#& andB respectively, it is
natural to expect that whatever connective tie these typesder to type + s, it must be commutative
and associative.

An independent stream of research is the study of isomarghitween types for several languages
(see [L3] for a reference). For example, we know that the propositidon B andB A A are equiprovable:
one is provable if and only if the other is, but they do not hthe same proofs. If is a proof ofA
andsis a proof ofB, then(r,s) is a proof ofAA B while (s,r) is a proof ofBA A. Despite that both
proofs can be derived from the same hypotheses, they ard@aaime. In this paper, we show how
the non-determinism arises naturally in a classic contelt loy introducing some equivalences between
types. These equivalences, nevertheless, will be chosemagwralid, well-known isomorphisms. In
order to consider these isomorphic types as equivalent,e@d to design a proof system such that they
have the same proofs, or conversely, in order to considsettegms to be equivalent, we need to make
these isomorphic types to be equivalent. Formally, two sydandB are isomorphic if there are two
conversion functiong of typeA = B andg of type B = A, such thag(f(x)) = x for anyx of type A and
f(g(y)) =y for anyy of type B. Hence, in this system the conversion functidnandg should become
and identity function. In other words, we take the quotiehthe set of propositions by the relation

*This work was supported by grants from DIGITEO and Rédlerde-France.

© A. Diaz-Caro and G. Dowek
This work is licensed under the
Creative Commons Attributiohicense.

D. Kesner and P. Viana (Eds.): LSFA 2012
EPTCS 113, 2013, pp. 13144, doi:10.4204/EPTCS.113.13

http://dx.doi.org/10.4204/EPTCS.113.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

138 Non determinism through type isomorphism

generated by the isomorphisms of types and define proofsidaremts in this quotient. In System F
with products, which correspond to the propositional logith universal quantifier, conjunction and
implication, the full list of isomorphisms is knowr§], and it is summarised in Figurk

1. AAB=BAA 6. VX. WY.A= VY.VX.A

2. AA(BAC)= (AAB)AC 7. YX.A=YY.AY/X]

3. A= (BAC)= (A= B)A(A=C) 8. VX.(A=B) = A= VX.Bif X ¢ FV(A)
4. (AAB)=C=A= (B=C) 9. VX.(AAB) = VX.AAVX.B

5. A= (B=C)=B= (A=C) 10. VX.(AAB) = VX.WY.(AA (B[Y/X]))

Figure 1: All the type isomorphisms in propositional logic with unigal quantifier, non-idempotent
conjunction and implication

In this work, we consider only the three first isomorphismghig list, because they are those that
arise naturally when studying non deterministic procesSd®e impact of the others is left for future
work.

Usually, for the deduction rule on the right if we callhe proof ofA andsthat ofB, we 5 B
write r,sor (r,s) the proof ofAA B. However ifAA B andB A A arethe sameproposition,
we getr,sands,r to be the same term. Let us write-* to the commutative comntaand
set the rule

ANB

r:A s:B
r+s:AAB

In the same way, the associativity ofinduces that oft. Furthermore, the isomorphisn3)(of
Figure 1 induces the following equivalence on proofs.rlfs a proof ofA = B, sone of A =-C, andt
one ofAthenr +sis a proof ofA=- (BAC) and(r 4 s)t is a proof ofBAC. This proof is the same as
rt +st. Summarising, from the equivalences between types wermziaa commutative and associative
+, which is such that the application right-distributes aver

Several non-classical type systems have been alreadyg@ogor the non-deterministic and alge-
braic calculi, e.g.1,2,16]. In these systems there is already an equivalence relatiopropositions
such that ifA = B and A types a term, then alsB types it. Such equivalence is reminiscent of type
theory P,22] and deduction modulal]7,19]. But here we go further, introducing an equivalence refati
that equates types built with different connectives such as (BAC) and(A =- B) A (A=-C), which
is not possible there. Moreover, there is no eliminatioe fol conjunction in 1,2, 16]. Indeed, having
commutativity and associativity properties in both, thenswof terms and the conjunctions of proposi-
tions, leads to uncertainty on how to eliminate them. A rike fr : AABimplies g (r) : A”, would not
be consistent. IA andB are two arbitrary types a term of typeA andt a term of typeB, thens+t has
both typesAA B andB A A, thusrg (s+t) would have both typé and typeB. Hence, a naive rule would
lead to inconsistency. The projection would project a ramderm of any of the types of its arguments,
so not being a trustfully valid proof for any proposition.

The approach we follow here is to consider explicitly typedrs (Church style), and hence make
the projection to depend on the type:rif AAB thenm(r) : A. This way, we recover consistency of
the proof system. This new form of projection entails allogvisome non-determinism directly in the
rewrite system. Indeed, if ands have the same typ®&, m(r +s) both reduces to and tos. A priori

1We could chose another symbol, howeveis the one used in most non-deterministic settings.

A. Diaz-Caro and G. Dowek 139

this does not entail any problem; any of them is a valid prddhe same propositioA. This approach
can be summarised by the sloddme subject reduction property is more important than thmequeness
of results”[18]. Therefore the projection turns the non-deterministioicte explicit.

We formalise all of the previously discussed concepts irti®e@, where we present the calculus
A, and provide some examples. Sect®iihe next section is devoted to prove that our system enjoys
the subject reduction property. In Sectidrwe discuss the relation of this setting with respect to the
algebraic approach. Finally, Sectidrroncludes the paper with suggestions for future research.

2 The calculus

2.1 Definitions

In this section we present the calculus, an explicitly typed lambda-calculus extended with aperator
as discussed in the introduction. We consider the follovgragnmar of types

ABC,... == X|A=B|AAB|VXA,

where the isomorphismdl);, (2) and @) from Figurel are made explicit by an equivalence relation
between types

AAB = BAA , (AAB)AC = AA(BAC) and A= (BAC) = (A=B)A(A=C) .
The set of termg\ is defined inductively by the grammar
r.st o= XM AAr|rs|r+s| m(r) | AXr | r{A} .

All our variable occurrences are explicitly typed, but weally omit the superscript indicating the
type of variables when it is clear from the context. For exiampe write A x* . x instead ofA x*.x*. The
a-conversionand the set$V (r) of free variables off andFV (A) of free variables of Aare defined
as usual in the\-calculus (cf. B, §2.1]). For examplé=V (x*yB) = {xA,yB}. The same variable, with
different types, is treated as a different variable. Fongxa, the termA x*.xB : A= Bis typable in our
system, and it is the constant functig®, sincex® is free in the termAx*.xB. We say that a term is
closedwheneverV (r) = 0. Given two terms andswe denote by [s/x] the term obtained by simul-
taneously substituting the tergfor all the free occurrences @fin r, subject to the usual proviso about
renaming bound variables mto avoid capture of the variables freesnAnalogouslyA[B/X] denotes
the substitution of the typB for all the free occurrences of in A, andr [B/X] the substitution irr. For
example,(x*)[B/Y] = xABND (AxA.r)[B/X] = AxAB/X]r[B/X] and (1a(r))[B/X] = Mg x (1 [B/X]).
Simultaneous substitutions are defined in the same waylliterms and types are considered up to
a-conversion.

Each term of the language has a main type associated, whichecabtained from the type anno-
tations, and other types induced by the type equivalencls.type system fol . is given in Figure2.

If FV(r) = {x’fl,..., M), we writel (r) = {Aq,...,An}. FV({Aq,...,An}) is defined by, FV (A).
Typing judgementare of the fornT : A. A termr is typableif there exists a typd such that : A.
Lemmaz2.1states that the typing modulo equivalences is unique.

Lemma 2.1. If r : A andr : B, then A=B.

Proof. Without rule =, the type system is syntax directed. The only rule able toifydle type of a
term without changing it is=. O

140 Non determinism through type isomorphism
ax A B]r:A r:B r-A=B s:A
: =Bl—= —_—— = _— =
XA r:B MErA=B rs:B :
r:A s:B r.:AANB X ¢ FV(F(r)] r:A r:vX.A
— N NE X ¢ FV(I(r))]————V -
r+s:AAB T(r) A AXT VXA r{B} : A[B/X]

Figure 2: The type system fok .

The operational semantics of the calculus is given in Fi@mhere there are two distinct relations
between terms— and a symmetric relatioe=. We write =* and<* for the transitive and reflexive
closures of= and— respectively. In particular, notice that* is an equivalence relation.

Symmetric relation:
(r+s) +t=r+(s+t), (r+s)t=rt+st,
Ifr: A= (BAC), thenm_p(r)s= mg(rs).

r+s=s+r,
AXR(r+s) 2 AxAr +AxAs,

Reductions:
(AX.r){A} = r[A/X], If r: A thenma(r +) —r.

(AXAr) s rs/X],

Figure 3: Operational semantics af,

2.2 Examples

Example 2.2. We haveAxB.x: (AAB) = (AAB) and so by rules, AxVB.x: (AAB) = A) A
((AAB) = B), from which we can obtaina,g)_aA(AX*'®.X) : (AAB) = A. Letr : AAB, then
T ang)=a(AXVEX)r 1 A, and notice thatt g~ A(AXMEX)r = m((AXMBX)r) — m(r).

Example 2.3. Let TF = AxA.AyB.(x+y). Itis easy to check thaF : A= B = (AAB), and by rule= it
also has the typéA = B = A) A (A= B = B). Therefore,ln_g_a(TF) : A= B =- Ais well typed. In
addition, ifr : Aands: B, we haverp_g_a(TF)rs: A.

Notice thatii—.g_a(TF)rs 2= M a(TFr)s = ma(TFrs) < m((AYR.(r+y))s) < Ma(r +s) <,
which is coherent with such typing.

Example 2.4.LetT = Ax* AyB.xandF = Ax* AyB.y. ThenT +F: (A= B= A)A (A= B=B), hence
T a—B=A)A(A=B=B) (T +F+TF) reduces non-deterministically eitherte+F or to TF. Moreover, notice
thatT 4+ F =2* TF, hence in this very particular case, the non-determin@tmce does not play any role.

3 Subject reduction

In this section we prove that the set of types assigned tona ieinvariant under= and<. In other
words, Theoren3.2 states that if is a proof ofA, any reduction fired from will still be a proof of A.

The substitution lemma below will be the key ingredient ia groof of subject reduction. It ensures
that when substituting types for type variables or termsdom variables, in an adequate manner, the
typing judgements remain valid.

Lemma 3.1(Substitution) If r: B ands: A, thenr[s/x"] : B. Also, Ifr : A, thenr[B/X] : AB/X].

Proof. By induction over for the first result and over the type derivation for the selcon O

A. Diaz-Caro and G. Dowek 141

Now we can prove the subject reduction property, ensuriagthe typing is preserved during reduction.

Theorem 3.2(Subject reduction)If r — sandr : A, thens: A (where— is either— or 2).

Proof. By induction over the reduction relation. We give only tweeiresting cases.

Rule ma—g(r)s= m(rs), withr : A= (BAC). Letma—g(r)s: D, thenma_g(r) : E = D ands: E. But
thenE = A andD = B, because clearly, the main type fii_g(-) isA=- B, sor : (A=-B) AF, however
sincer : A= (BAC), we haveF = A=-C. So, by rule=-¢, rs: BAC. We conclude by rule\e. For
the inverse direction, letiz(rs) : D. ThenD =B andrs: BAE, sor : F = (BAE) ands: F. Hence,
sincer : A= (BAC), by Lemma2.1, we haveF = AandE =C, som_g(r) : A=- B, from which, we
concluderia_.g(r)s: B. We conclude by rule=.

Rule (AxA.r) s r[s/x]. Let (AxA.r)s: B, thenAxA.r : C = D ands: C, with D = B. Thenr : E, with
A= E =C=D. Notice that, sincA = E =C = D, it must beA=C andE = D. Then, by rule=,
s: A and so, by Lemma.1, r[s/x"] : E, and sinceE = D = B, by rule=, we obtainr [s/x"] : B. O

4 From non-determinism to probabilities

In [3] and [26] two algebraic extensions of the untyped lambda-calcutasrdaroduced, which we call
Aiin andAgg respectively. In these settings, not only th@perator is present, but also a scalar pondering
each choice. Hence, ifands are two possible terms, so is the linear combination of tlenmy- 3.s,
with a, B some kind of scalars (taken from a generic ringjip or fromR=9 in Aalg). Both these calculi
identify the term(r + s)t with rt + st, either with a rewrite system or an equality, ahds associative
and commutative. Also, the scalars interact with #hee.g.r +r < 2.r. By restricting the scalars to
positive real numbers, or even to natural numbers, onelgessterpretation is that the scalars give the
probability of following one possible path (after ‘norngfig’ the scalars, i.e. dividing over the total
amount in order to sum up to 1). In this way, the term-2sis twice more likely to rurr thans.

Indeed, in [, §6] the type systenB for Aji, is proposed, which can decide whether a superposition
is a probability distribution (i.e. it can check that the saofrterms is up to 1). Such a system includes
scalars at the type level, reflecting those in the termsy.sdhas typea.A whenever has typeA. This
provides a powerful tool to account for the scalars withia tirms, however it entails a ‘non-classical’
extension of System F with scalars pondering the types.dh adormalism, there is no possibility to tie
terms with different types: if andshave both typd\, thena.r + 3.shave type a + 3).A, however if the
types ofr ands differ, the previous term cannot be typed. That weaknesshved in [2], where a more
powerful system is introduced, with a type system also afigvfor linear combination of types, just like
for terms. In both these systems, while powerful, it is hardgtablish a connection with a well-known
logic. That is precisely the goal o8], where a more ‘classic’ system is developed, with no sealar
at the type level. However it carries some costs: first, itrily aneant for positive real scalars (which
anyway is enough for a ‘probabilistic’ interpretation),damore importantly, the type system gives just
an approximation, an upper bound, of the scalars in the terms

We could envisage extendirdg. with a more thorough projection wherg(a.r + 3.s) would output
eitherr, with probability a, or s with probability 8. However,
even when the scalars are not explicitly written, the prdhies Ta(r + Ta(s+1) +1)
are present. The following example is clarifying.

Letr : A, s: Aandt: A. Then, the reductions depicted in
the diagram at right are possible. If we considgar making
an equiprobable choice instead of a non-deterministic b, \

t

|
ma(s+1)
|
r S

142 Non determinism through type isomorphism

clear that have more probability to be reached, followedrhy
and the less likely is.
Indeed, we can calculate the global probability of reach-

TA(r + Ta(S+ 1) +1) ing each possibility by labelling the reductions with itsdb

l 3 probability as shown in the diagram at left, from where just
s by summing up the labels reaching a term, and multiplying

1 those in the same path, we can easily check that thertéas
l \ probability 3 of being reached, the tersiprobability £ and
S t thetermt probability%. Hence, this term would be expressed
with scalars a%r + %s+ %t according to the previously dis-
cussed interpretation. Therefork, could be seen as a sort
of algebraic calculus, with implicit scalars taken fra¥, typed with a standard type system. These
ideas will be fully developed in a future research.

5 Conclusions and future work

5.1 Conclusions

In this paper we have introducéd, a proof system for second order propositional logic witlassocia-
tive and commutative conjunction, and implication. In thystem, isomorphic propositions get the same
proofs. At this first step we only consider three isomorplsismamely commutativity and associativity
of the conjunction, and distributivity of implication witlespect to conjunction. We use the symbol

to put together the proofs of different propositions,rsps becomes a proof AAA B, if r is a proof of

A ands a proof ofB. Such a symbol is commutative and associative, and apiplicet right-distributive
with respect to it, to account for the isomorphisms of pratmss.

This construction entails a non-deterministic projectishere if a proposition has two possible
proofs, the projection of its conjunction can output anyhafh. For example, if ands are two possible
proofs ofA, thenmi(r + s) will output eitherr ors.

In several works (cf.Z1, §3.4] for a reference), the non-determinism is modelled by dperators.
The first is normally writter+, and instead of distributing over application, it actuatiakes the non-
deterministic choice. Hende + s)t reduces either tdt or tost[10]. The second one, denoted fpydoes
not make the choice, and therefdre|| s)t reduces tat || st[12]. One way to interpret these operators
is that the first one is a non-deterministic one, while theosdds the parallel composition. Another
common interpretation is that is a may-convergenhon-deterministic operator, where type systems
ensure that at least one branch converges, Wh#@must-convergenton-deterministic operator, where
both branches are meant to convergelfl]. In our setting, thet operator inA. behaves like|, and an
extra operator 7§x) induces the non-deterministic choice. The main point & this construction arose
naturally just by considering some of the isomorphisms betwtypes as an equivalence relation. In
order to ensure that our system is must-convergent, we twlé its strong normalisation, which is left
for future research.

5.2 Open questions and future research

As mentioned in Sectiod, the calculusA. has implicit scalars on it, which can convert this non-
deterministic setting into a probabilistic one. The oraimotivation behind\;, [3] and its vectorial
type systemZ] was to encode quantum computing on it. A projection dependin scalars could lead to

A. Diaz-Caro and G. Dowek 143

a measurement operator in a future design—after otheriquedike deciding orthogonality2b] have
been addressed in that setting. This is a promising futueeiibn we are willing to take.

In order to follow such direction, a first step is to move to d-bg-value calculus, where(s+
t) = rs+rt (because a non-deterministic choice yet to make, is notideresl to be a value). The
reason to move to call-by-value is explained with the follogvexample. Consider for instance the term
0 = Ax.xx applied to a sunt +s. In call-by-name it reduces t@ + s)(r +s) while in a call-by-value
strategy Ajin) the same term reduces & + Js first, and then tar + ss If seeking for a quantum
interpretation, reducin@(r +s) into (r +s)(r +s) is considered as the forbidden quantum operation of
“cloning” [27], while the alternative reduction 1w + ssis seen as a “copy”, or CNOT, a fundamental
quantum operatior2].

In order to account for such an equivalencés+t) = rs+rs, we would need an equivalence at
the type level such aAAB) = C = (A= C) A (B = C), however it is clearly false. A workaround
which have been used already in the vectorial type sys&ns [to use the polymorphism instead of
an equivalence. If have typevX.X = Cx, then we can specialis¢ to the needed argument. Indeed,
¥X.X = Cx entails bothA = Ca andB =- Cg, which can latter be tied by a conjunction.

Another prominent future work is to determine what is neetl@dthe remaining isomorphisms
(cf. Figure1). In a work by Garrigue and Ait-Kaci2[], the isomorphismA A B = B A A has been
indirectly treated by combining it with curryingAAB) = C = A= B = C (cf. isomorphism4) of Fig-
urel), from which it can be deduced the isomorphidm- (B=-C) =B = (A=-C) (cf. isomorphism %)
of Figurel). Their proposal is the selective-calculus, a calculus including labellings to identify wii
argument is being used at each time. Moreover, by consglé¢hi@ Church encoding of pairs, isomor-
phism 6) implies isomorphismX) (commutativity ofA). However their proposal is completely different
to ours, and the non-determinism cannot be inferred fronséectiveA -calculus.

Acknowledgements. We would like to thank Frédéric Blanqui, Michele Pagard &iulio Manzonetto
for enlightening discussions.

References

[1] P. Arrighi & A. Diaz-Caro (2012)A System F Accounting for Scalatogical Methods in Computer Science
8(1:11), doi10.2168/LMCS-8(1:11)2012

[2] P. Arrighi, A. Diaz-Caro & B. Valiron (2012)A Type System for the Vectorial Aspects of the Linear-Algebr
Lambda-Calculus In E. Kashefi, J. Krivine & F. van Raamsdonk, editoiRroceedings of DCM-2011
EPTCS38, pp. 1-15, doi0.4204/EPTCS.88.1

[3] P. Arrighi & G. Dowek (2008):Linear-algebraicA -calculus: higher-order, encodings, and confluente
A. Voronkov, editor:Proceedings of RTA-200@ NCS5117, pp. 17-31, ddi0.1007/978-3-540-7059Q2
Available atarXiv:quant-ph/0612199.

[4] A.Assaf & S. Perdrix (2012)Completeness of Algebraic CPS Simulatidn€E. Kashefi, J. Krivine & F. van
Raamsdonk, editor®?roceedings of DCM-20]1 EPTCS88, pp. 16-27, dol:0.4204/EPTCS.88.2

[5] H. Barendregt (1984)The Lambda Calculus: Its Syntax and Semantisrth-Holland, Amsterdam.

[6] G.Boudol (1994)1Lambda-Calculifor (Strict) Parallel Functiongnformation and Computatiot08(1), pp.
51-127, doil0.1006/inco0.1994.1003

[7]1 A. Bucciarelli, T. Ehrhard & G. Manzonetto (2012)A Relational Semantics for Parallelism and
Non-Determinism in a Functional Setting Annals of Pure and Applied Logi@63(7), pp. 918—-934,
doi:10.1016/j.apal.2011.09.008vailable athal . inria.fr:inria-00628887.

http://dx.doi.org/10.2168/LMCS-8(1:11)2012
http://dx.doi.org/10.4204/EPTCS.88.1
http://dx.doi.org/10.1007/978-3-540-70590-1_2
arXiv:quant-ph/0612199
http://dx.doi.org/10.4204/EPTCS.88.2
http://dx.doi.org/10.1006/inco.1994.1003
http://dx.doi.org/10.1016/j.apal.2011.09.008
hal.inria.fr:inria-00628887

144 Non determinism through type isomorphism

[8] P. Buiras, A. Diaz-Caro & M. Jaskelioff (2012 onfluence via Strong Normalisation in an Algebraic
Calculus with Rewriting In S. Ronchi della Rocca & E. Pimentel, editorBroceedings of LSFA-2011
EPTCS81, pp. 16-29, dol:0.4204/EPTCS.81.2

[9] T. Coquand & G. Huet (1988)The Calculus of Constructiongnformation and Computationi6(2-3), pp.

95-120, doil0.1016/0890-5401(88)90005-8vailable athal .inria.fr:inria-00076024.

[10] U. de’Liguoro & A. Piperno (1995)Non Deterministic Extensions of Untyp&ecalculus Information and
Computatiorl22(2), pp. 149-177, ddi0.1006/inc0.1995.1145

[11] M. Dezani-Ciancaglini, U. de’Liguoro & A. Piperno (16% Filter models for conjunctive-disjunctive
lambda-calculi Theoretical Computer Scien&&0(1-2), pp. 83—-128, ddi0.1016/S0304-3975(96)80703-1

[12] M. Dezani-Ciancaglini, U. de’Liguoro & A. Piperno (183 A filter model for concurreni -calculus SIAM
Journal on Computing7(5), pp. 1376-1419, ddi0.1137/S0097539794275860

[13] R. Di Cosmo (1995)tsomorphisms of types: froircalculus to information retrieval and language design
Progress in Theoretical Computer Science, Birkhauser1@di007/978-1-4612-2572-0

[14] A. Diaz-Caro, G. Manzonetto & M. Pagani (2013}all-by-value non-determinism in a linear logic type
discipline In S. Artemov & A. Nerode, editorsProceedings of LFCS'13.NCS 7734, pp. 164-178,
doi:10.1007/978-3-642-357224P.

[15] A.Diaz-Caro, S. Perdrix, C. Tasson & B. Valiron (201Bjjuivalence of Algebrait-calculi. In: HOR-2010Q
pp. 6-11. Available airXiv:1005.2897v1.

[16] A. Diaz-Caro & B. Petit (2012): Linearity in the non-deterministic call-by-value setting In
L. Ong & R. de Queiroz, editors: Proceedings of WoLLIC'12 LNCS 7456, pp. 216-231,
doi:10.1007/978-3-642-326214%. Available atarXiv:1011.3542.

[17] G. Dowek, T. Hardin & C. Kirchner (2003)Theorem proving moduloJournal of Automated Reasoning
31(1), pp. 33-72, ddl0.1023/A:1027357912519

[18] G. Dowek & T. Jiang (2011)On the expressive power of schemégormation and Computatio?09, pp.
1231-1245, doi:0.1016/j.ic.2011.06.003

[19] G. Dowek & B. Werner (2003)Proof normalization modulo The Journal of Symbolic Logi68(4), pp.
1289-1316, doi:0.2178/jsl/1067620188

[20] J. Garrigue & H. Ait-Kaci (1994)The typed polymorphic label-selectixecalculus In: Proceedings of
POPL'94 ACM SIGPLAN, pp. 35-47, doi:0.1145/174675.174434

[21] G. Manzonetto (2008Models and theories of lambda calculd®h.D. thesis, Universita Ca’Foscari (Venice)
and Université Paris Diderot (Paris 7). Availablecal . archives-ouvertes.fr:tel-00715207.

[22] P. Martin-Lof (1984):Intuitionistic type theory Studies in proof theory, Bibliopolis.

[23] C. Monroe, D. Meekhof, B. King, W. Itano & D. Wineland (29): Demonstration of a Fundamental Quan-
tum Logic Gate Physical Review Letterg5(25), pp. 4714—-4717,da0.1103/PhysRevLett.75.47.14

[24] M. Pagani & S. Ronchi Della Rocca (201Q)nearity, non-determinism and solvabilitfundamental Infor-
maticael03(1-4), pp. 173-202, dd0.3233/FI-2010-324

[25] B. Valiron (2010): Orthogonality and Algebraic Lambda-Calculus In B. Coecke, P. Panan-
gaden & P. Selinger, editors: Proceedings of QPL-2010 pp. 169-175. Available at
http://www.cs.ox.ac.uk/people/bob.coecke/QPL_proceedings.html.

[26] L. Vaux (2009):The algebraic lambda calculusMathematical Structures in Computer ScieA&¢5), pp.
1029-1059, dot0.1017/S0960129509990089

[27] W.K. Wootters & W.H. Zurek (1982)A Single Quantum Cannot be ClonedNature299, pp. 802—-803,
doi:10.1038/299802a0

http://dx.doi.org/10.4204/EPTCS.81.2
http://dx.doi.org/10.1016/0890-5401(88)90005-3
hal.inria.fr:inria-00076024
http://dx.doi.org/10.1006/inco.1995.1145
http://dx.doi.org/10.1016/S0304-3975(96)80703-1
http://dx.doi.org/10.1137/S0097539794275860
http://dx.doi.org/10.1007/978-1-4612-2572-0
http://dx.doi.org/10.1007/978-3-642-35722-0_12
arXiv:1005.2897v1
http://dx.doi.org/10.1007/978-3-642-32621-9_16
arXiv:1011.3542
http://dx.doi.org/10.1023/A:1027357912519
http://dx.doi.org/10.1016/j.ic.2011.06.003
http://dx.doi.org/10.2178/jsl/1067620188
http://dx.doi.org/10.1145/174675.174434
tel.archives-ouvertes.fr:tel-00715207
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.3233/FI-2010-324
http://www.cs.ox.ac.uk/people/bob.coecke/QPL_proceedings.html
http://dx.doi.org/10.1017/S0960129509990089
http://dx.doi.org/10.1038/299802a0

	1 Introduction
	2 The calculus
	2.1 Definitions
	2.2 Examples

	3 Subject reduction
	4 From non-determinism to probabilities
	5 Conclusions and future work
	5.1 Conclusions
	5.2 Open questions and future research

