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We define an equivalence relation on propositions and a proofsystem where equivalent propositions
have the same proofs. The system obtained this way resemblesseveral known non-deterministic and
algebraic lambda-calculi.

1 Introduction

Several non-deterministic extensions to theλ -calculus have been proposed, e.g. [6, 7, 10–12, 24]. In
these approaches, the parallel composition (sometimes called themust-convergentparallel composition)
is such that ifr ands are twoλ -terms, the termr +s (also writtenr ‖ s) represents the computation that
runs eitherr or s non-deterministically. It is common to consider in these approaches the associativity
and commutativity of the operator+. Indeed the interpretation “eitherr or s runs” shall not prioritise any
of them, and so “eithers or r runs” must be represented by the same term. Moreover,(r + s)t can run
eitherrt or st, which is the same expressed byrt + st. Extra equivalences (or rewrite rules, depending
on the presentation) are set up to account for such an interpretation, e.g.(r + s)t ↔ rt + st. This right
distributivity can alternatively be seen as the one of function sum: (f + g)(x) is defined pointwise as
f(x)+g(x). This is the approach of the algebraic lambda-calculi [3, 26], two independently introduced
algebraic extensions which resulted strongly related afterwards [4,15]. In these algebraic calculi, a scalar
pondering each ‘choice’ is considered in addition to the sumof terms.

Because of these equivalences between terms, it is natural to think that a typed version must allow
some equivalences at the type level. Definitely, ifr ands are typed with typesA andB respectively, it is
natural to expect that whatever connective tie these types in order to typer +s, it must be commutative
and associative.

An independent stream of research is the study of isomorphisms between types for several languages
(see [13] for a reference). For example, we know that the propositions A∧B andB∧A are equiprovable:
one is provable if and only if the other is, but they do not havethe same proofs. Ifr is a proof ofA
ands is a proof ofB, then〈r ,s〉 is a proof ofA∧B while 〈s, r〉 is a proof ofB∧A. Despite that both
proofs can be derived from the same hypotheses, they are not the same. In this paper, we show how
the non-determinism arises naturally in a classic context only by introducing some equivalences between
types. These equivalences, nevertheless, will be chosen among valid, well-known isomorphisms. In
order to consider these isomorphic types as equivalent, we need to design a proof system such that they
have the same proofs, or conversely, in order to consider these terms to be equivalent, we need to make
these isomorphic types to be equivalent. Formally, two types A andB are isomorphic if there are two
conversion functionsf of typeA⇒ B andg of typeB⇒ A, such thatg( f (x)) = x for anyx of typeA and
f (g(y)) = y for anyy of typeB. Hence, in this system the conversion functionsf andg should become
and identity function. In other words, we take the quotient of the set of propositions by the relation
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generated by the isomorphisms of types and define proofs for elements in this quotient. In System F
with products, which correspond to the propositional logicwith universal quantifier, conjunction and
implication, the full list of isomorphisms is known [13], and it is summarised in Figure1.

1. A∧B≡ B∧A

2. A∧ (B∧C)≡ (A∧B)∧C

3. A⇒ (B∧C)≡ (A⇒ B)∧ (A⇒C)

4. (A∧B)⇒C ≡ A⇒ (B⇒C)

5. A⇒ (B⇒C)≡ B⇒ (A⇒C)

6. ∀X.∀Y.A≡ ∀Y.∀X.A

7. ∀X.A≡ ∀Y.A[Y/X]

8. ∀X.(A⇒ B)≡ A⇒∀X.B if X /∈ FV(A)

9. ∀X.(A∧B)≡ ∀X.A∧∀X.B

10. ∀X.(A∧B)≡ ∀X.∀Y.(A∧ (B[Y/X]))

Figure 1: All the type isomorphisms in propositional logic with universal quantifier, non-idempotent
conjunction and implication

In this work, we consider only the three first isomorphisms ofthis list, because they are those that
arise naturally when studying non deterministic processes. The impact of the others is left for future
work.

A B

A∧B

Usually, for the deduction rule on the right if we callr the proof ofA ands that ofB, we
write r ,s or 〈r ,s〉 the proof ofA∧B. However ifA∧B andB∧A arethe sameproposition,
we getr ,s ands, r to be the same term. Let us write “+” to the commutative comma1 and
set the rule

r : A s : B

r +s : A∧B
.

In the same way, the associativity of∧ induces that of+. Furthermore, the isomorphism (3) of
Figure1 induces the following equivalence on proofs. Ifr is a proof ofA⇒ B, s one ofA⇒ C, andt
one ofA thenr +s is a proof ofA⇒ (B∧C) and(r +s)t is a proof ofB∧C. This proof is the same as
rt +st. Summarising, from the equivalences between types we obtained a commutative and associative
+, which is such that the application right-distributes overit.

Several non-classical type systems have been already proposed for the non-deterministic and alge-
braic calculi, e.g. [1, 2, 16]. In these systems there is already an equivalence relationon propositions
such that ifA ≡ B andA types a term, then alsoB types it. Such equivalence is reminiscent of type
theory [9,22] and deduction modulo [17,19]. But here we go further, introducing an equivalence relation
that equates types built with different connectives such asA⇒ (B∧C) and(A⇒ B)∧ (A⇒C), which
is not possible there. Moreover, there is no elimination rule for conjunction in [1,2,16]. Indeed, having
commutativity and associativity properties in both, the sums of terms and the conjunctions of proposi-
tions, leads to uncertainty on how to eliminate them. A rule like “r : A∧B impliesπ1(r ) : A”, would not
be consistent. IfA andB are two arbitrary types,sa term of typeA andt a term of typeB, thens+ t has
both typesA∧B andB∧A, thusπ1(s+ t) would have both typeA and typeB. Hence, a naive rule would
lead to inconsistency. The projection would project a random term of any of the types of its arguments,
so not being a trustfully valid proof for any proposition.

The approach we follow here is to consider explicitly typed terms (Church style), and hence make
the projection to depend on the type: ifr : A∧B thenπA(r) : A. This way, we recover consistency of
the proof system. This new form of projection entails allowing some non-determinism directly in the
rewrite system. Indeed, ifr ands have the same typeA, πA(r + s) both reduces tor and tos. A priori

1We could chose another symbol, however+ is the one used in most non-deterministic settings.
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this does not entail any problem; any of them is a valid proof of the same propositionA. This approach
can be summarised by the slogan“the subject reduction property is more important than the uniqueness
of results” [18]. Therefore the projection turns the non-deterministic choice explicit.

We formalise all of the previously discussed concepts in Section 2, where we present the calculus
λ+, and provide some examples. Section3 The next section is devoted to prove that our system enjoys
the subject reduction property. In Section4 we discuss the relation of this setting with respect to the
algebraic approach. Finally, Section5 concludes the paper with suggestions for future research.

2 The calculus

2.1 Definitions

In this section we present the calculusλ+, an explicitly typed lambda-calculus extended with a+ operator
as discussed in the introduction. We consider the followinggrammar of types

A,B,C, . . . ::= X | A⇒ B | A∧B | ∀X.A ,

where the isomorphisms (1), (2) and (3) from Figure1 are made explicit by an equivalence relation
between types

A∧B ≡ B∧A , (A∧B)∧C ≡ A∧ (B∧C) and A⇒ (B∧C) ≡ (A⇒ B)∧ (A⇒C) .

The set of termsΛ is defined inductively by the grammar

r ,s, t ::= xA | λxA.r | rs | r +s | πA(r ) | ΛX.r | r{A} .

All our variable occurrences are explicitly typed, but we usually omit the superscript indicating the
type of variables when it is clear from the context. For example we writeλxA.x instead ofλxA.xA. The
α-conversionand the setsFV(r ) of free variables ofr andFV(A) of free variables of Aare defined
as usual in theλ -calculus (cf. [5, §2.1]). For exampleFV(xAyB) = {xA,yB}. The same variable, with
different types, is treated as a different variable. For example, the termλxA.xB : A⇒ B is typable in our
system, and it is the constant functionxB, sincexB is free in the termλxA.xB. We say that a termr is
closedwheneverFV(r) = /0. Given two termsr ands we denote byr [s/x] the term obtained by simul-
taneously substituting the terms for all the free occurrences ofx in r , subject to the usual proviso about
renaming bound variables inr to avoid capture of the variables free ins. AnalogouslyA[B/X] denotes
the substitution of the typeB for all the free occurrences ofX in A, andr [B/X] the substitution inr . For
example,(xA)[B/Y] = x(A[B/Y]), (λxA.r )[B/X] = λxA[B/X].r [B/X] and(πA(r ))[B/X] = πA[B/X](r [B/X]).
Simultaneous substitutions are defined in the same way. Finally, terms and types are considered up to
α-conversion.

Each term of the language has a main type associated, which can be obtained from the type anno-
tations, and other types induced by the type equivalences. The type system forλ+ is given in Figure2.
If FV(r) = {xA1

1 , . . . ,xAn
n }, we writeΓ(r ) = {A1, . . . ,An}. FV({A1, . . . ,An}) is defined by

⋃n
i=1 FV(Ai).

Typing judgementsare of the formr : A. A term r is typableif there exists a typeA such thatr : A.
Lemma2.1states that the typing modulo equivalences is unique.

Lemma 2.1. If r : A andr : B, then A≡ B.

Proof. Without rule≡, the type system is syntax directed. The only rule able to modify the type of a
term without changing it is≡.
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ax
xA : A

[A≡ B]
r : A

≡
r : B

r : B
⇒I

λxA.r : A⇒ B

r : A⇒ B s : A
⇒E

rs : B

r : A s : B
∧I

r +s : A∧B

r : A∧B
∧E

πA(r) : A
[X /∈ FV(Γ(r ))]

r : A
∀I

ΛX.r : ∀X.A

r : ∀X.A
∀E

r{B} : A[B/X]

Figure 2: The type system forλ+

The operational semantics of the calculus is given in Figure3, where there are two distinct relations
between terms:֒→ and a symmetric relation⇄. We write⇄∗ and →֒∗ for the transitive and reflexive
closures of⇄ and→֒ respectively. In particular, notice that⇄∗ is an equivalence relation.

Symmetric relation:
r +s⇄ s+ r , (r +s)+ t ⇄ r +(s+ t), (r +s)t ⇄ rt +st,
λxA.(r +s)⇄ λxA.r +λxA.s, If r : A⇒ (B∧C), thenπA⇒B(r )s⇄ πB(rs).

Reductions:
(λxA.r ) s →֒ r [s/x], (ΛX.r){A} →֒ r [A/X], If r : A, thenπA(r +s) →֒ r .

Figure 3: Operational semantics ofλ+

2.2 Examples

Example 2.2. We haveλxA∧B.x : (A∧ B) ⇒ (A∧ B) and so by rule≡, λxA∧B.x : ((A∧ B) ⇒ A)∧
((A∧ B) ⇒ B), from which we can obtainπ(A∧B)⇒A(λxA∧B.x) : (A∧ B) ⇒ A. Let r : A∧ B, then
π(A∧B)⇒A(λxA∧B.x)r : A, and notice thatπ(A∧B)⇒A(λxA∧B.x)r ⇄ πA((λxA∧B.x)r ) →֒ πA(r ).

Example 2.3. Let TF = λxA.λyB.(x+y). It is easy to check thatTF : A⇒ B⇒ (A∧B), and by rule≡ it
also has the type(A⇒ B⇒ A)∧ (A⇒ B⇒ B). Therefore,πA⇒B⇒A(TF) : A⇒ B⇒ A is well typed. In
addition, if r : A ands : B, we haveπA⇒B⇒A(TF)rs : A.

Notice thatπA⇒B⇒A(TF)rs ⇄ πB⇒A(TFr )s ⇄ πA(TFrs) →֒ πA((λyB.(r +y))s) →֒ πA(r +s) →֒ r ,
which is coherent with such typing.

Example 2.4. Let T = λxA.λyB.x andF= λxA.λyB.y. ThenT+F : (A⇒B⇒ A)∧(A⇒B⇒ B), hence
π(A⇒B⇒A)∧(A⇒B⇒B)(T+F+TF) reduces non-deterministically either toT+F or toTF. Moreover, notice
thatT+F ⇄

∗ TF, hence in this very particular case, the non-deterministicchoice does not play any role.

3 Subject reduction

In this section we prove that the set of types assigned to a term is invariant under⇄ and →֒. In other
words, Theorem3.2states that ifr is a proof ofA, any reduction fired fromr will still be a proof ofA.

The substitution lemma below will be the key ingredient in the proof of subject reduction. It ensures
that when substituting types for type variables or terms forterm variables, in an adequate manner, the
typing judgements remain valid.

Lemma 3.1(Substitution). If r : B ands : A, thenr[s/xA] : B. Also, Ifr : A, thenr[B/X] : A[B/X].

Proof. By induction overr for the first result and over the type derivation for the second.



A. Dı́az-Caro and G. Dowek 141

Now we can prove the subject reduction property, ensuring that the typing is preserved during reduction.

Theorem 3.2(Subject reduction). If r → s andr : A, thens : A (where→ is either →֒ or ⇄).

Proof. By induction over the reduction relation. We give only two interesting cases.
Rule πA⇒B(r )s⇄ πB(rs), with r : A⇒ (B∧C). Let πA⇒B(r )s : D, thenπA⇒B(r ) : E ⇒ D ands : E. But
thenE ≡ A andD ≡ B, because clearly, the main type forπA⇒B(·) is A⇒ B, sor : (A⇒ B)∧F, however
sincer : A⇒ (B∧C), we haveF ≡ A⇒C. So, by rule⇒E, rs : B∧C. We conclude by rule∧E. For
the inverse direction, letπB(rs) : D. ThenD ≡ B andrs : B∧E, so r : F ⇒ (B∧E) ands : F. Hence,
sincer : A⇒ (B∧C), by Lemma2.1, we haveF ≡ A andE ≡C, soπA⇒B(r ) : A⇒ B, from which, we
concludeπA⇒B(r)s : B. We conclude by rule≡.
Rule (λxA.r) s →֒ r [s/x]. Let (λxA.r )s : B, thenλxA.r : C ⇒ D ands : C, with D ≡ B. Thenr : E, with
A⇒ E ≡C ⇒ D. Notice that, sinceA⇒ E ≡C ⇒ D, it must beA≡C andE ≡ D. Then, by rule≡,
s : A, and so, by Lemma3.1, r [s/xA] : E, and sinceE ≡ D ≡ B, by rule≡, we obtainr [s/xA] : B.

4 From non-determinism to probabilities

In [3] and [26] two algebraic extensions of the untyped lambda-calculus are introduced, which we call
λlin andλalg respectively. In these settings, not only the+ operator is present, but also a scalar pondering
each choice. Hence, ifr ands are two possible terms, so is the linear combination of themα .r + β .s,
with α ,β some kind of scalars (taken from a generic ring inλlin or fromR≥0 in λalg). Both these calculi
identify the term(r + s)t with rt + st, either with a rewrite system or an equality, and+ is associative
and commutative. Also, the scalars interact with the+, e.g.r + r ↔ 2.r . By restricting the scalars to
positive real numbers, or even to natural numbers, one possible interpretation is that the scalars give the
probability of following one possible path (after ‘normalising’ the scalars, i.e. dividing over the total
amount in order to sum up to 1). In this way, the term 2.r +s is twice more likely to runr thans.

Indeed, in [1, §6] the type systemB for λlin is proposed, which can decide whether a superposition
is a probability distribution (i.e. it can check that the sumof terms is up to 1). Such a system includes
scalars at the type level, reflecting those in the terms, soα .r has typeα .A wheneverr has typeA. This
provides a powerful tool to account for the scalars within the terms, however it entails a ‘non-classical’
extension of System F with scalars pondering the types. In such a formalism, there is no possibility to tie
terms with different types: ifr andshave both typeA, thenα .r +β .shave type(α +β ).A, however if the
types ofr ands differ, the previous term cannot be typed. That weakness is solved in [2], where a more
powerful system is introduced, with a type system also allowing for linear combination of types, just like
for terms. In both these systems, while powerful, it is hard to establish a connection with a well-known
logic. That is precisely the goal of [8], where a more ‘classic’ system is developed, with no scalars
at the type level. However it carries some costs: first, it is only meant for positive real scalars (which
anyway is enough for a ‘probabilistic’ interpretation), and more importantly, the type system gives just
an approximation, an upper bound, of the scalars in the terms.

We could envisage extendingλ+ with a more thorough projection whereπA(α .r +β .s) would output

πA(r +πA(s+ t)+ t)

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

  
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

��

πA(s+ t)

��
((◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

r s t

eitherr , with probabilityα , or s with probability β . However,
even when the scalars are not explicitly written, the probabilities
are present. The following example is clarifying.

Let r : A, s : A and t : A. Then, the reductions depicted in
the diagram at right are possible. If we considerπA making
an equiprobable choice instead of a non-deterministic one,it is
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clear thatt have more probability to be reached, followed byr ,
and the less likely iss.

πA(r +πA(s+ t)+ t)
1
3

}}③③
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③③
③③
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③③ 1
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❈
1
3
��

πA(s+ t)
1
2
��

1
2

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

r s t

Indeed, we can calculate the global probability of reach-
ing each possibility by labelling the reductions with its local
probability as shown in the diagram at left, from where just
by summing up the labels reaching a term, and multiplying
those in the same path, we can easily check that the termr has
probability 1

3 of being reached, the terms probability 1
6 and

the termt probability 1
2. Hence, this term would be expressed

with scalars as13r + 1
6s+ 1

2t according to the previously dis-
cussed interpretation. Therefore,λ+ could be seen as a sort

of algebraic calculus, with implicit scalars taken fromQ[0,1], typed with a standard type system. These
ideas will be fully developed in a future research.

5 Conclusions and future work

5.1 Conclusions

In this paper we have introducedλ+, a proof system for second order propositional logic with anassocia-
tive and commutative conjunction, and implication. In thissystem, isomorphic propositions get the same
proofs. At this first step we only consider three isomorphisms, namely commutativity and associativity
of the conjunction, and distributivity of implication withrespect to conjunction. We use the symbol+
to put together the proofs of different propositions, sor + s becomes a proof ofA∧B, if r is a proof of
A andsa proof ofB. Such a symbol is commutative and associative, and application is right-distributive
with respect to it, to account for the isomorphisms of propositions.

This construction entails a non-deterministic projectionwhere if a proposition has two possible
proofs, the projection of its conjunction can output any of them. For example, ifr andsare two possible
proofs ofA, thenπA(r +s) will output eitherr or s.

In several works (cf. [21, §3.4] for a reference), the non-determinism is modelled by two operators.
The first is normally written+, and instead of distributing over application, it actuallymakes the non-
deterministic choice. Hence(r +s)t reduces either tort or tost [10]. The second one, denoted by‖, does
not make the choice, and therefore(r ‖ s)t reduces tort ‖ st [12]. One way to interpret these operators
is that the first one is a non-deterministic one, while the second is the parallel composition. Another
common interpretation is that+ is a may-convergentnon-deterministic operator, where type systems
ensure that at least one branch converges, while‖ is amust-convergentnon-deterministic operator, where
both branches are meant to converge [7,14]. In our setting, the+ operator inλ+ behaves like‖, and an
extra operator (πA) induces the non-deterministic choice. The main point is that this construction arose
naturally just by considering some of the isomorphisms between types as an equivalence relation. In
order to ensure that our system is must-convergent, we shallprove its strong normalisation, which is left
for future research.

5.2 Open questions and future research

As mentioned in Section4, the calculusλ+ has implicit scalars on it, which can convert this non-
deterministic setting into a probabilistic one. The original motivation behindλlin [3] and itsvectorial
type system [2] was to encode quantum computing on it. A projection depending on scalars could lead to
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a measurement operator in a future design—after other questions like deciding orthogonality [25] have
been addressed in that setting. This is a promising future direction we are willing to take.

In order to follow such direction, a first step is to move to a call-by-value calculus, wherer(s+
t) ⇄ rs+ rt (because a non-deterministic choice yet to make, is not considered to be a value). The
reason to move to call-by-value is explained with the following example. Consider for instance the term
δ = λx.xx applied to a sumr + s. In call-by-name it reduces to(r + s)(r + s) while in a call-by-value
strategy (λlin ) the same term reduces toδ r + δ s first, and then torr + ss. If seeking for a quantum
interpretation, reducingδ (r +s) into (r +s)(r +s) is considered as the forbidden quantum operation of
“cloning” [27], while the alternative reduction torr + ss is seen as a “copy”, or CNOT, a fundamental
quantum operation [23].

In order to account for such an equivalence,r(s+ t) ⇄ rs+ rs, we would need an equivalence at
the type level such as(A∧B) ⇒ C ≡ (A ⇒ C)∧ (B ⇒ C), however it is clearly false. A workaround
which have been used already in the vectorial type system [2] is to use the polymorphism instead of
an equivalence. Ifr have type∀X.X ⇒ CX, then we can specialiseX to the needed argument. Indeed,
∀X.X ⇒CX entails bothA⇒CA andB⇒CB, which can latter be tied by a conjunction.

Another prominent future work is to determine what is neededfor the remaining isomorphisms
(cf. Figure 1). In a work by Garrigue and Aı̈t-Kaci [20], the isomorphismA∧B ≡ B∧A has been
indirectly treated by combining it with currying:(A∧B)⇒C≡ A⇒B⇒C (cf. isomorphism (4) of Fig-
ure1), from which it can be deduced the isomorphismA⇒ (B⇒C)≡B⇒ (A⇒C) (cf. isomorphism (5)
of Figure1). Their proposal is the selectiveλ -calculus, a calculus including labellings to identify which
argument is being used at each time. Moreover, by considering the Church encoding of pairs, isomor-
phism (5) implies isomorphism (1) (commutativity of∧). However their proposal is completely different
to ours, and the non-determinism cannot be inferred from theselectiveλ -calculus.

Acknowledgements. We would like to thank Frédéric Blanqui, Michele Pagani and Giulio Manzonetto
for enlightening discussions.
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