
D. Kesner and P. Viana (Eds.): LSFA 2012
EPTCS 113, 2013, pp. 153–168, doi:10.4204/EPTCS.113.15

c© Veloso & Veloso
This work is licensed under the
Creative Commons Attribution License.

A Graph Calculus for Predicate Logic∗

Paulo A. S. Veloso
COPPE-UFRJ

Systems and Computer Engin. Program
UFRJ: Federal University of Rio de Janeiro

RJ, Brazil
pasveloso@gmail.com

Sheila R. M. Veloso
FEN-UERJ

Systems and Computer Engin. Dept., Fac. of Engineering
UERJ: State University of Rio de Janeiro

RJ , Brazil
sheila.murgel.bridge@gmail.com

We introduce a refutation graph calculus for classical first-order predicate logic, which is an exten-
sion of previous ones for binary relations. One reduces logical consequence to establishing that a
constructed graph has empty extension, i. e. it represents ⊥. Our calculus establishes that a graph
has empty extension by converting it to a normal form, which is expanded to other graphs until we
can recognize conflicting situations (equivalent to a formula and its negation).

1 Introduction

We present a refutation graph calculus for classical first-order predicate logic. This approach is based on
reducing logical consequence to showing that a constructed graph has empty extension, representing the
logical constant ⊥. Our sound and complete calculus establishes when a graph has empty extension.

For instance, given formulas ψ, θ and ϕ, to establish that ϕ follows from {ψ,θ}, we construct a graph
G corresponding to {ψ,θ}∪{¬ϕ} and show that G has empty extension. Now, our calculus establishes
that a graph has empty extension by converting it to a normal form, which is expanded to other graphs
until we can recognize conflicting situations (equivalent to a formula and its negation).

Formulas are often written down on a single line [3]. Graph calculi rely on two-dimensional repre-
sentations providing better visualization [2].1 In the realm of binary relations, a simple calculus (with
linear derivations) [2, 3] was extended for handling complement: direct calculi [5, 7] and refutation cal-
culi [13]. Our new calculus is a further extension, inheriting much of the earlier terminology (such as
‘graph’, ‘slice’ and ‘arc’), together with some ideas from Peirce’s diagrams for relations [11, 4]. The
present calculus involves two new aspects: extension to arbitrary predicates (which affects the represen-
tation) and allowing formulas within the graphs.

The structure of this paper is as follows. Section 2 motivates the underlying ideas with some illus-
trative examples. Section 3 introduces our graph language: syntax, semantics and some constructions.
In Section 4 we introduce our graph calculus: its rules and goal. Section 5 presents some concluding
remarks, including comparison with related works.

2 Motivation

We begin by motivating our ideas with some illustrative examples.

∗Research partly sponsored by the Brazilian agencies CNPq and FAPERJ.

1The structure of (x+ y) · (z÷w) is more apparent in the notation

 x
+
y

 ·
 z
÷
w

 (see also [1]).

http://dx.doi.org/10.4204/EPTCS.113.15
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

154 A Graph Calculus for Predicate Logic

We know that consequence can be reduced to unsatisfiability. We will indicate how one can represent
formulas graphically and then establish consequence by graphical means.

First, we indicate how we can represent (some) formulas graphically (see 3.1 for more details).
We represent an atomic formula by arrows to predicate symbols coming from its arguments. So, we

represent the formulas p(u) and r(u,v), respectively, as follows:

pOO

u

r

u

DD

v

ZZ

The former illustrates a 1-ary arc. The latter is an example of a 2-ary arc, which will be satisfied by the
choices of values a and b for u and v, respectively, with the pair (a,b) in the 2-ary relation interpreting r.

We obtain a representation for a conjunction by joining those of its formulas. So, we represent the
formula p(u)∧ r(u,v) as follows:

p [[r

u

CC

v

[[

This set of 2 arcs is an example of a draft, which also represents the set {p(u), r(u,v)}. This draft D will
be satisfied exactly by the assignments satisfying both p(u) and r(u,v).

To represent an existential quantification, we hide the node corresponding to the quantified variable,
leaving only the rest visible. For instance, from formula p(u)∧ r(u,v), we obtain ∃x(p(x)∧ r(x,v)). We
can use the representation of the former to represent the latter: we place the above draft D within a box
and mark v as visible, which we represent as follows:

p ZZ r

u

EE

~v

YY

This is an example of a 1-ary slice. The interpretation of this slice S is the 1-ary relation consisting of
the values b such that, for some a, the assignment u 7→ a, v 7→ b satisfies the underlying draft D.

Now, we can represent formula ¬∃x(p(x)∧ r(x,v)) by complementing this slice S. As stands for
complement, we represent ¬∃x(p(x)∧ r(x,v)) as follows:

p ZZ r

u

EE

~v

YY

A draft consists of finite sets of names and of arcs (giving constraints on the names). A slice consists
of a draft and a list of distinguished names, which we indicate by special marks, such as ‘→’.

Next, we illustrate how one can establish consequence by graphical means. The idea is reducing
unsatisfiability of a (finite) set of formulas to that of its corresponding draft.

We begin with an example that is basically propositional. Then, we examine other examples with
equality .

= and existential quantifiers (see 3.2 and 4.1 for more details).

Example 2.1. Consider p(u)∧ q(u) |= p(u). As mentioned, we reduce it to {p(u)∧ q(u),¬p(u)} |= ⊥.
We can represent the formulas by (sets of) arcs as follows:

Veloso & Veloso 155

p(u) q(u) p(u)∧q(u) ¬p(u)

p \\

u

qOO

u

p \\ qOO

u

pBB

u

We can obtain a representation for the set {p(u)∧q(u),¬p(u)} by joining those of its formulas:

p \\ qOO pBB

u

Within this draft for {p(u)∧q(u),¬p(u)}, we find the conflicting situation (as stands for complement):

p \\ pBB

u

Thus, the representation of {p(u)∧q(u),¬p(u)} is unsatisfiable.

Example 2.2. We know that p(u) 6|= p(v), i. e. {p(u),¬p(v)} 6|=⊥. The corresponding draft is:

pOO pOO

u v

Here, we do not find conflicting arcs.2 In fact, we can read from the representation a model M= 〈M,pM〉,
with M := {u,v} and pM := {u}, where one can satisfy p(u) and ¬p(v).

Example 2.3. We reduce p(v)∧v .
= u |= p(u) to the unsatisfiability of the set {p(v)∧v .

= u,¬p(u)}. We
have the graphical representations as sets of arcs as follows:

p(v)∧v .
= u ¬p(u) {p(v)∧v .

= u,¬p(u)}

p ZZ
.
=CC [[

v u

pCC

u

p ZZ
.
=CC [[pDD

v u

Now, we can simplify the representation of {p(v)∧v .
= u,¬p(u)}, by renaming v to u:

p ZZ
.
=CC [[pDD

v u
transforms to

p]] pAA

u

This final representation is not satisfiable (cf. Example 2.1).

Example 2.4. We reduce r(u,v) |= ∃z r(u,z) to {r(u,v),¬∃zr(u,z)} |= ⊥. As before, we can represent
formula r(u,v) by the single-arc draft:

2Indeed, we have: pOO

u
but not

pOO

u

and pOO

v
but not

pOO

v

.

156 A Graph Calculus for Predicate Logic

r

u

CC

v

[[

Also, we can represent ¬∃zr(u,z) by the following 1-ary arc:

u

~u

r

v

�� ��

��

Thus, we can represent {r(u,v),¬∃zr(u,z)} by the draft:

r

v

__

u

~u

r

v

�� ��

��

??

Now, with~u 7→ u,v 7→ v, we have a copy of the slice under complement within the draft, namely:

slice → draft

~u

r

v

DD YY

u

r

v

== __

So, the representation of {r(u,v),¬∃zr(u,z)} is not satisfiable.

Example 2.5. We reduce ∃x∃y[r(u,x)∧s(x,y)] |= ∃zr(u,z) to {∃x∃y[r(u,x)∧s(x,y)],¬∃zr(u,z)} |=⊥.
Proceeding as before, we can be represent {∃z∃y[r(x,z)∧ s(z,y)],¬∃zr(u,z)} as:

~u

r

v

s

w

EE YY EE VV

88

u

~u

r

v

�� ��

��

We can transform this representation into the following one, which is, much as before, unsatisfiable.

Veloso & Veloso 157

u

r

v

s

w

~u

r

v

�� ��

��

EE YY EE VV

3 Graph Language

We now introduce our concepts: expressions, slices and graphs will give relations, whereas arcs, sketches
and drafts will correspond to constraints. We will examine syntax and semantics (in 3.1) and then some
concepts and constructions (in 3.2).

We first introduce some notations. Given a function f : A→ B, we use f (a) or a f for its value at an
element a ∈ A; which we extend to lists and sets. For a list a = 〈a1, . . . ,ak〉 ∈ Ak, we use f (a) or a f for
the list of values 〈a1

f , . . . ,ak
f 〉 ∈ Bk; for a set N, we use f (N) or N f for the set of values {a f : a ∈ N}.

Given a list a = 〈a1, . . . ,ak〉 ∈ Ak, we employ a for its set of components. The null list is λ := 〈 〉. We
sometimes write a list 〈a1, . . . ,ak〉 simply as a1 . . . ak.

We will use names (or parameters) for marking free places and variables for marking bound places,
as usual in Proof Theory [12]. To quantify a formula ϕ we replace a name u by a new variable (not
appearing in ϕ) obtaining ∃xϕ[u/x] and ∀xϕ[u/x]. Also, given lists u, of n distinct names, and x, of n
distinct variables not occurring in ϕ, we have the formulas ∃nxϕ[u/x] and ∀nxϕ[u/x].

We will consider first-order predicate languages (without function symbols, except the constant ⊥),
each one characterized by pairwise disjoint sets as follows:

(Nm) an infinite linearly ordered set of names Nm;

(Vr) a denumerably infinite set of variables Vr;

(Pr) (possibly empty, but pairwise disjoint) sets Prn of n-ary predicate symbols, for n ∈ IN.

Given m ∈ IN+, we use um for the mth name. Given n ∈ IN, we use un := 〈u1, . . .un〉 for the list of the
first n names (with u0 = λ). Also, given a set v⊆ Nm of names, we use~v for the list of the names in v in
the ordering of Nm. For a formula ϕ, we use NF[ϕ] for the set of names occurring in ϕ.

3.1 Syntax and semantics

We now introduce the syntax and semantics of our concepts. We first examine the syntax of our concepts.
The objects of our graph language are defined by mutual recursion as follows.

(E) An n-ary expression is an n-ary predicate symbol, a formula with n names, an n-ary slice or graph
(see below), or E, where E is an n-ary expression. For instance, ⊥ is a 0-ary expression, .

= and .
=

are 2-ary expressions, whereas p(u) and p (for p ∈ Pr1) are 1-ary expressions.

(a) An m-ary arc a over set N⊆Nm of names is a pair E/v (also noted
E
v

), where E is an m-ary expression

and v ∈ Nm. Examples are ⊥/λ, .
=/uv, p/u, q(u)/v (for p,q ∈ Pr1) and s/uw (for s ∈ Pr2).

(Σ) A sketch Σ = 〈N,A〉 consists of sets N⊆ Nm of names and A of arcs over N.

158 A Graph Calculus for Predicate Logic

(D) A draft D = 〈N,A〉 is a sketch with finite sets N of names and A of arcs. An example of draft is
D′ = 〈{u,u′,v,w,w′},{p/u,q(u)/v, .=/ww′,s/uw}〉.

(S) An n-ary slice S= 〈S : ŝ〉 consists of its underlying draft S := 〈N,A〉 and a distinguished list ŝ, with
ŝ ∈Nn. For instance, S= 〈{u,u′,v,w,w′},{p/u,q(u)/v, .=/ww′,s/uw} : uvv〉 is a 3-ary slice with
underlying draft S= D′ (as above) and distinguished list ŝ= 〈u,v,v〉.

(G) An n-ary graph is a finite set of n-ary slices.

In particular, the empty graph { } has no slice. Example 4.5 (in 4.2) will show a 2-slice graph.
Note that expressions, arcs, slices and graphs are finite objects, whereas sketches are not necessarily

so. Sketches will be useful for representing models and constructing co-limits. Also, some concepts and
results do not depend on finiteness (see 3.2), which will be important in Section 4. We wish to represent
these finite objects graphically by drawings (cf. the examples in Section 2). For this purpose, we employ
two sorts of nodes: name nodes (labeled by names) and expression nodes (labeled by expressions). Some
representations aiming at precision and readability are as follows.

We represent an m-ary arc E/v, with v = 〈v1, . . . ,vm〉, by m arrows connecting each node labeled by

vi to the node labeled by E. For instance, we can draw a 3-ary arc t/〈u,v,w〉 as
t

↗ ↑ ↖
u v w

.

To clarify (as in
t

uvu
), we may use distinct kinds of lines or label them by numbers.3 A more compact

version uses is v1
r→ v2 for the 2-arc r/v1v2, representing 1-ary, 3-ary and 4-ary arcs, respectively, as:

p

v1

, v1
t // v3

v2

OO and v1
q // v4

v2 //

OO

v3

.

We can indicate the components of a distinguished list by marking their nodes, say with numbers, e.
g. 〈u,v,u〉 by u1,3v2. Also, it may be convenient (for easier visualization) to enclose a slice S within a full

box, S , and a graph G within a dashed box, G . For instance, Example 2.5 (in Section 2) shows a 0-ary
slice S= 〈{u,v,w},A : λ〉, with A= {r/uv,s/vw,T/u}, where T is the 1-ary slice 〈{u,v},{r/uv} : u〉.

Given a list w of names, the arcless w slice is the slice >w := 〈w, /0 : w〉. The arcless m-ary slice is
the slice>m :=>um (um is the list of the first m names) and the m-node arcless draft is>m = 〈um, /0〉. The
arc of formula ϕ, with set v of names, is a[ϕ] := ϕ/~v. (The arc of a sentence τ is 0-ary: a[τ] = τ/λ, which
we represent as the expression node τ.) The sketch of the set of arcs A is the sketch Sk[A] := 〈N,A〉,
where N consists of the names occurring in the arcs of A: N :=

⋃
{w⊆ Nm : E/w ∈ A}. For instance,

Sk[{s/uv,p(v)/w}] = 〈{u,v,w},{s/uv,p(v)/w}〉.
We may wish to add an arc a = E/v to a sketch, a slice or a graph. For a sketch Σ = 〈N,A〉, we

set Σ+ a := 〈N∪ v,A∪{a}〉; for a slice S = 〈S : ŝ〉, we set S+ a := 〈S+ a : ŝ〉; for a graph G, we set
G+ a := {S+a : S ∈ G}. The difference slice of a finite set of arcs A with respect to an arc a = E/v is
the 0-ary slice DS[A∠a] := 〈Sk[A] +E/v : λ〉. For instance, Example 2.3 (in Section 2) represents the
set {p(v)∧v .

= u,¬p(u)} by the difference slice DS[{p/v, .=/vu}∠p/u]. We will give some intuition for
using 0-ary slices in 3.2.

We now examine the semantics of our concepts and related ideas.
A model M has as its universe a set M 6= /0 and realizes each n-ary predicate symbol p ∈ Prn as an

n-ary relation pM ⊆Mn (with .
=M:= {〈a,a〉 ∈M2 : a ∈M}). An M-assignment for set N⊆Nm of names

is a function g :N→M. A formula ϕ with set v of n names defines the n-ary relation ϕM⊆Mn consisting

3We often employ full, dashed, dotted and wavy lines, respectively, for the 1st, 2nd, 3rd and 4th arguments of expressions.

Veloso & Veloso 159

of the values of its ordered names for the assignments satisfying ϕ: ϕM := {~vh ∈Mn : M |= ϕ [[h]]}. For
instance, for 2-ary predicate symbol r, r(u1,u2)

M = rM, r(u2,u1)
M = {〈b,a〉 ∈M2 : 〈a,b〉 ∈ rM} and

r(u1,u1)
M = {〈a〉 ∈M1 : 〈a,a〉 ∈ rM}. Also, ⊥M := /0.

We now introduce the meanings of the concepts, again by mutual recursion.

(E) We define the relation of an expression as follows. For a predicate symbol p we have its relation:
[p]M := pM; for formula ϕ we have its defined relation: [ϕ]M := ϕM; for a slice S or graph G,
we use the extensions: [S]M := [[S]]M and [G]M := [[G]]M (see below); for E, where E is an n-ary
expression, we use the complement: [E]M := Mn \ [E]M.

(a) An M-assignment g : N→M satisfies an m-ary arc E/v over N in M (noted g M E/v) iff v ∈ Nm

and vg ∈ [E]M. For instance, g M
.
=/uv iff ug = vg and g M p/w iff wg ∈ [p]M = pM.

(Σ) An assignment g satisfies a sketch Σ = 〈N,A〉 in M (noted g : Σ→M) iff g satisfies every arc a ∈ A.

(S) The extension of a slice is the relation consisting of values of its distinguished list for the assignments
satisfying its underlying draft; for an n-ary slice S= 〈S : ŝ〉, [[S]]M := {ŝg ∈Mn : g : S→M}.

(G) The extension of a graph is the union of those of its slices: [[G]]M :=
⋃

S∈G [[S]]M.

Clearly, g M E/v iff g 6M E/v. Also, the arcless m-ary slice >m has extension [[>m]]M = Mm.
An expression E is null iff [E]M = /0 in every model M. For instance, the empty graph { } is null.
Given a sketch Σ = 〈N,A〉 and an arc a = E/v, we say that a is a consequence of Σ (noted Σ |= a)

iff, for every model M and M-assignment g : N∪ v→ M, g satisfies a whenever g satisfies Σ. Call
expressions E and F equivalent (noted E ≡ F) iff, for every model M, [E]M = [F]M. A slice S and the
singleton graph {S} are equivalent (so they may be identified).

We can reduce consequence to the difference slice: an arc a is a consequence of a draft D iff the
difference slice DS[A∠a] is null. So, we can also reduce logical consequence to a difference slice.4

Proposition 3.1. Given a finite set Ψ of formulas and a formula θ: Ψ |= θ iff the difference slice
DS[{a[ψ] : ψ ∈Ψ}∠a[θ]] is null.

Proof. By the preceding remark, since g M a[ϕ] iff M |= ϕ [[g]].

Section 4 will present a calculus for establishing that an expression is null.

3.2 Concepts and constructions

We now examine some concepts and constructions.
We first introduce morphisms for comparing sketches.
Consider sketches Σ′ = 〈N′,A′〉 and Σ′′ = 〈N′′,A′′〉. A function η : N′′→ N′ is a morphism from Σ′′

to Σ′ (noted η : Σ′′ 99K Σ′) iff it preserves arcs: for every arc E/v ∈ A′′, we have E/vη ∈ A′. We use
Mor[Σ′′,Σ′] for the set of morphisms from Σ′′ to Σ′.

Example 3.1. Given p ∈ Pr1 and q, r,s, t,a,b ∈ Pr2, consider the drafts D′ = 〈N′,A′〉 and D′′ = 〈N′′,A′′〉,
with sets of nodes N′ = {u,v,v′,w,w′} and N′′ = {u1,u2,u3,v,v1,v2,w,w1,w2,w′}, and sets of arcs

A′ = {q/vw,p/w′, r/vw′,s/vu, t/uw,a/uv′,b/v′w} and

A′′= {q/v1 w1,q/v2 w2,p/w′, r/vw′, r/v1 w′, r/v2 w′,s/v2 u3, t/u2 w1,a/u1 v′,a/u3 v′,b/v′w,b/v′w1,b/v′w2}.
4Recall that Ψ |= θ iff, for every model M and assignment h, h satisfies θ whenever h satisfies every ψ ∈Ψ.

160 A Graph Calculus for Predicate Logic

These drafts D′ and D′′ can be represented as in Figure 1. The mapping v′ 7→ v′; w′ 7→w′; v,v1,v2 7→ v;
w,w1,w2 7→ w and u1,u2,u3 7→ u preserves arcs.5 So, we have a morphism η : D′′ 99K D′. We also have
formulas δ(D′) and δ(D′′) such that g : D′→M iff M |= δ(D′) [[g]] and g : D′′→M iff M |= δ(D′′) [[g]].6

D′ D′′

p w′ vroo q //

s
��

w

u

t
BB

a // v′
b

OO v1
q //

r
��

w1 u2
too

p w′ v2
roo q //

s !!

w2 v′boo

b
aa

b // w

v

r
OO

u3

a

>>

u1

a
``

Figure 1: Drafts D′ and D′′ (Example 3.1)

A morphism transfers satisfying assignments by composition.

Lemma 3.1. Given a morphism η : Σ′′ 99K Σ′, for every assignment g : NΣ′ → M satisfying Σ′, the
composite g ·η : NΣ′′ →M is an assignment satisfying Σ′′.

Proof. For every arc E/v ∈ AΣ′′ , we have E/vη ∈ AΣ′ , thus vg·η ∈ [E]M, whence g ·η M E/v.

We now use morphisms to introduce zero sketches, slices and graphs.
A sketch Σ = 〈N,A〉 is zero iff there exist a slice T = 〈T : t̂〉 and a morphism η : T 99K Σ such that

T/t̂η is an arc in A. A slice S is zero iff its underlying draft S is a zero sketch. A graph is zero iff all
its slices are zero slices. The sets of zero drafts, zero slices and zero graphs are all decidable, since, for
drafts D′ and D′′, the set Mor[D′′,D′] is finite.

Example 3.2. Consider the following draft D and 2-ary slice T:

D= 〈{u′,v′,w′},{r/u′ v′,T/u′w′,s/v′w′}〉 T= 〈{u,v,w},{r/uv,s/vw} : uw〉

u′ r //

T ��

v′

s��
w′

u1 r // v
s��

w2

The mapping u 7→ u′, v 7→ v′, w 7→w′ gives a morphism η : T 99KD , with t̂η = 〈uη,wη〉= 〈u′,w′〉. Thus,
draft D is zero. So, slices 〈D : λ〉, 〈D : u′〉, 〈D : v′w′〉 and 〈D : u′〉, 〈D : u′v′w′〉 are zero slices.7

Lemma 3.2. No assignment can satisfy a zero sketch.

Proof. By Lemma 3.1, g : Σ→M yields g ·η : T→M, thus g M T/t̂η whence g 6M T/t̂η.

Corollary 3.1. Zero slices and zero graphs are null.

Proof. By Lemma 3.2: if [[S]]M 6= /0, then some assignment satisfies S.

5For instance, for arc p/w of D′′, we have arc p/w′ of D′; for arcs q/v1 w1 and q/v2 w2 of D′′, we have arc q/vw of D′.
6Take δ(D′) as q(v,w)∧ p(w′)∧ r(v,w′)∧ s(v,u)∧ t(u,w)∧ a(u,v′)∧ b(v′,w) and δ(D′′) as the conjunction of q(v1,w1),

q(v2,w2), p(w′), r(v,w′), r(v1,w′), r(v2,w′), s(v2,u3), t(u2,w1), a(u1,v′), a(u3,v′), b(v′,w), b(v′,w1) and b(v′,w2).
7The extension of slice T can be described by the formula ∃y(r(u,y)∧ s(y,w)).

Veloso & Veloso 161

We can now clarify the intuition behind using 0-ary difference slices (cf. 3.1). We know that a
formula is satisfiable iff its existential closure is so. The latter will convert to a 0-ary (basic) graph, by
Proposition 4.1 (in 4.1). Now, whether a slice is zero does not hinge on its distinguished list.

We now examine some categorical constructions: co-limits and pushouts [8].
The category of sketches and morphisms has co-limits. Given a diagram of sketches Σi = 〈Ni,Ai〉,

its co-limit can be obtained as expected: obtain the co-limit N of the sets of names Ni and then transfer
arcs, by the functions νi : Ni→ N, i. e. A :=

⋃
i∈I Ai

νi . In particular, the pushout of drafts gives a draft.
We wish to glue a slice T onto a draft or a slice via a designated list of names. This involves adding

the arcs of T with its distinguished list identified to the designated list of names.
Gluing can be introduced as an amalgamated sum (of drafts). Consider an m-ary slice T = 〈T : t̂〉.

Given a draft D= 〈N,A〉 and a list w ∈ Nm of m names, the glued draft DwT is the pushout of the drafts
D + w := 〈N∪w ,A〉 and T over the m-ary arcless draft >m = 〈um, /0〉 and the natural morphisms µ′ and
µ′′ (µ′ : ui 7→ wi and µ′′ : ui 7→ t̂i), as shown in Figure 2. Note that ν′(w) = ν′′(t̂).

D + w
ν
′

&&
〈um, /0〉

µ′ 77

µ′′ ''

DwT

T ν
′′

88

Figure 2: Pushout of drafts

Given an n-ary slice S= 〈S : ŝ〉, we obtain the glued slice SwT by transferring the distinguished list
of S to the glued draft SwT: SwT := 〈SwT : ν′(ŝ)〉.8 We glue a graph by gluing its slices, i. e. SwH is the
graph {SwT : T ∈ H}. We glue onto a graph by gluing onto its slices, i. e. GwH :=

⋃
S∈G SwH.

Example 3.3. Consider the three slices: 1-ary S = 〈{u,u′,v′,v},{r/uu′,s/u′ v′, t/v′ v} : u〉 as well as
2-ary T′ = 〈{v,w},{a/wv} : wv〉 and T′′ = 〈{w},{p/w,q/w} : ww〉.9 They are represented as follows:

S T′ T′′

u1 r // u′ s // v′ t // v w1 a // v2 w1,2

p q

We obtain 1-ary glued slices as follows:

S〈u
′,v′〉T′= 〈{u,u′,v′,v},

{
r/uu′,s/u′ v′, t/v′ v,

a/u′ v′

}
: u〉 S〈u

′,v′〉T′′= 〈
{

u,v,
w

}
,

{
r/uw,s/ww, t/wv,

p/w,q/w

}
: u〉

u1 u′ v′ vr //

s
##

a
;;

t // u1 r // w

s

�� t // v

p q

8A glued draft and slice are unique up to isomorphism. They can be made unique by a suitable choice of names. As
isomorphic objects have the same behavior, we often consider a sketch or a slice up to isomorphism.

9The extension of slice T′′ can be described by the formula p(w)∧q(w)∧w .
= w′.

162 A Graph Calculus for Predicate Logic

Addition of a slice-arc is equivalent to gluing the slice. For instance, with the slices of Example 3.3:
S+T′/u′ v′ ≡ S〈u

′,v′〉T′ and S+T′′/u′ v′ ≡ S〈u
′,v′〉T′′.

Proposition 3.2. Given a slice S and an arc T/w: S+T/w ≡ SwT.

Proof. By Lemma 3.1 and the pushout property .

It is not difficult to translate our graph language to the underlying first-order predicate language. It
suffices to express the semantics of the graph language (in 3.1) by formulas.

4 Graph Calculus

We now introduce our graph calculus, with conversion and expansion rules. We employ R? for the
reflexive-transitive closure of a binary relation R on a set, as usual.

Our conversion and expansion rules will transform an expression to an equivalent one. Thus, one can
apply such a rule in any context. For instance, we will have a rule converting ⊥ to the empty graph { };
so, we can apply it to convert ⊥ to { } and S+⊥/λ to S+{ }/λ, for any slice S. Also, we can identify a
singleton graph with its slice (cf. 3.1): if S B F then {S} B F and if E B T then E B {T}.

4.1 Conversion

We now introduce the basic objects and the conversion rules.
The basic objects are defined (by mutual recursion) as follows. The basic expressions are the predi-

cate symbols, other than .
=, and T, where T is a basic slice (see below). An arc E/v is basic iff E is a basic

expression. A sketch is basic iff all its arcs are basic. A slice is basic iff its underlying draft is a basic
sketch. A graph is basic iff its slices are all basic. For instance, the drafts D′ and D′′, of Example 3.1,
and D, of Example 3.2, (in 3.2) are basic, whereas those in Examples 2.1, 2.2 and 2.3 are not basic.

The conversion rules will transform an expression to an equivalent basic graph.
The formula rules will come from some equivalences between formulas and expressions We now

illustrate some of these equivalences. For a 1-ary predicate p, formula p(v) is equivalent to the 1-ary
slice 〈{v},{p/v} : v〉, thus ¬p(v) is equivalent to the 1-ary expression p(v). Now, consider formu-
las r(u,v) and s(v,w). For the conjunction r(u,v)∧ s(v,w), we have a 3-ary slice S equivalent to it,
namely the slice S = 〈N,A : uvw〉, with sets N = {u,v,w} and A = {r(u,v)/uv,s(v,w)/vw}. For the
disjunction r(u,v)∨ s(v,w) we have a 3-ary graph G such that r(u,v)∨ s(v,w) ≡ G, namely the graph
G with 2 slices: 〈{u,v,w},{r(u,v)/uv} : uvw〉 and 〈{u,v,w},{s(v,w)/vw} : uvw〉. Also, as the con-
ditional formula r(u,v) → s(v,w) is logically equivalent to ¬r(u,v)∨ s(v,w), it is equivalent to the
3-ary graph {〈{u,v,w},{r(u,v)/uv} : uvw〉,〈{u,v,w},{s(v,w)/vw} : uvw〉}. The existential formula
∃y t(u,y,w) is equivalent to the 2-ary slice 〈{u,v,w},{t(u,v,w)/uvw} : uw〉. Also, as the universal
formula ∀y t(u,y,w) is logically equivalent to ¬∃y¬t(u,y,w), it is equivalent to the 2-ary expression
〈{u,v,w},{t(u,v,w)/uvw} : uw〉.

The formula rules are the following 8 conversion rules eliminating formulas.

(α) For an atomic formula p(w): p(w) B 〈w,{p/w} : w〉. So, we replace u .
= v, r(u,v) and t(u,v,v) by

.
=@@ ^^

u1 v2

rAA]]

u1 v2
and

t>> QQ qq

u1 v2,3

Veloso & Veloso 163

(⊥) ⊥ B { }, i. e. we replace 0-ary formula ⊥ by the empty graph.

(¬) ¬ϕ B ϕ. So, we replace ¬(r(u,v)→ s(v,w)) by the 3-ary expression r(u,v)→ s(v,w).

• Given formulas ψ and θ, with u := NF[ψ] and v := NF[θ], set w := u∪v.

(∧) ψ∧θ B 〈w,{ψ/~u,θ/~v} :~w〉. Thus, we can replace formula r(u,v)∧ s(v,v) by the 2-ary slice
〈{u,v},{r(u,v)/uv,s(v,v)/v} : uv〉, which we can represent as:

r(u,v)
;; dd

s(v,v)33
II

u1 v2

(∨) ψ∨ θ B {〈w,{ψ/~u} :~w〉 , 〈w,{θ/~v} :~w〉}. So, we can replace formula r(u,v)∨ s(v,v) by the 2-ary

graph
{
〈{u,v},{r(u,v)/uv} : uv〉 ,
〈{u,v},s(v,v)/v} : uv 〉

}
.10

(→) ψ → θ B 〈w,{ψ/~u,θ/~v} : ~w〉. So, we can replace formula p(u) → r(v,w) by the 3-ary graph
{〈{u,v,w},{p(u)/u} : uvw〉 ,〈{u,v,w}, r(v,w)/vw} : uvw〉}.

• Given a formula ϕ and a set v of names, set u := w\v, where w := NF[ϕ].

(∃∗) For formula ∃∗xϕ[v/x], ∃∗xϕ[v/x] B 〈w,{ϕ/~w} :~u〉. Thus, we can replace ∃y∃z t(u,y,z) by the
single-arc 1-ary slice 〈{u,v,w},{t(u,v,w)/uvw} : u〉, which we can represent as:

t(u,v,w)
;; OO cc

u1 v w

(∀∗) For formula ∀∗xϕ[v/x], ∀∗xϕ[v/x]B 〈w,{ϕ/~w} :~u〉. So, can we replace ∀y∀z t(u,y,z) by the 1-ary
expression 〈{u,v,w},{t(u,v,w)/uvw} : u〉, which we can represent as:

t(u,v,w)
;; OO cc

u1 v w

Example 4.1. Consider a formula ϕ with list of names 〈u,v,w〉, noted ϕ(u,v,w).
For the formula ∃y∀zϕ(u,y,z), we have the conversions:

∃y∀zϕ(u,y,z)
(∃∗)
B 〈{u,v},{∀zϕ(u,v,z)

uv
} : u〉

(∀∗)
B 〈{u,v},{〈{u,v,w},{ϕ/uvw} : uv〉

uv
} : u〉

For the formula ∀y∃zϕ(u,y,z), we have the conversions:

∀y∃zϕ(u,y,z)
(∀∗)
B 〈{u,v},{∃zϕ(u,y,z)

uv
} : u〉

(∃∗)
B 〈{u,v},{〈{u,v,w},{ϕ/uvw} : uv〉

uv
} : u〉

10This graph can be represented as follows:

u1
r(u,v) // v2

s(v,v)11
KK

u1 v2

164 A Graph Calculus for Predicate Logic

By applying the 8 formula rules in any context, one can transform an expression to an equivalent
expression without connectives or quantifiers.

The equality rule is the following conversion rule, eliminating expression .
=.

(.=) .
= B〈{u}, /0 : 〈u,u〉〉, where u ∈ Nm. So, we can replace slice 〈{u,v,w},{r/uv, .=/vw,s/uw} : vw〉

by the slice 〈{v,w},{r/uv,
〈{u}, /0 : 〈u,u〉〉

vw
,s/uw} : vw〉.

By using these 9 rules, one can eliminate logical symbols and predicates, but arcs whose expressions
are slices or graphs, perhaps complemented, may appear. For instance, this happens with v .

= w and
∃y(r(u,y)∧ s(y,w)). The following rules will address these cases.

The complementation rules are the following 2 conversion rules, moving inside.

(∪) For an n-ary graph H: HB 〈w,{T/w : T ∈ H} : w〉, where w is a list of n distinct names. So, we can
replace the complemented 1-ary graph {S,T} by the slice 〈{v},{S/v,T/v} : v〉.

() E B E, i. e. eliminate double complementation.

By applying these 2 complementation rules in any context, one can eliminate arcs whose expressions
are complemented graphs.

The structural rules are the following 3 conversion rules.

(∪−→) S + H/v B {S + T/v : T ∈ H}, i. e. replace addition of graph arc by alternative addition of its
slice arcs. So, we replace slice S + {T′,T′′}/u by the graph {S + T′/u,S + T′′/u}.

(T→) S + T/v B SvT, i. e. replace addition of slice arc by glued slice.

(↑) For an n-ary expression E: E B 〈w,{E/w} : w〉, where w is a list of n distinct names. So, for r ∈ Pr2,
we can replace 2-ary expression r by the 2-ary slice 〈{u1,u2},{r/u1 u2} : u1 u2〉.

By means of rules (∪−→) and (T→), one can eliminate arcs whose expressions are graphs or slices.

Rule (↑) converts expressions to slices and serves to eliminate p: p
(↑)
B 〈un,{p/un} : un〉, for p ∈ Prn.

Example 4.2. Consider the formula r(v,w). We proceed much as in Example 4.1.

Formula ∃y∀z r(y,z) converts to the 0-ary slice S= 〈{v},{〈{v,w},{r(v,w)/vw} : v〉
v

} : λ〉.

This slice S is not basic, but it can be converted to a basic slice by (α) as follows:

〈{v},{
〈{v,w},{ r(v,w)

vw
} : v〉

v
} : λ〉

(α)
B 〈{v},{

〈{v,w},{
〈{v,w},{ r

vw
} : vw〉

vw
} : v〉

v
} : λ〉

Formula ∀y∃z r(y,z) converts to the 0-ary expression E = 〈{v},{〈{v,w},{r(v,w)/vw} : v〉
v

} : λ〉.

This expression E is not basic, but it can be converted to a basic expression F by (α) as follows:

〈{v},{〈{v,w},{r(v,w)/vw} : v〉
v

} : λ〉
(α)
B 〈{v},{

〈{v,w},{〈{v,w},{ r
vw
} : vw〉/vw} : v〉

v
} : λ〉

Expression F can be converted to a basic 0-ary slice by (↑).

Veloso & Veloso 165

Rule (T→) gives some useful derived rules about arc addition, which we can use to shorten con-
versions (such shortenings were used in the examples of Section 2). We can replace addition of: a
graph arc by gluing the graph ((H−→): S + H/vB?SvH), a complemented-graph arc by addition of par-
allel complemented-slice arcs (S + H/vB?S + {T/v : T ∈ H}) and an equality arc by node renaming
(S +

.
=/uvB?S[u/v], S +

.
=/uvB?S[v/u]).

We can also replace n conjunctions and disjunctions by slices and graphs, respectively.11

Example 4.3. Consider the formula s(v′,w′)∧∃x[r(v′,x)∧¬∃y(r(x,y)∧ s(y,w′))]. This expression E
can be converted to the 2-ary slice 〈D : v′w′〉, where D is the draft of Example 3.2 (in 3.2).

We can convert expressions in a modular way.

Lemma 4.1. If SB?G and EB?H, then S + E/vB?GvH.

Proof. By (H−→) rule: S + E/vB?G + H/v = {P + H/v : P ∈ G}
(

H−→)
B {PvH : P ∈ G} = GvH.

Thus, one can obtain a basic form for S + E/v from basic forms Sb and Eb, for S and E.

Proposition 4.1. Every n-ary expression E can be effectively converted to a basic n-ary graph Eb.

Proof. By induction on the structure of expressions.

Example 4.4. Given the predicate symbols of Example 3.1 (in 3.2), consider the formula ψ:

q(v,w) ∧ ∃z [p(z)∧ r(v,z)∧∃x∃y∃y′(s(v,x)∧ t(x,w)∧ a(x,y)∧b(y,w))].

Consider also the formula θ := ∃3x1x2x3∃y′∃2y1y2∃z′∃2z1,z2 χ, where χ is as follows:

p(z′)∧ s(v2,x3)∧ t(x2,z1)∧

 q(y1,z1)
∧

q(y2,z2)

∧
 a(x1,v′)

∧
a(x2,v′)

∧

r(v,z′)
∧

r(y1,z
′)

∧
r(y2,z

′)

∧

b(y′,w)
∧

b(y′,z1)
∧

b(y′,z2)

 .

Now, form the difference slice DS[{a[ψ]}∠a[θ]] = 〈{v,w},{ψ/vw,θ/vw : λ}〉. Expressions ψ and θ can
be respectively converted to the 2-ary slices S= 〈D′ : 〈v,w〉〉 and T= 〈D′′ : 〈v,w〉〉, where D′ and D′′ are
the drafts of Example 3.1. Thus, we have DS[{a[ψ]}∠a[θ]]B? 〈{v,w},{S/vw,T/vw : λ}〉. Now, we can

see that 〈{v,w},{S/vw,T/vw : λ}〉
(
T→)
B 〈S+T/vw : λ〉.12 Hence DS[{a[ψ]}∠a[θ]]B? 〈S+T/vw : λ〉.

4.2 Derivations

We now introduce the remaining rule and finish the presentation of our calculus.
First, let us review Examples 4.3 and 4.4 (in 4.1). Formula E of Example 4.3 converts to the 2-ary

slice 〈D : v′w′〉, which was seen to be zero in Example 3.2 (in 3.2). Thus, formula E is unsatisfiable. Now,
consider formulas ψ and θ of Example 4.4, where we have seen that DS[{a[ψ]}∠a[θ]]B? 〈S+T/vw : λ〉.
Now, Example 3.1 (in 3.2) shows a morphism η : T 99K S, with t̂η = 〈vη,wη〉= 〈v,w〉= ŝ. Thus, draft
S+T/vw is zero, whence, slice DS[{a[ψ]}∠a[θ]] is null. Therefore, we can conclude that ψ |= θ.

11For instance, with 3 formulas, we have r(u,v)∧ s(v,w)∧p(w)B? 〈{u,v,w},{r(u,v)/uv,s(v,w)/vw,p(w)/w} : uvw〉 and
r(u,v)∨ s(v,w)∨p(w)B? {〈{u,v,w},{r(u,v)/uv} : uvw〉 , 〈{u,v,w},s(v,w)/vw} : uvw〉 〈{u,v,w},{p(w)/w} : uvw〉}.).

12Indeed: 〈{v,w},{S/vw,T/vw : λ}〉= 〈{v,w},{T/vw : λ}〉+S/vw
(
T→)
B 〈{v,w},{T/vw : λ}〉〈v,w〉S= 〈S+T/vw : λ〉.

166 A Graph Calculus for Predicate Logic

Example 4.5. To introduce expansion and its usefulness, consider the 3-ary slice S:

u1

T1
��

r // w3

T2
��

w′ t // u2

where T1 := u1 r→ w s→ v2 , T2 := u1 s→ w t→ v2 .
Slice S is not zero; but in any model M, the pair (g(w),g(w′)) is either in [s]M or in [s]M. So, S is
equivalent to the 2-ary graph G= {S+,S−}, with slices S+ and S−, respectively as follows:

u1

u1 r→ w s→ v2
��

r // w3

T2
��

s
~~

w′
t
// v2

u1

T1
��

r // w3

u1 s→ w t→ v2
��

s
��

w′
t
// v2

Slices S+ and S− are both zero, so graph G is zero. Thus, S is a null slice.

The expansion rule will replace a slice by a graph with 2 alternative slices.

(C) For an m-ary slice T and v ∈ NS
m: S C {SvT,S + T/v}.

Note that both SvT and S + T/v are basic whenever S and T are basic.

Lemma 4.2. For a slice S, an m-ary slice T and v ∈ Nmm: S ≡ {SvT,S + T/v}.

Proof. By Proposition 3.2 (in 3.2), S+T/v ≡ SvT, and clearly S ≡ {S+T/v,S + T/v}.

A derivation consists of applications of the conversion rules and the expansion rule: ` := (B∪C)?.
A derivation is normal iff applications of conversion rules precede applications of the expansion rule:
EB?GC?H. In practice, as we wish to derive a zero graph, we may erase slices already found to be zero.

Let ϕ be the formula r(u,w)∧ t(w′,v)∧¬∃x[r(u,x)∧ s(x,v)]∧¬∃y[¬s(u,y)∧ t(y,v)]. Expression
E := ∃xϕ[w′/x] converts to the slice S of Example 4.5, where it expands to the graph G. We thus have
the normal derivation EB?S C G, with G a zero graph. Hence, formula ϕ is unsatisfiable.

4.3 Soundness and completeness

We now examine soundness and completeness of our calculus.
Soundness is clear (as E ≡ F, whenever E ` F): if E ` H and H is zero, then E is null. We will show

that a converse holds for basic graphs (if Eb is null then Eb expands to a zero graph), and we will have
completeness of normal derivations: if E is null, then EB? EbC?H, for some zero graph H.

Henceforth, all sketches, drafts, slices and graphs will be basic. We define the following families of
slices: the family Z0 of zero slices (cf. 3.2); the family Z∗ of expansivley zero slices: the slices S such
that, for some graph G⊆ Z0, SC?G; the family Z∞ of not expansively zero slices: the slices outside Z∗.

The following simple properties of these families will be useful.

Lemma 4.3. For every graph G: G⊆ Z∗ iff, for some graph H⊆ Z0, GC?H.

Proof. (⇒) If, for each S ∈ G, SC?HS and HS ⊆ Z0, then, with H :=
⋃

S∈G HS, GC?H and H⊆ Z0.
(⇐) if GC?H, with H⊆ Z0, then for each S ∈ G, SC?HS, with HS ⊆ H⊆ Z0, whence S ∈ Z∗.

Veloso & Veloso 167

Lemma 4.4. For every graph G: G⊆ Z∗ iff, for some graph H⊆ Z∗, GC?H.

Proof. By Lemma 4.3, since Z0 ⊆ Z∗. (⇒) If G⊆ Z∗, then GC?H, with H⊆ Z0 ⊆ Z∗. (⇐) If GC?H,
with H⊆ Z∗, then HC?H′, with H′ ⊆ Z0, whence GC?H′, with H′ ⊆ Z∗.

Corollary 4.1. For S ∈ Z∞, m-slice T and v ∈ NS
m: one of SvT and S + T/v is not expansively zero.

Proof. By Lemma 4.4: if {SvT,S + T/v} ⊆ Z∗, then S ∈ Z∗.

We will show that a slice S ∈ Z∞ has a model M with [[S]]M 6= /0

Given a slice S ∈ Z∞, we can obtain a set of slices Sn = 〈Nn,An : ŝn〉 with Sn ∈ Z∞, for n ∈ IN,
whose underlying drafts are connected by morphisms µn from Sn to Sn+1, which we extend naturally
to morphisms µ i

j : Si 99K S j, for i ≤ j. Consider the co-limit of this draft diagram: sketch Σ = 〈N,A〉
with morphisms νn : Sn 99K Σ (cf. 3.2). We use this co-limit sketch Σ to define a natural model M with
M := N, and pM := {v ∈Mn : p/v ∈ A}, for p ∈ Prn.

By construction, the co-limit sketch Σ is saturated in the following sense: given any m-ary slice
T= 〈T : t̂〉 and w ∈ Nm, we have arc T/w ∈ A or there is a morphism η : T 99K Σ with t̂η = w.

We can establish that satisfying assignments are morphisms.

Lemma 4.5. Given a draft D and g : ND→M, g : D→M iff g : D 99K Σ.

Proof. By structural induction (on the total number of complemented slice arcs occurring in D).

Finally, since ν0 : S 99K Σ, we have ν0(ŝ0) ∈ [[S]]M 6= /0.
Therefore, if G 6⊆ Z∗, then G is not null.

Theorem 4.1. Consider an n-ary expression E.

(`) If E ` H and H is zero, then E is null.

(B?;C?) If E is null, then EB? EbC?H, for some zero n-ary graph H.

5 Conclusion

We now present some concluding remarks, including comparison with related works.
We have presented a refutation graph calculus for classical first-order predicate logic. This sound

and complete calculus reduces logical consequence to establishing that a constructed graph is null, i. e.
has empty extension in every model. Our calculus uses formulas directly and can represent them by arcs.

We have a simple strategy for establishing that a graph G is null: first convert G to basic form, then
apply repeatedly the expansion rule, erasing slices found to be zero, which is decidable (cf. 3.2), trying
to obtain the empty graph. Conversion to basic form, though tedious, can be automated (cf. 4.1); some
ingenuity may be required in selecting which slice of a graph to expand and how to do it (cf. 4.2), but the
embedded slices can provide a finer control. In fact, a (human-guided) system may be envisaged.

The idea of using graphical representations for logic appears in several works.
Girard’s proof nets have been applied to classical logic [10], where sequent proofs are translated to

proof nets. In our case, however, the (macroscopic) structure of normal derivations is rather simple: first
conversions, then expansion (cf. 4.2).

Graph rewriting motivates a graphical representation of first-order predicate logic. For the binary
fragment (with .

=), a representation of formulas by graph predicates has been obtained by Rensink [9]:
a correspondence between sets of graph predicates with depth up to n and a hierarchy ∃(¬∃)n. There are

168 A Graph Calculus for Predicate Logic

close similarities between some concepts (our sketches are his graphs), but his graph predicates involve
morphisms (even though they may be reminiscent of our arcs).

Our approach does resemble Peirce’s ideas [11] as formulated by Dau [4]. In our representation,
we use names only for referring to them in the meta-language: if we erase these names, we obtain a
representation quite close to the Peirce’s ones (cf. Example 4.2 in 4.1). Besides our refutation approach
with normal derivations, there are some differences: we allow formulas directly in the graphs (and need
conversion rules), rather than pre-processing diagrams for them; Peirce considers the fragment ¬, ∧ and
∃, whereas we use graphs to cope with ∨, which seems to lead to less cumbersome representations; we
handle .

=, first as a 2-ary predicate and then as a special one, whereas Peirce represents it directly by
identity lines, leading to more compact diagrams. So, there appear to be advantages and disadvantages
on both sides.

Some further work on our calculus would be: add function symbols (for this purpose, some ideas
used for structured nodes [6] seem promising); provide a detailed comparison between it and [9] (such
a comparison between Peirce’s and Rensink’s approaches is reported difficult [9], p. 333); develop a
“middle-ground” between our approach and Dau’s [4], with the best features from each one.

References
[1] T. Barkowsky (2010): Diagrams in the mind: visual or spatial?. In A. K. Goel, M. Jamnik & N. H.

Narayanan, editors: LNAI, Series 6170, p. 1, Springer-Verlag, Berlin, doi:10.1007/978-3-540-92687-0.
[2] S. Curtis & G. Lowe (1995): A graphical calculus. In B. Moller, editor: Mathematics of Program Con-

struction LNCS Series 947, Springer-Verlag, Berlin, pp. 214–231, doi:10.1007/3-540-60117-1-12.
[3] S. Curtis & G. Lowe (1996): Proofs with graphs. In R. Backhouse, editor: Science of Computer Program-

ming, Elsevier, volume (26), pp. 197–216, doi:10.1016/0167-6423(95)00025-9.
[4] F. Dau (2006): Mathematical logic with diagrams, based on the existential graphs of Peirce, Habil. thesis,

TU Dresden, 2006, www.du-dau.net/publications.shtml.
[5] R. Freitas, P. A. S. Veloso, S. R. M. Veloso & P. Viana (2008): On a graph calculus for algebras of

relations. In W. Hodges & R. de Queiroz, editors: LNAI, Series 5110, Springer-Verlag, Heiderberg, pp.
298–312, doi:10.1007/978-3-540-69937-8.

[6] R. Freitas, P. A. S. Veloso, S. R. M. Veloso & P. Viana (2009): Positive fork graph calculus. In S. Artemov,
editor: LNCS, Series 5407, Springer-Verlag, New York, pp. 152–163, doi:10.1007/978-3-540-92687-0.

[7] R. Freitas, P. A. S. Veloso, S. R. M. Veloso & P. Viana (2010): A calculus for graphs with complement.
In A. K. Goel, M. Jamnik & N. H. Narayanan, editors: LNAI, Series 6170, pp. 84–98, Springer-Verlag,
Berlin, doi:10.1007/978-3-540-92687-0.

[8] S . MacLane (1998): Categories for the Working Mathematician, second edition, Springer-Verlag, Berlin.
[9] A. Rensink (2004): Representing first-order logic using graphs, In H. Ehrig et al. editors: LNCS, Series

3256, pp. 319–335, Springer-Verlag, Heiderberg, doi:10.1007/978-3-540-30203-2.
[10] E. Robinson (2003): Proof nets for classical logic, J. Logic and Computat. volume(13) number(5) , pp.

776–797, doi:10.1093/logcom/13.5.777.
[11] J. F. Sowa (2011): Existential graphs, doi:10.1515/semi.2011.060.
[12] G. Takeuti (1975): Proof Theory, North-Holland, Amsterdam.
[13] P. A. S. Veloso and S. R. M. Veloso (2012): On Graph refutation for relational inclusions, In S. R. della

Rocca and E. Pimentel, editors: EPTCS volume (81), pp. 47–66. doi:10.4204/EPTCS.81.4.

http://dx.doi.org/10.1007/978-3-540-92687-0
http://dx.doi.org/10.1007/3-540-60117-1-12
http://dx.doi.org/10.1016/0167-6423(95)00025-9
http://dx.doi.org/10.1007/978-3-540-69937-8
http://dx.doi.org/10.1007/978-3-540-92687-0
http://dx.doi.org/10.1007/978-3-540-92687-0
http://dx.doi.org/10.1007/978-3-540-30203-2
http://dx.doi.org/10.1093/logcom/13.5.777
http://dx.doi.org/10.1515/semi.2011.060
http://dx.doi.org/10.4204/EPTCS.81.4

	1 Introduction
	2 Motivation
	3 Graph Language
	3.1 Syntax and semantics
	3.2 Concepts and constructions

	4 Graph Calculus
	4.1 Conversion
	4.2 Derivations
	4.3 Soundness and completeness

	5 Conclusion

