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This paper gives a detailed account of the relationship between (a variant of) the call-by-value lambda
calculus and linear logic proof nets. The presentation is carefully tuned in order to realize a strong
bisimulation between the two systems: every single rewriting step on the calculus maps to a single
step on the nets, and viceversa. In this way, we obtain an algebraic reformulation of proof nets.
Moreover, we provide a simple correctness criterion for ourproof nets, which employ boxes in an
unusual way.

1 Introduction

A key feature of linear logic (LL) is that it is a refinement of intuitionistic logic, i.e. of λ -calculus. In
particular,one β -reduction step in theλ -calculus corresponds to the sequence oftwo cut-elimination
steps in linear logic, steps which are of a very different nature: the first is multiplicative and the second
is exponential. The Curry-Howard interpretation of this fact is thatλ -calculus can be refined adding
a constructort[x/u] for explicit substitutions, and decomposing aβ -step(λx.t)u →β t{x/u} into the
sequence(λx.t)u→m t[x/u]→e t{x/u}.

Another insight due to linear logic is that proofs can be represented graphically—by the so-called
proof nets—and the reformulation of cut-elimination on proof netstakes a quite different flavour with
respect to cut-elimination in sequent calculus. The parallel nature of the graphical objects makes the
commutative cut-elimination steps, which are the annoyingburden of every proof of cut-admissibility,
(mostly) disappear.

These two features of LL have influenced the theory of explicit substitutions in various ways [16, 7],
culminating in the design ofthe structuralλ -calculus[4], a calculus isomorphic (more preciselystrongly
bisimilar) to its representation in LL proof nets [3, 1]. Such a calculus can be seen as an algebraic
reformulation of proof nets forλ -calculus [8, 24], and turned out to be simpler and more useful than
previous calculi with explicit substitutions.

Girard’s seminal paper on linear logic [14] presents two translations ofλ -calculus into LL. The first
one follows the typed scheme(A⇒ B)n =!An

⊸ Bn, and it is the one to which the previous paragraphs
refer to. It represents the ordinary—or call-by-name (CBN)—λ -calculus. The second one, identified by
(A⇒ B)v =!(Av

⊸ Bv), was qualified asboring by Girard and received little attention in the literature
[21, 23, 10, 11, 12, 20]. Usually, it is said to represent Plotkin’s call-by-value (CBV)λβv-calculus [22].
These two representations concern typed terms only, but it is well-known that they can be extended to
represent the whole untyped calculi by considering linear recursive types (o=!o⊸ o for call-by-name
and ando=!(o⊸ o) for call-by-value).

Surprisingly, the extension of the CBV translation to the untyped calculusλβv-calculus introduces a
violent unexpected behavior: some normal terms inλβv map to (recursively typed) proof nets without
normal form (see [2] for concrete examples and extensive discussions). This fact is the evidence that
there is something inherently wrong in the CBV translation.
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12 Proof nets and the call-by-valueλ -calculus

In this paper we show how to refine the three actors of the play (the CBVλ -calculus, the translation
and the proof nets presentation) in order to get a perfect match between terms and proof nets. Techni-
cally, we show that the new translation is a strong bisimulation1, and since strong bisimulations preserve
reductions length (in both directions), the normalizationmismatch vanishes.

Interestingly, to obtain a strong bisimulation we have to make some radical changes to both the
calculus and the presentation of proof nets. The calculus, that we call thevalue substitution kernelλvker

[2], is a subcalculus of thevalue substitution calculusλvsub studied in [5], which is a CBVλ -calculus
with explicit substitutions. Such a kernel is as expressiveas the full calculus, and can be thought as a
sort of CPS representation ofλvsub.

Here, however, we mostly take the calculus for granted (see [2] for more details) and rather focus on
proof nets. Our two contributions are:

1. Graphical syntax and algebraic formalism: it is far from easy to realize a strong bisimulation
between terms and nets, as it is necessary to take care of manydelicate details about weakenings,
contractions, representation of variables, administrative reduction steps, and so on. The search
for a strong bisimulation may seem a useless obsession, but it is not. Operational properties as
confluence and termination then transfer immediately from graphs to terms, and viceversa. More
generally, such a strong relationship turns the calculus into an algebraic language for proof nets,
providing an handy tool to reason by structural induction over proof nets.

2. Correctness criterion: we provide a characterization of the proof nets representing λvker based on
graph-theoretical principles and which does not refer toλvker, that is, we present acorrectness cri-
terion. Surprisingly, the known criteria for the representation of the call-by-nameλ -calculus (with
explicit substitutions) fail to characterize the fragmentencoding the call-by-valueλ -calculus. Here
we present a simple and non-standard solution to this problem. We hack the usual presentation of
proof nets so that Laurent’s criterion for polarized nets [17, 19, 18]—the simplest known correct-
ness criterion—captures the fragment we are interested in.The hacking of the syntax consists in
using boxes for̀ -links rather than for !-links. An interesting point is thatthe fragment we deal
with is not polarized in Laurent’s sense, despite it is polarized in the Lamarche/intuitionistic sense.

The use of boxes for̀ -links may look terribly ad-hoc. Section 6 tries to argue that it is not. More-
over, Section 7 presents an account of the technical points concerning the representations of terms with
proof nets, and how they have been treated in the literature.

2 Terms

In this section we introduce the calculus which will be related to proof nets, calledthe value substitution
kernelλvker [2]. Its syntax is:

t,s,u, r ::= x | λx.t | vs| t[x/u] v ::= x | λx.t

wheret[x/u] is anexplicit substitutionand values are notedv. Note that the left subterm of an application
can only be a value. The rules ofλvker are:

(λx.t)u 7→m t[x/u] t[x/vL] 7→e t{x/v}L

1A strong bisimulation between two rewriting systemsSandR is a relation≡ betweenSandRs.t. whenevers≡ r then for
every step froms→S s′ there is a stepr →R r ′ s.t.s′ ≡ r ′, and viceversa(for s,s′ ∈ Sandr, r ′ ∈ R).
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whereL is a possibly empty list of explicit substitutions[x1/u1] . . . [xk/uk] (and the fact that in the lhs of
7→e L appears inside[ ] while in the rhs it appears outside{ } is not a typo). The calculus is confluent [2].

The peculiarity of the value substitution kernel is that iterated applications as(tu)sare not part of the
language. The idea is that they are rather represented as(xs)[x/tu] with x fresh. The calculus containing
iterated applications is calledthe value substitution calculusλvsub, and it has been studied in [5, 2]. In [2]
it is shown thatλvsub can be represented insideλvker (mapping iterated applications(tu)s to (xs)[x/tu],
as before) and that a termt and its representationtk are equivalent from the point of view of termination
(formally t is strongly (resp. weakly) normalizing ifftk is, and the same is true with respect to weak—
i.e.not under lambda—reduction). If one is interested in observing termination (as it is usually the case)
thanλvsub andλvker are observationally equivalent (via·k). As pointed out to us by Frank Pfenning, the
map·k is reminiscent of the notion ofA-reductionin the theory of CPS-translations [13, 25]. The idea
is then thatλvker (and thus proof nets) is essentially the language ofA-normal forms associated toλvsub.
However, the study of the precise relationship withA-normal forms is left to future work.

The calculusλvsub has been related to Herbelin and Zimmermann’sλCBV [15] in [5]. In turn, λCBV

is related to Plotkin’sλβv in [15], where it is shown that the equational theory ofλβv is contained in the
theory ofλCBV.

The rest of the paper shows thatλvker can be seen as an algebraic language for the proof nets used to
interpret the call-by-valueλ -calculus.

3 Proof nets: definition

Introduction. Our presentation of proof nets is non-standard in at least four points (we suggest to have a
quick look to Figure 3):

1. Hypergraphs: we use hypergraphs (for which formulas are nodes and links—i.e. logical rules—
are hyperedges) rather than the usual graphs with pending edges (for which formulas are edges
and links are nodes). We prefer hypergraphs because in this way contraction can be represented in
a better way (providing commutativity, associativity, andpermutation with box bordersfor free)
and at the same time we can represent cut and axiom links implicitly (similarly to what happens in
interaction nets).

2. `-boxes: We put boxes oǹ -links and not on !-links. This choice is discussed in Section 6, and
it allows to use a very simple correctness criterion—i.e. Laurent’s criterion for polarized nets—
without losing any property.

3. Polarity : we apply a polarized criterion to a setting which is not polarized in the usual sense.

4. Syntax tree: since we use proof nets to represent terms, we will dispose them on the plane accord-
ing to the syntax tree of the corresponding terms, and not according to the corresponding sequent
calculus proof (also the orientation of the links does not reflect the usual premise-conclusion ori-
entation of proof nets).

Nets. Nets are directed and labelled hyper-graphsG= (V(G),L(G)), i.e., graphs whereV(G) is a set
of labellednodesandL(G) is a set of labelled anddirected hyperedges, calledlinks, which are edges
with 0,1 or more sources and 0,1 or more targets2. Nodes are labelled with a type in{e,m}, wheree
stays forexponentialandm for multiplicative, depicted in blue and brown, respectively. If a nodeu has

2 An hyper-graphG can be understood as a bipartite graphBG, whereV1(BG) is V(G) andV2(BG) is L(G), and the edges
are determined by the relationsbeing a sourceandbeing a targetof an hyperedge.
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Figure 1: links.

typee (resp.m) we say that it is ae-node (resp.m-node). We shall consider hyper-graphs whose links
are labelled from{!,d,w,`,⊗}. The label of a linkl forces the number and the type of the source and
target nodes ofl , as shown in Figure 1 (the types will be discussed later, and the figure also contains the
�-link, which is not used to define nets: it will be used later todefine the correction graph). Note that
every link (except�) has exactly one connection with a little circle: it denotesthe principal node,i.e. the
node on which the link can interact. Remark the principal node for tensor and !, which is not misplaced.
Moreover, everỳ -link has an associatedbox, i.e., a sub-hyper-graph ofG (have a look to Figure 3).
Thesources(resp.targets) of a net are the nodes without (resp. outgoing) incoming links; a node which
is not a source nor a target isinternal . Formally:

Definition 3.1 (net). A net G is a quadruple(|G|,BG,fv(G), rG), where|G|= (V(G),L(G)) is an hyper-
graph whose nodes are labelled with eithere or m and whose hyperedges are{!,d,w,`,⊗}-links and
s.t.:

• Root: rG ∈V(G) is a sourcee-node ofG, called theroot of G.

• Conclusions: fv(G) is the set of targets ofG, also calledfree variablesof G, which are targets of
{d,w}-links (and not of⊗-links).

• Multiplicative : m-nodes haveexactly oneincoming andoneoutgoing link.

• Exponential: ane-node has at most one outgoing link, and if it is the target of more than one link
then they all ared-links. Moreover, ane-node cannot be isolated.

• Boxes: For everỳ -link l there is a netbox(l), called thebox of l (BG is the set of boxes ofG and
box(l) ∈ BG), with a distinguished free variablex, called thevariable of l , and s.t.:

– Border: the rootrbox(l) and the free variablex are thee-nodes ofl , and any free variable6= x
of box(l) is not the target of a weakening.

– Nesting: for any two`-boxesbox(l1) andbox(l2) if /0 6= I := box(l1)∩ box(l2), box(l1) 6⊆
box(l2), andbox(l2) 6⊆ box(l1) then all the nodes inI are free variables of bothbox(l1) and
box(l2).

– Internal closure: any link l of G having as target an internale-node ofbox(l) is in box(l).

– Subnet: the nodes and the links ofbox(l) belong toG and thè -links in box(l) inherit the
boxes fromG.

Some (technical) comments on the definition. In the border condition the fact that the free variables
6= x are not (the target) of a weakening means that weakenings areassumed to be pushed out of boxes as
much as possible (of course the rewriting rules will have to preserve this invariant). The internal closure
condition is a by-product of collapsing contractions on nodes, which is also the reason of the unusual
formulation of the nesting condition: two boxes that are morally disjoint can in our syntax share free
variables, because of an implicit contraction merging two of their conclusions.
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Figure 2: various images.

Terminology about nets. The level of a node/link/box is the maximum number of nested boxes in
which it is contained3 (a `-link is not contained in its own box). Two links arecontracted if they
share ane-target. Note that the exponential condition states that only derelictions (i.e. d-links) can be
contracted. In particular, no link can be contracted with a weakening. Afree weakeningin a netG is
a weakening whose node is a free variable ofG. Sometimes, the figures show a link in a box having as
target a contractede-nodex which is outside the box: in those casesx is part of the box, it is outside of
the box only in order to simplify the representation.

Typing. Nets are typed using a recursive typeo=!(o⊸ o), that we renamee=!(e⊸ e) =!(e⊥`e)
becausee is a mnemonic forexponential. Let m= e⊸ e= e⊥ ` e, wherem stays formultiplicative.
Note thate=!mandm=!m⊸!m. Links are typed usingmande, but the types are omitted by all figures
except Figure 1 because they are represented using colors and with different shapes (m-nodes are brown
and dot-like,e-nodes are white-filled cyan circles). Let us explain the types in Figure 1. They have to be
read bottom-up, and thus negated (to match the usual typing for links) if the conclusion of the logical rule
is the bottom node of the link, as it is the case for the{w,d,⊗}-links, while ! and` have their logical
conclusion on the top node, and so their type does not need to be negated.

Induced!-boxes. Note that a !-link is always applied to something (m-nodes cannot be conclusions),
and there is not so much freedom for thissomething: either it is a dereliction link or à with its box. Note
also that in both cases we get (what would usually be) a valid content for a !-box. For the dereliction
case it is evident, and for thè case it is guaranteed by the definition of net: the content of a`-box
ends one-nodes. Hence, any !-link has an associated box, induced by`-boxes, which needs not to be
represented explicitly.

The translation. Nets representing terms have the general form in Figure 2.a, also schematized as in
Figure 2.b. The translation· from terms to nets is in Figure 3 (the original boring translation is sketched
in Fig. 6, page 22). A net which is the translation of a term is aproof net. Note that in some cases there
are various connections entering ane-node, that is the way we represent contraction. In some cases the
e-nodes have an incoming connection with a perpendicular little bar: it represents an arbitrary number
(> 0) of incoming connections. The net corresponding to a variable is given by a ! on a dereliction
and not by an (exponential) axiom, as it is sometimes the case. The reason is that an axiom (in our
case a node, because axioms are collapsed on nodes) would notreflect on nets some term reductions, as
x[x/v] →e v, for which both the redex and the reduct would be mapped on thesame net.

The translation· is refined to a translation·X, whereX is a set of variables, in order to properly handle
weakenings during cut-elimination. The reason is that an erasing step on terms simply erases a subterm,
while on nets it also introduces some weakenings: without the refinement the translation would not be
stable by reduction. The clause definingtX∪{y} wheny /∈ fv(t) is the first on the second line of Figure 3,
the definition is then completed by the following two clauses: t /0 := t andtX∪{y} := tX if y∈ fv(t).

3Here the wordsmaximumandnestedare due to the fact that the conclusions of`-boxes may belong to two not nested
boxes, because of the way we represent contraction.
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Figure 3: the translation from terms to nets.

α-equivalence. To circumvent an explicit and formal treatment ofα-equivalence we assume that
the set ofe-nodes and the set of variable names for terms coincide. Thisconvention removes the need
to label the targets oftX with the name of the corresponding free variables int or X. Actually, before
translating a termt it is necessary to pick awell-namedα-equivalent termt ′, i.e. a term where any two
different variables (bound or free) have different names.

Remark3.2. The translation of terms to nets is not injective. By simply applying the translation it is
easily seen that the following pairs of terms have the same net:

t[x/s][y/u] ∼voCS t[y/u][x/s] if x /∈ fv(u) & y /∈ fv(s)
v u[x/s] ∼vo1 (v u)[x/s] if x /∈ fv(v)
t[x/s[y/u]] ∼vo2 t[x/s][y/u] if y /∈ fv(t)

(1)

Let≡vo be the reflexive, transitive, and contextual closure of∼voCS ∪∼vo1 ∪∼vo2. In the proof of Lemma
5.1, we will use the fact that ift ≡vo s thent ands are mapped on the same net. We also claim—without
proving it—that≡vo is exactly the quotient induced on terms by the translation to nets.

Paths. A path τ of length k ∈ N from u to v, notedτ : u →k v, is an alternated sequenceu =
u1, l1, . . . , lk,uk+1 = v of nodes and links s.t. the linkl i has sourceui and targetui+1 for i ∈ {1, . . . ,k}. A
cycle is a pathu→k u with k> 0.

Correctness. The correctness criterion is based on the notion of correction graph, which is—as usual
for nets with boxes—obtained by collapsing every box at level 0 into a generalized axiom link.

Definition 3.3 (correction graph). Let G be a net. The correction graphG0 of G is the hyper-graph
obtained fromG by collapsing anỳ -box at level 0 into a�-link applying the rule in Fig. 2.c.

Definition 3.4 (correctness). A net G is correct if:

• Source: G0 has exactly onee-source (the root ofG).
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• Acyclicity : G0 is acyclic.

• Recursive correctness: the interior of every box is correct.

As usual an easy induction on the translation shows that the translation of a term is correct,i.e. that:

Lemma 3.5. Every proof net is correct.

4 Proof nets: sequentialization

In this section we show how to extract a termt from every correct netG in such a way thatt translates
back toG, i.e. we show that every correct net is a proof net. The proof of thisfact is based on the notion
of kingdom, along the lines of the proof for polarized nets, see [18] (pp. 57-63).

Definition 4.1 (Kingdom). Let G be a correct net andx /∈ fv(G) one of itse-nodes. Thekingdom
king(x) of x is the set of links defined by induction on the linkl of sourcex:

• l is a !-link: king(x) is given byl plus thed-link or the`-box on them-target ofl .

• l is a⊗-link: king(x) is given byl plus thed-link or the`-box on them-target ofl plusking(y),
wherey is thee-target ofl .

The main property ofking(x) is that it is the smallest subnet of rootx, as we shall soon prove4. To
state this fact precisely we need the notion of subnet.

Definition 4.2 (subnet). Let G be a correct net. A subnetH of G is a subset of its links s.t. it is a correct
net and satisfying:

• Internal closure: if x is an internale-node ofH then any link ofG of targetx belongs toH.

• Box closure:

– Root: if a `-link l belongs toH then its box does it too.
– Free variables: if a free variable of a boxB of G is internal toH thenB⊆ H.

The following lemma is essentially obvious, and usually omitted, but in fact it is used in the proof of
Lemma 4.5.

Lemma 4.3. Let G be a correct net, H a subnet of G, x an internal e-node of H.Then there exists a
subnet K of H having x as root and s.t. it is a subnet of G.

Proof. It is enough to show that there is a subnet ofH of root x, since it is obvious that any subnet ofK
is a subnet ofG. By induction on the length of the maximum path fromx to a free variable ofK.

To properly describe kingdoms we need the following definition.

Definition 4.4 ((free/ground) substitution). Let G be a correct net. Asubstitution is ane-node which is
the target of a{w,d}-link (or, equivalently, which is not the target of a⊗-link) and the source of some
link. A substitutionx is ground if it is a node ofG0 (i.e. it is not internal to anỳ -box5), and it isfree if
it is ground and there is no ground substitution ofG to whichx has a path (inG0).

Lemma 4.5(kingdom). Let G be a correct net and x/∈ fv(G) one of its e-nodes. king(x) is the kingdom
of x, i.e., the smallest subnet of G rooted at x. Moreover, it has no freesubstitutions, no free weakenings,
and whenever y∈ fv(king(x)) is internal to a subnet H of G then king(x) ⊆ H.

4We callkingdom of xthe net in def. 4.1, but at this point nothing guarantees thatit is the smallest subnet of rootx.
5Note that our collapsed representation of contractions andcuts does not allow to simply say thatx is a node at level 0:

indeed the conclusion of à-box can have level> 0 and yet belong toG0.
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Proof. Let H be a correct subnet ofG rooted atx. We show by induction on the length of the maximum
path fromx to a free variable ofG thatking(x)⊆ H and thatking(x) is correct. Letl be the link of source
x. Cases:

• Base case: l is a !-link. By the conclusion conditionH has to contain thed-link i or the`-link
on them-target ofl . In the case of à -link the box closure condition implies that the whole box
B is in H, henceking(x) ⊆ H. In the case of ad-link correctness is obvious, in the case of a`-
box it follows by the correctness of the interior of the box, guaranteed by the recursive correctness
condition. Moreover, no free substitutions and no free weakenings belong toking(x) (boxes cannot
close on weakenings). Picky∈ fv(king(x)), which in thed-link case is the target ofi and in the
other case is a free variable of thè-box B. If y is internal toH then the conditions for a subnet
guarantee thati or B are inH. Then clearlyking(x) ⊆ H.

• Inductive case: l is a⊗-link. As in the previous caseH has to contain thed-link or the`-box
on them-target ofl . Moreover, by lemma 4.3H contains a subnetK rooted in thee-targety of l .
By inductive hypothesisking(y) is the kingdom ofy, therefore we getking(y) ⊆ K ⊆ H. Hence
king(x)⊆H. By i.h. we also get thatking(y) is correct, hencey is its onlye-source andx is the only
e-source ofking(x). Acyclicity follows by correctness ofG. Recursive correctness follows from
the box closure condition and correctness ofG. Moreover, byi.h. king(y)—and soking(x)—has
no free substitutions and no free weakenings. The part aboutfree variables uses thei.h. for the
free variables ofking(y) and the conditions for a subnet as in the previous case for theother free
variables.

Lemma 4.6(substitution splitting). Let G be a correct net with a free substitution x. Then

1. The free variables of king(x) are free variables of G.

2. G\king(x) is a subnet of G.

Proof. 1) Suppose not. Then there is a free variabley of king(x) which is not a free variable ofG. There
are two possible cases:

• y is a substitution. Thenx has a path to a substitution inG0, against the definition of free substitu-
tion, absurd.

• y is the distinguished free variable of à-box B. Thus,y is internal to somè -box B and so it is
not a node ofG0. By Lemma 4.5 we get thatking(x) ⊆ B and sox is not a node ofG0, against the
definition of free substitution, absurd.

2) By point 1 the removal ofking(x) cannot create newe-sources. Being a substitution,x is the target of
some link. Therefore the removal ofking(x) cannot remove the root ofG. It is also clear that the removal
cannot create cycles, and the box closure condition for subnets guarantees that the recursive correctness
of G implies the one ofG\king(x).

Lemma 4.7. Let G be a correct net with a ground substitution. Then G has a free substitution.

Proof. Consider the following order on the elements of the setSg of ground substitutions ofG: z≤ y if
there is a path fromz to y in G0. Acyclicity of G0 implies thatSg contains maximal elements with respect
to ≤, if it is non-empty. Note that a maximal element ofSg is a free substitution inG. Now, if G has a
ground substitutionx thenSg is non-empty. Thus,G has a free substitution.

The next lemma is used in the proof of the sequentialization theorem.
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Lemma 4.8 (kingdom characterization). Let G be a correct net. Then G= king(rG) iff G has no free
substitutions nor free weakenings.

Proof. ⇒) By Lemma 4.5.⇐) By lemma 4.5 we get thatking(rG)⊆ G. If the two do not coincide then
by the internal closure condition for subnets, the multiplicative condition on nets, and the fact that they
share the same root, we get thatG contains a ground substitutionx on a free variable ofking(rG). By
lemma 4.7G contains a free substitution, absurd.

Theorem 4.9(sequentialization). Let G be a correct net and X be the set of e-nodes of its free weaken-
ings. Then there is a term t s.t. tX = G (andfv(G) = fv(t)∪X).

Proof. By induction on the number of links. By the root and conclusion conditions the minimum number
of links is 2 and the two links are necessarily a !-link on top of a d-link. Let x be thee-node of thed-link.
Thenx= G. We now present each inductive case. After the first one we assume that the net has no free
weakening.

• There is a free weakening l of e-node y. ThenG′ = G\{l} is still a correct net and byi.h. there
existt s.t. tX\{y} = G′. ThentX = G.

• There is a free substitution x. Then by Lemma 4.5 and Lemma 4.6king(x) andG\ king(x) are
correct subnets ofG. By the i.h. there exists andu s.t. s= king(x) andu{x} = G\king(x) (note
that if x∈ fv(u) thenu{x} = u/0 = u). Thenu[x/s] = G.

• No free substitution: by lemma 4.8G= king(rG). In case the root linkl of G is:

– a !-link over ad-link: base case, already treated.

– a !-link over a`-link: let H be the box of thè -link and x its distinguished free variable.
By definition of a net the set of free weakenings ofH either is empty or it contains onlyx. If
x is (resp. is not) the node of a free weakening then byi.h. there existst s.t. t{x} = H (resp.
t = H). Thenλx.t = G.

– A ⊗-link l : let x be itse-target anda its m-target. Note thatG= king(rG) implies thatG is
composed byl , king(x) and either thed-link or the`-link (plus its box) ona. By i.h. there
existss s.t. s= king(x). Now, if a is the source of ad-link of e-nodey we conclude, since
ys= G. Otherwise,s is the source of à of box H and thei.h. gives a termu and a setX
s.t. uX = H. Let us prove thatH andking(x) can only share free variables, as the translation
prescribes: no link at level 0 ofking(x) can be inH, and no box at level 0 ofking(x) can
intersectH other than on free variables, by the nesting condition. By reasoning about the
distinguished free variable ofH as in the previous case we then get(λy.u)s= G.

5 Proof nets: dynamics

The rewriting rules are in Figure 4. Let us explain them. First of all, note that the notion of cut in
our syntax is implicit, because cut-links are not represented explicitly. A cut is given by a node whose
incoming and outgoing connections are principal (i.e. with a little square on the line).

The rule→m is nothing but the usual elimination of a multiplicative cut, except that the step also
opens the box associated with the`-link.

The two→e rules reduce the exponential redexes. Let us explain how to read them. For the graph
notedH in Figure 4 there are two possibilities: either it is simply adereliction link (ad-link) or it is a`
with its box, so there is no ambiguity on what to duplicate/erase. Every pair of short gray lines denotes
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Figure 4: proof nets cut-elimination rules

the sequence (of lengthmi, with i ∈ {1, . . . ,k}) of boxes closing on the corresponding links. The rule has
two cases, one where ! is cut withk∈ {1,2, . . .} derelictions and one where it is cut with a weakening. In
the first case the sub-graphH is copiedk times (if k= 1 no copy is done) intoH1, . . .Hk and each copy
enters in themi boxes enclosing the corresponding (and removed) dereliction. Moreover, thek copies of
each target ofH are contracted together,i.e. the nodes are merged. In the case of a cut with a weakening,
H is erased and replaced by a set of weakenings, one for every target of H. Note that the weakenings
are also pushed out of all boxes closing on the targets ofH6. This is done to preserve the invariant that
weakening are always pushed out of boxes as much as possible.Such invariant is also used in the rule:
the weakening is at the same level ofH. Last, if the weakenings created by the rule are contracted with
any other link then they are removed on the fly (because by definition weakenings cannot be contracted).

Now, we establish the relationship between terms and nets atthe level of reduction. Essentially, there
is only one fact which is not immediate, namely that→e actually implements the→e rule on terms, as it
is proved by the following lemma.

Lemma 5.1(substitution). Let t= s[x/vL] then tX →e s{x/v}L
X

for any set of names X⊇ fv(t).

Proof. First of all observe thatt ands[x/v]L both reduce tos{x/v}L and by remark 3.2 both translate to
the same net. Hence it is enough to prove thats[x/v]L

X
→e s{x/v}L

X
. We prove it by induction on the

numberk of substitutions inL. If k= 0 then the proof is by induction on the numbern of free occurrences
of x in s. Cases:

• n= 0) In s[x/v]
X

the bang associated tov is cut with a weakening. The elimination of the cut gets
a netG′ without the !-link and thè -box associated tov, leaving a free weakening for every free
variable of the box,i.e.of every free variable ofv: thenG′ is exactlys{x/v}

X∪fv(v)
= sX∪fv(v).

• n> 1) Write s=C[x] for some occurrence ofx. Now, consideru=C[y][y/v][x/v] and note that:

6Note that, for the sake of a simple representation, the figureof the weakening cut-elimination rule is slightly wrong: itis
not true that the linksl1, . . . , l j having as target a given conclusionxi of H are all insidemi boxes, because each one can be
inside a different number of boxes.
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u→ C[v][x/v]→ C[v]{x/v} = s{x/v}

The difference betweenG′ = uX andG= s[x/v]
X

is that one of the occurrences ofx in G has been
separated from the others and cut with a copy ofv. Consider the stepG→ H which reduces the cut
onx in G and the sequenceG′ → H ′

y → H ′
y,x which first reduces the cut ony in G′ and then reduces

in H ′ the (unique) residual of the cut onx in G′. By the definition of reduction in netsH = H ′
y,x.

Now by i.h. applied tou andy we get thatC[v][x/v]
X
= H ′

y and by thei.h. applied toC[v][x/v] and
x we get thatC[v]{x/v}

X
= H ′

y,x. FromH = H ′
y,x andC[v]{x/v} = s{x/v} we gets{x/v}

X
= H and

conclude.

• n= 1) By induction ons. Some cases:

– If t = λy.u then by i.h. u[x/v]
X∪{y}

→e u{x/v}
X∪{y}

and so we getλy.(u[x/v])
X∪{y}

→e

λy.(u{x/v})
X∪{y}

. Now, observe thatλy.(u{x/v}) = (λy.u){x/v} = t{x/v} and that the two

netsλy.(u[x/v])
X∪{y}

and(λy.u)[x/v]
X∪{y}

have the same reduct after firing the exponential

cut onx, and so we get(λy.u)[x/v]
X∪{y}

→e (λy.u){x/v})
X∪{y}

.

– If s= w[y/u] then eitherx∈ u or x∈ w. In the first case by remark 3.2 we get thats[x/v]
X
=

w[y/u][x/v]
X
= w[y/u[x/v]]

X
. Now by i.h. u[x/v] →e u{x/v}. Then we haves[x/v]

X
→e

w[y/u{x/v}]
X
= w[y/u]{x/v}

X
= s{x/v}

X
. The second case is analogous.

– If s= (λy.w)u. The casex∈ u uses remark 3.2 and thei.h. as in thes= w[y/u] case. The
casex∈ w is slightly different. As before((λy.w)u)[x/v] and((λy.w[x/v])u) have the same
reduct. Byi.h. hypothesisw[x/v] →e w{x/v} and thus(λy.w[x/v])u

X
→e (λy.w{x/v})u

X
.

We conclude since((λy.w)u)[x/v]
X
→e ((λy.w{x/v})u)

X
= ((λy.w)u){x/v}

X
.

If k> 0 andL= L′[y/r] then we get byi.h. thats[x/v]L′
X
→e s{x/v}L′

X
. By definition of the translation

and of graph reduction it follows thats[x/v]L′[y/r]
X
→e s{x/v}L′[y/r]

X
.

Theorem 5.2 (strong bisimulation). Let t be a term and X a set of variables containingfv(t). The
translation is a strong bisimulation between t and tX, i.e. t →a t ′ if and only if tX →a t ′X, for a∈ {m,e}.

Proof. By induction on the translation. Ift = x there is nothing to prove, and ift = λx.s or t = xs it
immediately follows by thei.h., since all the redexes oft are contained ins. If t = s[x/u] and the redex
is in sor u then just apply thei.h.. If u= vL and the redex iss[x/vL]→e s{x/v}L then apply Lemma 5.1.
If t = (λx.s)u and the redex is insor u then just apply thei.h.. If t = (λx.s)u→m s[x/u] = t ′ then have a
look at Figure 5.a: clearlyt →m t ′ iff tX →m t ′X.

Strong bisimulations preserve reduction lengths, so they preserve divergent/normalizing reductions,
and termination properties in general.

Technical digression about confluence. For confluence the point is slightly more delicate, since in
general it is preserved only modulo the quotient induced by the strong bisimulation. But mild additional
hypothesis allow to transfer confluence. Given two rewriting systems(S1,→) and(S2, ) and a strong
bisimulation≡ (defined on all terms ofS1 andS2), to transfer confluence fromS1 to S2 it is enough to
ask that ifs1 ≡ s2 ands1 → s′1 then there is a uniques′2 s.t. s2 s′2 ands2 ≡ s′2, see [1] (pp. 83-86) for
more details. It is easily seen that in our case the translation enjoys this property in both directions.

These observations (and confluence ofλvker) prove:

Corollary 5.3. Let t∈ λvker and X a set of variables. Then t is weakly normalizing/strongly normalizing/a
normal form/without a normal form iff tX is. Moreover, proof nets are confluent.
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Figure 6: the ordinary CBV translation from terms to nets.

Actually, the translation is more than a strong bisimulation: the reduction graphs7 of t and t are
isomorphic, not just strongly bisimilar. An easy but tedious refinementof the proof of Theorem 5.2
proves:

Theorem 5.4(dynamic isomorphism). Let t be a term and X a set of variables containingfv(t). The
translation induces a bijectionφ between the redexes of t and the redexes of tX s.t. R: t →a t ′ if and only
if φ(R) : tX →a t ′X, where a∈ {m,e}.

A nice by-product of the strong bisimulation approach is that preservation of correctness by reduction
comes for free, since any reduct of a proof-net is the translation of a term.

Corollary 5.5 (preservation of correctness). Let G be a proof net and G→ G′. Then G′ is correct.

The original boring translation. For the sake of completeness, Figure 6 sketches the ordinaryCBV
translation fromλ -terms (possibly with iterated applications) to proof nets(including the case for explicit
substitutions and using a traditional syntax with boxes on !). An easy computation shows that the term
t = δ (yz)δ , whereδ = λx.xx maps to a net without normal form, whilet is aλβv-normal form (see [2]
for more details). This mismatch is the motivation behind our work.

7Reduction graphs, which are the graphs obtained considering all reductions starting from a given object,are not nets.
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6 Motivating `-boxes

The two encodings ofλ -calculus can be seen as fragments of Intuitionistic Multiplicative and Exponen-
tial Linear Logic (IMELL). Let us stress that in IMELL what wenoted⊗ and` correspond to the right
and left rules for the linear implication⊸, and not to the left and right rules for⊗ (the four rules for⊗
and⊸ are collapsed in LL but not in Intuitionistic LL, in particular our` acts on the output of the term,
i.e. on the right of the sequent, and corresponds to the right rulefor⊸).

Our argument is that in IMELL there is no correctness criterion unless the syntax is extended with
boxes for both !and⊸ (our `), as we shall explain in the next paragraphs. The fragment ofIMELL
encoding the CBNλ -calculus is a special case where the box for⊸ needs not to be represented. The
fragment encoding the CBVλ -calculus is a special case where the box for ! needs not to be represented.
So, the two encodings are dual with respect to the use of boxes, and then there is nothing exotic in our
use of`-boxes.

The difficulty of designing a correctness criterion for IMELL is given by the presence of weakenings,
which break connectedness. In most cases weakenings simplyprevent the possibility of a correctness
criterion. The fragment encoding the CBNλ -calculus, and more generally Polarized Linear Logic, are
notable exceptions. For the encoding of the CBNλ -calculus there exist two correctness criteria. Let us
show that none of them works for the CBVλ -calculus.

The first is the Danos-Regnier criterion, in the variant replacing connectedness with the requirement
that the number of connected components of every switching graph is 1+#w, where #w is the number
of weakenings at level 0 (after the collapse of !-boxes) [24]. In our case this criterion does not work:
the net in Fig. 5.b verifies the requirement while it does not represent any proof or term. The second
criterion is Olivier Laurent’s polarized criterion, because the CBN encoding is polarized. In its original
formulation it cannot be applied to the encoding of the CBVλ -calculus, because such a fragment is not
polarized (there can be a weakening as a premise of a tensor, which is forbidden in polarized logic). Our
re-formulation of Laurent’s criterion rejects the net in Figure 5.b (because the twò-links form a cycle),
but without using̀ -boxes it would accept the net in Figure 5.c, which is not correct8.

Thus, the known criteria do not work and there is no criteria for IMELL. The usual way to circumvent
problems about correctness is to add some information to thegraphical representation, under the form
of boxes (as we did) or jumps (i.e. additional connections). It is well known that in these cases various
criteria can be used, but this extra information either is not canonical or limits the degree of parallelism.
Another possible solution is to modify the logical system adding the mix rules. However, such rules are
debatable, and also give rise to a bad notion of subnet (for details see [1], pp. 199-201).

Let us stress that our counter-examples to the known criteria do not rely on the exponentials (i.e.
non-linearity): it is easy to reformulate them in Intuitionistic Multiplicative Linear Logic (IMLL) with
units9, for which then there is no correctness criterion.

In the case studied in this paper the use of`-boxes does not affect the level of parallelism in a
sensible way. Indeed, in IMELL the parallelism given by proof nets concerns the left rules (of⊗ and⊸,
plus contractions and weakenings) and cuts: in our case there is no⊗ (remember our⊗ and` rather
correspond to the rules for⊸), our technical choices for variables keep the parallelismfor contraction
and weakenings, and the parallelism of the left rule for⊸ (our⊗) and cuts is preserved (it is given by
the equations in (1), page 16).

8The net in Figure 5.c would be rejected by the original version of the criterion, which is based on a different orientation.
But the original orientation cannot be applied to our fragment.

9Just replace each sequence of a ! over a dereliction with an axiom, and the weakenings with⊥-links.
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7 Proof nets: the literature on term representations

When relatingλ -terms and proof nets a number of technical choices are possible:

1. Explicit substitutions: proof nets implement aβ -step by two cut-elimination steps. This refined
evaluation can be seen on the calculus only if the syntax is extended with explicit substitutions.

2. Variables: to properly represent variables it is necessary to work modulo associativity and com-
mutativity of contractions, neutrality of weakening with respect to contraction, and permutations
of weakenings and contractions with box-borders. In the literature there are two approaches: to
explicitly state all these additional congruences or to usea syntax naturally quotienting with re-
spect to them. Such a syntax uses n-ary ?-links collapsing weakening, dereliction and contractions
and delocalizing them out of boxes. It is sometimes callednouvelle syntaxe.

3. Axioms: various complications arise if proof nets are presented with explicit axiom and cut links.
They can be avoided by working modulo cuts on axioms, which isusually done by employing an
interaction nets presentation of proof nets.

4. Exponential cut-elimination: the cut-elimination rules for the exponentials admit manypresenta-
tions. Essentially, either they are big-step,i.e.an exponential cut is eliminated in one shot (making
many copies of the !-premise of the cut), or they are small-step, with a rule for each possible
?-premise (weakening, dereliction, contraction, axiom, box auxiliary port).

We now list the works in the literature which are closer in spirit to ours,i.e. focusing on the represen-
tation of λ -calculi into proof nets (and for space reasons we omit many other interesting works, as for
instance [20], which studies the representation ofstrategies, not ofcalculi). The first such works were the
Ph.D. thesis of Vincent Danos [8] and Laurent Regnier [24], which focused on the call-by-name (CBN)
translation. Danos and Regnier avoid explicit substitutions, use n-ary contractions, explicit axioms, and
big-step exponential rules, see also [9]. They characterize the image of the translation using the variant
on the Danos-Regnier correcteness criterion which requires that any switching graph has #w+ 1 con-
nected components, where #w is the number of weakenings. In [10] Danos and Regnier use theCBV
translation10. Both translations are injective.

In [19, 18] Olivier Laurent extends the CBN translation to represent (the CBN)λ µ-calculus. He
does not use explicit substitutions nor n-ary ?-links, while he employs explicit axiom links and small-
step exponential rules. His work presents two peculiar points. First, the translation ofλ µ-terms is not
injective, because—depending on the term—theµ-construct may have no counterpart on proof nets. This
induces some mismatches at the dynamic level. Second, Laurent finds a simpler criterion, exploiting the
fact that the fragment encoding (the CBN)λ µ-calculus is polarized. In [18] Laurent also show how
to represent the CBVλ µ-calculus. However, such a representation does not use the same types of the
boring translation, asA→ B maps to ?!(A⊸ B), and not to !(A⊸ B).

Lionel Vaux [28] and Paolo Tranquilli [26, 27] study the relationship between the differentialλ -
calculus and differential proof nets. Vaux also extends therelationship to the classical case (thus en-
compassing a differentialλ µ-calculus), while Tranquilli refines the differential calculus into aresurce
calculuswhich better matches proof nets. They do not use explicit substitutions, nor n-ary contractions,
while they use interaction nets (so no explicit axioms and cut link) and small-step exponential rules. Both
Tranquilli and Vaux rely on the Danos-Regnier criterion, despite the fragment encoding their calculi is

10Let us point out that [10] presents an oddity that we believe deserves to be clarified. The authors show that an optimized
geometry of interaction for the proof nets of the CBV-translation is isomorphic to Krivine’ s abstract machine (KAM): this is
quite puzzling, because the KAM is CBN, while they use the CBVtranslation.
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polarized and can be captured using Laurent’s criterion by using boxes for coderelictions; in the context
of λ -calculus such boxes do not reduce the parallelism of the representation.

Delia Kesner and co-authors [6, 7, 16] study the relationship with explicit substitutions (in the CBN
case). The main idea here is that explicit substitutions correspond to exponential cuts. They use explicit
axiom links and small-step exponential rules, but they do not employ n-ary contractions (and so they
need additional rules and congruences). Because of explicit substitutions the translation is not injective:
now different terms may map to the same proof net, as in this paper. They do not deal with correctness.

In none of these works the translation is a strong bisimulation. In [3] the author and Stefano Guerrini
use a syntax inspired by proof nets (and extended with jumps)to represent the CBNλ -calculus with
explicit substitutions. That work is the only one employing(the equivalent of) n-ary ?-links and (the
equivalent of) small-step exponential rules. In [3] the correctness criterion is a variation over Lamarche’s
criterion for essential nets, which relies in an essential way on the use of jumps. A reformulation in the
syntactic style of this paper of both [3] and of Danos and Regnier’s proof nets for the CBNλ -calculus
can be found in [1], together with a detailed account of the strong bisimulation.

Here, hypergraphs allow us to use n-ary ?-links and collapseaxioms and cut links (as if we were
using interaction nets). More precisely, we represent n-ary ?-links by allowinge-nodes to have more
than one incoming link. This choice overcomes some technicalities aboutgluing andde-gluingof ?-
links. Such technicalities are always omitted, but they arein fact necessary to properly define subnets
and cut-elimination. We also employ big-step exponential rules and explicit substitutions.

Acknowledgements. To Stefano Guerrini, for introducing me to proof nets, correctness and the
representation ofλ -terms, and to Delia Kesner, for helping with the financial support of this work.
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