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The input language for today’s CHC solvers are commonly the standard SMT-LIB format, borrowed
from SMT solvers, and the Prolog format that stems from Constraint-Logic Programming (CLP).
This paper presents a new front-end of the Eldarica CHC solver that allows inputs in the Prolog
language. We give a formal translation of a subset of Prolog into the SMT-LIB commands. Our
initial experiments show the effectiveness of the approach and the potential benefits to both the CHC
solving and CLP communities.

1 Introduction

Over the last years, a growing number of solvers for Constrained Horn Clauses (CHC) have been devel-
oped; for instance, Spacer [8], Eldarica [5], Golem [1], and RInGEN [2]. There are two main languages
used to interface such solvers: the SMT-LIB language [3], in which Horn clauses can either be expressed
using quantified assertions, or using the rule-based notation that was introduced by Z3; and dialects
of Prolog [6] as a language in Constraint-Logic Programming (CLP). The former language is designed
primarily for machine-generated input to solvers, as it is simple to parse, strongly typed, and has un-
ambiguous semantics. The latter language is more concise and convenient for handwritten programs.
There is, unfortunately, no exact match between the theories considered in CLP and SMT-LIB, and some
Prolog language features have semantics that are not straightforward to model; for instance, the default
absence of the “occurs-check” in equations.

This paper presents an ongoing effort to add a comprehensive Prolog/CLP front-end to the CHC
solver Eldarica [5]. Eldarica has been able to process clauses in Prolog format since the beginning of
its development; however, the existing Prolog front-end of Eldarica is restricted to the parsing of clauses
over integers, and it is planned to replace it with a front-end with more extensive support for the different
Prolog features through this project. To document the applied interpretation of Prolog, we define a formal
translation of a fragment of Prolog to the SMT-LIB language. In the scope of this paper, we focus on three
key features of Prolog: functions, defining a Herbrand universe of values; lists; and integer numbers as
introduced by CLP(Z). We model the semantics of those language features using a mapping to SMT-LIB
data-types (i.e., algebraic data-types with free constructors) and SMT-LIB integers.

Example To illustrate the complementarity of CHC and CLP, we start with a simple routing example
including integer arithmetic, lists, and functions in Prolog. Figure 1 shows a CLP(Z) program to compute
the distance between cities. The program consists of 9 facts and 2 rules. A fact of the form distance(X,
Y, Z) states that the direct distance between cities X and Y is Z. The rule in line 12 implies that distance
is symmetric. The meaning of path(X, Y, Z, L) is that there exists a path of length Z from X to Y
where L represents the path as a list of points in the format waypoint(C, D). This shows that city C
lies on the path from X to Y with a distance of D from the starting point, which is X . The fact path(A,
A, 0, [waypoint(A, 0)]). states that for any city A, there is a path of length 0 to itself and the list
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1 :- use_module(library(clpz )). % or clpfd
2
3 distance(tehran , vienna , 31).
4 distance(vienna , paris , 10).
5 distance(vienna , munich , 3).
6 distance(paris , munich , 10).
7 distance(paris , rome , 11).
8 distance(lausanne , rome , 6).
9 distance(lausanne , munich , 4).

10 distance(tehran , paris , 42).
11
12 distance(A, B, D) :- distance(B, A, D).
13
14 path(A, A, 0, [waypoint(A, 0)]).
15 path(A, C, D, [waypoint(C, D) | N]) :- path(A, B, P, N), distance(B, C, Q),
16 D #= P + Q.
17
18 ?- path(tehran , munich , D, X), D #< 40.

Figure 1: Prolog Program for distance between cities in CLP(Z)

presenting the path is the city A itself. Finally, the rule on line 15 implies that if there is path N of length
P from A to B, and the direct distance from B to C is Q and D is equal to P + Q, then we have found a path
from A to C, which is the previously found path (N) extended with the city C. The query path(tehran,
munich, D, X), D #< 40. searches for a path from munich to tehran of length less than 40. A
possible answer to this query is D = 34 and X = [waypoint(munich,34), waypoint(vienna,31),
waypoint(tehran,0)]. This means that there is a path from tehran to munich of distance 34, with
vienna being on the way with distance 31 from tehran.

Note that this Prolog program, while intuitive, is also rather inefficient, and interpreting it using a
CLP engine might lead to non-termination due the recursion on lines 12,15. The program can be rewritten
to a more operationally oriented (and harder to read) set of clauses to be terminating and efficient, in
particular preventing cyclic paths from being explored, and inlining the length bound to allow branches
without solutions to be pruned. Alternatively, tabling [4] could be used for the predicate path1.

CHC solvers are generally less efficient than Prolog engines for solving constraint satisfaction prob-
lems. However, the abstraction techniques in CHC solvers are naturally able to cope with clauses written
in declarative and otherwise inefficient style. They can easily find a path from tehran to munich of
length 40 in Figure 1. CHC solvers are also able to determine that no such path exists for lengths less
than 34, a task more challenging for at least some CLP solvers. More generally, CHC solvers are ag-
nostic of the order of clauses, and the order of literals in clauses, and process clauses focusing more on
their logical content than syntactic features. In this sense, CHC solvers can be a useful debugging tool,
and have a complementary performance profile to CLP systems. The goal of our work is to simplify the
integration of CLP and CHC methods, by providing a translation of a subset of Prolog into SMT-LIB,
the common input language of CHC solvers.

Organization of the paper: In Section 2 we overview the CLP and the SMT-LIB input languages.
Section 3 discusses translation rules for converting Prolog to SMT-LIB. Section 4 translates the introduc-
tory example to SMT-LIB. We conclude the paper and present directions of future research in Section 5.

1Which, however, led to an error in experiments with SWI-Prolog [11].
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⟨Database⟩ ::= ⟨Clause⟩∗

⟨Clause⟩ ::= ⟨Predicate⟩ ‘.’
| ⟨Predicate⟩ ‘:-’ ⟨BodyItem⟩∗ ‘.’
| ‘?-’ ⟨BodyItem⟩∗ ‘.’

⟨BodyItem⟩ ::= ⟨Predicate⟩
| ⟨Constraint⟩

⟨Predicate⟩ ::= ⟨Atom⟩
| ⟨Atom⟩ ‘(’ ⟨Term⟩∗ ‘)’

⟨Term⟩ ::= ⟨Variable⟩
| ⟨Atom⟩
| ⟨Atom⟩ ‘(’ ⟨Term⟩∗ ‘)’
| ⟨List⟩
| ⟨Integer⟩

⟨List⟩ ::= ‘[’ ⟨Term⟩∗ ‘]’
| ‘[’ ⟨Term⟩∗ ‘|’ ⟨Term⟩ ‘]’

Figure 2: A simplified grammar for describing the syntax of Prolog programs.

2 Preliminaries

2.1 Constraint Logic Programming (CLP)

Constraint Logic Programming (CLP) [10], first introduced by Jaffar and Lassez in 1987 [7], is a pro-
gramming paradigm that combines the benefits of constraint programming and logic programming. It
enables the modeling of complicated real-world problems with variables and constraints, and uses log-
ical and constraint reasoning to find a solution. CLP expresses the connections between variables as
constraints and looks for a derivation of queries from given clauses.

Prolog is the main language of CLP, where the constraints are equations over the algebra of terms.
CLP problems may in addition contain symbols with pre-defined meanings, defined by a theory. CLP(Z)
[9] refers to CLP over the theory of integer arithmetic. Figure 2 is a simplified grammar that is able to
parse Prolog programs with functions, lists, and integer arithmetic. An extended version of it is used in
our actual implementation.

As shown in Figure 2, every Prolog program consists of a set of Clauses. A clause has a head and a
body. The head can have zero or one predicates, and the body is a list of predicates and constraints. A
clause is either a Fact, a Rule, or a Query. For example, man(tom) is a fact, and friends(X, Y) :-
likes(X, Y), likes(Y, X) is a rule with friends(X, Y) as the head and likes(X, Y), likes(Y,
X) as the body. Queries always start with a ?-. For instance, ?- likes(X, tom) would search for an
assignment for X such that likes(X, tom) can be derived from the set of given clauses. Terms can be
variables, atoms, compound terms, lists, and integers.

Structured data is represented using compound terms. A compound term consists of a function and
a sequence of one or more sub-terms. A function is characterized by its name, which is an atom, and its
arity. For instance, in the fact man(father(claire)), the term father(claire) is a compound term.

In Prolog, there are different kinds of built-in equality operators (#=, =, =:=, is) with different
semantics. The =/2 predicate, which accepts two arguments, is used to ensure that its two arguments
are syntactically equal through unification. For instance, the response to the query ?- father(X) =
father(john) will be positive as the sub-terms can be unified by setting X = john. By default, Prolog
does not apply any “occurs-check”, however, which can sometimes cause non-termination. An example
of this is ?- X = father(X). The unification algorithm decides to unify X with the right-hand-side,
which is father(X). But still there is an X left in this term; interpretation can get stuck in this loop of
replacing X by father(X) and never terminate.

Lists are terms representing sequences of elements; for instance, [a, [b, c], 7] is a list of terms.
A non-empty list can be also be thought of as having two parts: head as the first element of the list, and
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tail as the remainder of the list. Both representations can be parsed using the grammar rules in Figure 2.
The body of the clauses in a Prolog program may also include constraints, in addition to predicates.

An example of a constraint in CLP(Z), Constraint Logic Programming over the domain of integers, is
X + Y #>= 3 * Z - 17. Some other operators for constraints in CLP(Z) include #=, #>, #>=, #<,
#=<, +, -, *, /, mod. Throughout the rest of this paper, whenever we refer to constraints, we refer
to constraints in CLP(Z).

2.2 SMT-LIB

SMT-LIB, or the Satisfiability Modulo Theories Library [3], is a standardized format for specifying
logical formulas modulo various background theories. It is widely used in applications like software
verification, hardware design, and automated reasoning, and is also used as a standard input format of
CHC solvers. The SMT-LIB language supports a range of theories, including arithmetic, bit-vectors, and
arrays, allowing users to express a wide variety of constraints.

An SMT-LIB script consists of a list of commands to be processed by an SMT solver. Important
SMT-LIB commands are:

• (set-logic L): Set the logic, i.e., the combination of theories that will be used. For CHC
solvers, typically L = HORN.

• (declare-fun f (T1 . . . Tn) T): Declaration of a function or predicate f with the given ar-
gument types T1 . . . Tn and result type T . Types in SMT-LIB include the types provided by back-
ground theories (e.g., Int for integers, Bool for Booleans), as well as user-defined types. When
interfacing CHC solvers, typically only predicates (i.e., Boolean-valued functions) are declared.

• (declare-datatype T (C1 . . . Cn)): Declaration of an algebraic data-type T with construc-
tors C1 . . . Cn. Data-types can be recursive, and are the main modelling technique in SMT-LIB
to represent structured data. For every constructor C, the data-type declaration will also introduce
a tester (_ is C) to identify terms constructed using C, as well as selectors for the arguments.
An extended version of the command, declare-datatypes, exists to define several mutually
recursive data-types. We will see various examples of algebraic data-types in this article.

• (assert φ): Assert a constraint φ , which can be formulated using the standard operators of first-
order logic, the functions and predicates provided by background theories, and declared symbols.
CHC solvers require that asserted constraints φ are constrained Horn clauses, which means that
they fall into one of the following classes of formulas:

Facts: (p t1 . . . tk)
Quantified facts: (forall (X1 . . . Xn) (p t1 . . . tk))
Rules: (forall (X1 . . . Xn) (=> (and ψ1 . . . ψm) (p t1 . . . tk)))
Queries: (forall (X1 . . . Xn) (=> (and ψ1 . . . ψm) false)

• (check-sat): Instruct the SMT solver to check whether the constraints asserted up to this point
are satisfiable.

Throughout the paper, only a small subset of the SMT-LIB commands are used. For a full definition
of SMT-LIB, we refer to the standard documentation [3].
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(declare -datatype U (
(claire)
(father (father_1 U))
)

)

(declare -fun man
(U)
Bool

)

(assert
(man (father claire ))

)

Figure 3: SMT-LIB equivalent of man(father(claire))

3 Translating CLP to SMT-LIB

In this section, we explain our translation from CLP problems in Prolog to SMT-LIB. We begin by a
motivating example as a warm-up. After that, we present the translation rules for Prolog facts, rules,
lists, and CLP(Z) constraints. We remark that our implementation does not explicitly translate input
problems to SMT-LIB, but instead directly constructs clauses using Eldarica’s internal data structures;
the translation to SMT-LIB is presented for documentation purposes, and reflects the semantics that is
applied.

3.1 A Motivating Example

Consider the Prolog fact man(father(claire)). This fact consists of the function father applied to
an atomic term claire. To model this term, one could consider declaring corresponding uninterpreted
functions in SMT-LIB. However, with uninterpreted functions, claire and father(claire) might be
assigned the same value, despite being syntactically different terms: the equation (= claire (father
claire)) is satisfiable in SMT-LIB. This is inconsistent with Prolog semantics, in which claire and
father(claire) are different and non-unifiable terms, and it is guaranteed that they stand for distinct
elements of the Herbrand universe. In addition, most CHC solvers do not support uninterpreted functions.

We therefore propose to treat claire and father as constructors of an algebraic data-type. To
translate the mentioned fact to SMT-LIB, the first step is to introduce a new algebraic data-type for all of
the terms occurring in a program. The data-type will be called U, standing for Universal. The constructors
of U will be all atoms and functions appearing in the clauses. Figure 3 shows the full translation of the
example. The constructor father is unary, and its definition also adds a selector father_1 to retrieve
the sub-term. We also define the predicate man, as a Boolean function with a single argument of type U.
Finally, we add the fact man(father(claire)) to the set of our clauses using the assert command.
Section 3.2 provides further details.

It has to be noted that our encoding of terms does not exactly model Prolog semantics. As explained
in Section 2, the unification algorithm of Prolog will not detect the non-unifiability of a query ?- X =
father(X) due to the missing occurs-check. In contrast, elements of SMT-LIB data-types are finite
constructor terms, which implies that the equation (= X (father X)) is not satisfiable in SMT-LIB.
However, we believe that the finite-term semantics is usually the intended semantics of a Prolog program.
It remains to be investigated in future work whether there is a way to represent Prolog semantics more
closely in SMT-LIB.

3.2 Algebraic Data Types (ADTs)

We define a single algebraic data-type U for representing the type of all terms in a program. The con-
structors of U will be all functions and atoms appearing in the clauses. As this global type U is defined
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collectFunctions(t) =


{(atom,0)}, if t = atom
{(c,n)}∪

⋃i=n
i=1 collectFunctions(ai), if t = c(a1, · · · ,an)

/0, otherwise

Figure 4: Function collectFunctions collecting functions in the terms

(declare -datatype U
(

( f1 ( f 1
1 U) ... ( f a1

1 U))
...
( fn ( f 1

n U) ... ( f an
n U))

)

Figure 5: Definition of the universal type U for functions {( f1,a1), . . . ,( fn,an)}

only once, we need to iterate through all clauses and collect the functions and atoms appearing in them.
We define a recursive function responsible for this matter in Figure 4. This function is applied to a term t,
and recursively collects the atoms and functions occurring in t, as well as their arity. For instance, the
value of collectFunctions(a(X ,b,c(d,Y,e))) is {(e,0),(d,0),(c,3),(b,0),(a,3)}.

Given that the set collected using collectFunctions is {( f1,a1), . . . ,( fn,an)}, the universal algebraic
data type U should be defined as in Figure 5.

3.3 Translation of Facts

Section 3.1 shows an example of translating a fact to SMT-LIB. We now introduce the general case of
this translation, and add rules for lists and integer arithmetic in Sections 3.5 and 3.6. We refer to triplets
of the form s ▷ s′ : Φ as translation judgements. The meaning of a judgement is that the Prolog term s
can be translated to an SMT-LIB term s′ under a set of side conditions Φ. Side conditions are mainly
needed to capture typing requirements. For instance, Prolog (CLP(Z)) raises an error when encountering

a ▷ a : /0
a is an atom

V ▷ V : /0
V is a variable

{ti ▷ t ′i : Φi}n
i=1

f(t1,...,tn) ▷ (f t ′1 ... t ′n) :
⋃n

i=1 Φi
f is a function or predicate

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s = t ▷ (= s′ t ′) : Φ1 ∪Φ2

s ▷ s′ : Φ

\+s ▷ (not s′) : Φ

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s =\= t ▷ (not (= s′ t ′)) : Φ1 ∪Φ2

Figure 6: Basic rules for translating Prolog to SMT-LIB



124 An Encoding of CLP Problems in SMT-LIB

(declare -fun p
(U ... U)
Bool

)

(assert
(forall ( (X1 U) ... (Xm U) )

(=> (and Φ1 ... Φn) (p t ′1 ... t ′n))
)

)

Figure 7: Translation of a fact p(t1, . . . , tn). We assume that the elements of a set Φi are implicitly
conjoined.

(declare -fun likes
(U U)
Bool

)

(declare -fun friends
(U U)
Bool

)

(assert
(forall ( (X U) (Y U) )

(=>
(and (likes X Y) (likes Y X))
(friends X Y)

)
)

)

Figure 8: Translation of a rule in SMT-LIB

the expression a + b, where a or b are not integers. Thus, when translating a + b to SMT-LIB, we will
later add side conditions that ensure the correct type of a and b. More details concerning the use of side
conditions are given in Sections 3.5 and 3.6.

Figure 6 shows the basic translation rules. Each rule derives a translation judgement, the conclusion
under the bar, from premises shown above the bar. The rules in Figure 6 are mostly self-explanatory, and
recursively translate a given term or constraint to SMT-LIB. The rules assume, for sake of presentation,
that atoms, variables, and functions are translated to SMT-LIB symbols with the same name.

The SMT-LIB translation of a Prolog fact p(t1, . . . , tn) is shown in Figure 7 in terms of expressions
t ′1, . . . , t

′
n and side conditions Φ1, . . . ,Φn, which are defined as follows:

• For all i ∈ {1, . . . ,n} it holds that ti ▷ t ′i : Φi.

• X1, . . . ,Xm are all the variables appearing in the terms t1, . . . , tn.

The fact is captured using an SMT-LIB assertion in Figure 7, listing the side conditions required by the
translation as assumptions.

3.4 Translation of Rules

Before presenting the translation of rules, we begin with a concrete example, using the Prolog rule
friends(X, Y) :- likes(X, Y), likes(Y, X). This rule will be turned into a universally quanti-

(assert
(forall ( (X1 U) ... (Xk U) )

(=> (and ψ ′
1 . . . ψ ′

m Φ0 ... Φm) ψ ′
0)

)
)

Figure 9: Translation of a rule ψ0 :- ψ1, . . . ,ψm
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(declare -datatypes () (
(U

(aList (theList L))
...

)
(L

nil
(cons (head U) (tail L))

)
)

)

Figure 10: Algebraic data-types including lists

list_concat ([],L,L).
list_concat ([X1|L1],L2 ,[X1|L3]) :- list_concat(L1 ,L2 ,L3).

Figure 11: A Prolog program concatenating lists

fied implication in SMT-LIB. Given that we have already defined our universal data-type U as explained
in Section 3.2, all we need is to declare functions in SMT-LIB for likes and friends, and create the
rule using the universal quantifier. The full translation is illustrated in Figure 8.

The general schema for expressing a rule ψ0 :- ψ1, . . . ,ψm in SMT-LIB is shown in Figure 9, assum-
ing that:

• For all i ∈ {0, . . . ,m} it holds that ψi ▷ ψ ′
i : Φi.

• X1, . . . ,Xk are all the variables appearing in the rule.

The assertion representing the rule in Figure 9 has a similar shape as the assertion for facts in Figure 7.

3.5 Translation of Lists

We now add lists to the picture. The absence of static typing in Prolog makes it a-priori impossible to
tell whether a Prolog variable will represent a list or a term constructed using some function (or possibly
both). We therefore include lists as one case in our universal data-type U, and ensure the correct typing
of terms through side-conditions in our translation rules.

(declare -fun list_concat (U U U) Bool)

(assert (forall ((X U)) (list_concat (aList nil) X X)))

(assert (forall ((X1 U) (L1 U) (L2 U) (L3 U))
(=> (and (list_concat L1 L2 L3) ((_ is aList) L1) ((_ is aList) L3))

(list_concat
(aList (cons X1 (theList L1))) L2 (aList (cons X1 (theList L3 ))))))

)

Figure 12: SMT-LIB representation of the program in Figure 11
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[] ▷ (aList nil) : /0

{ti ▷ t ′i : Φi}n
i=1

[t1,...,tn] ▷ (aList (cons t ′1 (cons t ′2 (... cons t ′n nil))...))▷
⋃n

i=1 Φi

h ▷ h′ ▷ Φ1 t ▷ t ′ ▷ Φ2

[h|t] ▷ (aList (cons h′ (theList t ′))) : Φ1 ∪Φ2 ∪{((_ is aList) t ′)}

Figure 13: Translation rules for lists

(declare -datatypes () (
(U

(anInt (theInt Int))
...

)
)

)

Figure 14: Modified declaration of the universal ADT for integer arithmetic

Lists can be viewed as an algebraic data-type (call it L) with two constructors nil and cons. The con-
structor nil has zero arguments and represents empty lists, and cons has two arguments: one referring
to the head of the list (a term of type U), and one of type L referring to the tail of the list.

To implement lists in SMT-LIB, it is therefore natural to declare a new data-type L with the nil and
cons constructors. This new data-type will have a mutual dependency on our universal data-type U, as
defined before, and therefore has to be declared along with U as shown Figure 10. Note that in Figure 10,
there may be other constructors for U coming from the collected functions in Section 3.2, denoted by
three dots. The aList constructor is introduced to wrap terms of type L as a term of the universal type U.
An example of a Prolog program involving lists is presented in Figure 11. The translation of the program
in Figure 11 to SMT-LIB is presented in Figure 12.

A set of inference rules for translating lists in Prolog to SMT-LIB is presented in Figure 13. The
first rule in Figure 13 translates the empty list. The second rule represents the translation of a list with
explicitly enumerated elements. In this case, the list can be constructed in SMT-LIB as a simple iterated
application of cons. The final rule directly matches the functional definition of a list. A list in Prolog
with h as the head, and t as the tail, can be constructed using the cons constructor in SMT-LIB. This
construction is type-correct only if t is again a list; thus, the rule adds the side condition ((_ is aList)
t ′), and unwraps the tail using the theList selector. In all the rules in Figure 13, the result is finally
wrapped using the aList constructor and turned into a U-term.

3.6 Integer Arithmetic

We finally introduce inference rules for converting constraints in the background theory of integer arith-
metic (e.g., 2*X + 7 #> Y) to their corresponding expressions in SMT-LIB. To represent integers, sim-



D. Amrollahi, H. Hojjat & P. Rümmer 127

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s⋆ t ▷ (anInt (op (theInt s′) (theInt t ′))) : Φ1 ∪Φ2 ∪{(_ is anInt) s′),(_ is anInt) t ′)}

where (⋆,op) ∈ {(+,+), (-,-),(*,*),(/,div),(mod,mod)}

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s◦ t ▷ (op (theInt s′) (theInt t ′)) : Φ1 ∪Φ2 ∪{(_ is anInt) s′),(_ is anInt) t ′)}

where (◦,op) ∈ {(#=,=), (#>,>),(#>=,>=),(#<,<),(#=<,<=)}

I ▷ (anInt I) : /0
I is a decimal non-negative integer

-I ▷ (anInt (- I)) : /0
I is a decimal non-negative integer

Figure 15: Translation rules for expressions and contraints in CLP(Z)

ilarly as with lists we add a new constructor to U, so that we can wrap integers into a term of type U. We
call this new constructor anInt, and define it in Figure 14. We once again note that U is a universal type
and may include other constructors.

The translation rules for integer expressions and Boolean constraints over them are presented in
Figure 15. The first rule translates integer-valued functions by recursively translating the sub-terms,
unwrapping the result, and applying the corresponding SMT-LIB function. The result is finally wrapped
again using anInt. The second rule performs the corresponding translation for integer predicates. The
other two rules take care of the translation of integer literals.

The translation can be modified easily to model bounded integers, which are used by some Prolog
implementations. In this case, instead of Int in Figure 14, a bit-vector type like (_ BitVec 64) has to
be used, and in Figure 15 the corresponding bit-vector operations have to be applied. Bit-vector support
in CHC solvers is much less mature than support for mathematical integers, however.

As an example, consider the expression X #> 7. According to the translation rule for variables in
Figure 6, X ▷ X : /0, and according to the translation rule for integers in Figure 15, 7 ▷ (anInt 7) : /0.
Finally, according to the first rule in Figure 15 for translating expressions in integer arithmetic, the
whole expression gets translated to (anInt (+ (theInt X) (theInt (anInt 7)))), with the side
constraint that X is an integer.

4 An SMT-LIB Encoding of the Motivating Example

Combining the different Prolog features that were discussed, Figure 16 gives the SMT-LIB encoding
of the Prolog program for computing paths between cities from Section 1. All the commands used in
this encoding can be obtained using the translation rules explained throughout this article. The encoding
begins by declaring the universal data-type U. Its constructors include all the atoms and functions that
appear in the clauses, in addition to anInt and aList. After that, the data-type L is declared for lists, as
explained in Section 3.5. The SMT-LIB script continues by declaring the functions distance and path
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appearing in the Prolog program clauses. The rest of the encoding are assertions corresponding to the
Prolog rules and facts, and finally the assertion as a clause with head false.

A CHC solver like Eldarica [5] can derive the status unsat for this SMT-LIB script, which implies
that the clauses are contradictory. This can be interpreted as the negation of the last clause being derivable
from the other clauses. A CHC solver could also discover the path discussed in Section 1.

When tightening the length bound to (< (theInt D) 34), the problem becomes satisfiable, which
can again be verified using a CHC solver.

5 Conclusion

We have presented work towards a new CHC solver front-end that allows input in Prolog format, bridging
the gap between Prolog/CLP semantics and SMT-LIB. We are in the process of implementing the defined
translation from Prolog to SMT-LIB in our Horn solver Eldarica [5], with the goal of achieving good
coverage of the Prolog and CLP features.

The translation defined in this paper should be seen as a starting point, as there are several aspects
that require further work, more research, or more discussion in the communities:

• We have only shown the translation rules for some of the most important CLP(Z) operators. We
believe that many other theories and constraints can be handled in a similar fashion.

• We keep typing constraints dynamic, and this way stay close to the actual Prolog semantics. In
terms of the efficiency of CHC solvers on the translated program, of course, it could be beneficial
to perform some amount of type inference upfront. This way, one could translate integer variables
in Prolog to native SMT-LIB Int variables, etc. However, CHC solvers with support for algebraic
data-types tend to perform such type inference themselves, so that the payoff from being more
clever during the translation is unclear.

• Our translation includes all typing constraints as assumptions (Figures 7 and 9), i.e., the well-
typedness of a Prolog program is assumed but not verified. It is not entirely obvious how correct
typing should be asserted in the SMT-LIB representation, however. In the list example in Figure 11,
for instance, note that the first clause implies that the second and third argument of list_concat
can be terms of any kind, whereas the second clause relies on the third argument being a list. The
clauses therefore entail ill-typed statements like list_concat([X|[]], 42, [X|42]]). A CLP
engine performing backward chaining will, however, not run into any typing errors.

• There are several aspects of Prolog semantics that are challenging in a translation to SMT-LIB.
Those include, in particular, the missing occurs-check in equations, as well as cuts. It is unclear
whether those features can or should be translated faithfully to SMT-LIB semantics.

Finally, it will be interesting to evaluate solver performance for the different design choices in the
translation, for different CHC solvers, and to compare to the performance of state-of-the-art CLP engines.
We have not done such a comparison yet due to the preliminary state of the implementation of the front-
end. While we generally assume CLP to be significantly more efficient on classical constraint satisfaction
problems than CHC, there might also be areas in which the abstraction-based algorithms used in CHC
solvers have advantages.
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1 (declare -datatypes () (
2 (U
3 (anInt (theInt Int))
4 (aList (theList L))
5 (waypoint (waypoint_1 U) (waypoint_2 U))
6 tehran vienna paris munich rome lausanne
7 )
8 (L
9 nil

10 (cons (head U) (tail L))
11 )
12 )
13 )
14 (declare -fun distance (U U U) Bool)
15 (declare -fun path (U U U U) Bool)
16
17 (assert (distance tehran vienna (anInt 31)))
18 (assert (distance vienna paris (anInt 10)))
19 (assert (distance vienna munich (anInt 3)))
20 (assert (distance paris munich (anInt 10)))
21 (assert (distance paris rome (anInt 11)))
22 (assert (distance lausanne rome (anInt 6)))
23 (assert (distance lausanne munich (anInt 4)))
24 (assert (distance tehran paris (anInt 42)))
25 (assert
26 (forall ( (A U) (B U) (D U) )
27 (=> (distance B A D) (distance A B D))
28 )
29 )
30 (assert
31 (forall ( (A U) )
32 (path A A (anInt 0) (aList (cons (waypoint A (anInt 0)) nil)))
33 )
34 )
35 (assert
36 (forall ( (A U) (B U) (C U) (D U) (N U) (P U) (Q U) )
37 (=>
38 (and
39 (path A B P N) (distance B C Q)
40 (= D (anInt (+ (theInt P) (theInt Q))))
41 ((_ is aList) N) ((_ is anInt) P) ((_ is anInt) Q)
42 )
43 (path A C D (aList (cons (waypoint C D) (theList N))))
44 )
45 )
46 )
47 (assert
48 (forall ( (D U) (X U) )
49 (=>
50 (and (path tehran munich D X) (< (theInt D) 40) ((_ is anInt) D))
51 false
52 )
53 )
54 )
55
56 (check -sat)

Figure 16: The SMT-LIB encoding of the motivating example introduced in the introduction
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