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The foundations of formal models for epistemic and doxastic logics often rely on certain logical
aspects of modal logics such as S4 and S4.2 and their semantics; however, the corresponding math-
ematical results are often stated in papers or books without including a detailed proof, or a reference
to it, that allows the reader to convince themselves about them. We reinforce the foundations of
the epistemic logic S4.2 for countably many agents by formalizing its soundness and completeness
results for the class of all weakly-directed pre-orders in the proof assistant Isabelle/HOL. This logic
corresponds to the knowledge fragment, i.e., the logic for formulas that may only include knowledge
modalities in Stalnaker’s system for knowledge and belief. Additionally, we formalize the equiva-
lence between two axiomatizations for S4, which are used depending on the type of semantics given
to the modal operators, as one is commonly used for the relational semantics, and the other one arises
naturally from the topological semantics.

1 Introduction

Epistemic logics are a family of logics that allow us to reason about knowledge among a group of
agents, as well as their knowledge about other’s knowledge[12]. Reasoning about knowledge is useful for
detecting and identifying faults during the operation of complex critical systems [7, 27], where important
safety properties are formalized using a modal language that combines temporal, in particular, LTL
(Linear Temporal Logic), and epistemic modal operators, so to verify the correctness of the system using
model checking and related formal fault-detection techniques [9, 21, 24].

When it comes to modal logics for knowledge, most of these logics correspond to normal logics
between S4 and S5 [11, 25]. In particular, we consider Stalnaker’s epistemic logic, which coincides
with the logic S4.2. It is known that this logic strictly stronger than S4, but weaker than S5 [8]. This
logic is known to be sound and complete with respect to all weakly directed S4-frames, that is, all frames
consisting of reflexive and transitive binary relations that are confluent [23], but this proof is often omitted
in textbooks where most extensions to system K (the weakest normal modal logic) are usually treated
informally.

Additionally, we encode in Isabelle/HOL the axiomatization of S4 obtained from the study of the
topological interpretation for modal languages, which was introduced prior to the relational one that is
more commonly found in the literature. This topological interpretation is done by reading the modal
necessity operator as an interior operator on a topological space, for which is known that the modal logic
S4 is complete with respect to all topological spaces [1]. The preferred axiomatization for the logic of
topological spaces differs from the one presented in [15], not only from the set of axioms, but also the
deductive rules, since it captures the axioms for an interior operator instead of a reflexive and transitive
binary relation. As a consequence, this makes the topological axiomatization not directly recognizable as
a normal modal logic, since the deduction rules seem to be weaker at first glance. Since several authors
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have been recently developing topological semantics for notions of knowledge and belief [2, 4, 3, 16],
we provide a formalization for this result, which often gets briefly mentioned and applied without being
proved in detail.

Contributions

We formalize Stalnaker’s epistemic logic, which is expressively equivalent to S4.2 [25], as well as some
intermediate results for the underlying propositional logic and the modal logics K, .2, and S4 mainly
regarding rewriting rules, properties for maximal consistent sets of formulas, and frame properties that
are induced by the chosen set of axioms in the proof assistant Isabelle/HOL [17]. Our main result is a
formalization of the soundness and completeness of Stalnaker’s epistemic logic (restricted to countably
many agents) with respect to all weakly directed(also refered to as confluent or convergent in the literature
[22, 23]) S4 frames, this is, all frames consisting of a non-empty set W and a binary relation Ri on W ,
one for each agent label i, that is reflexive, transitive, and that satisfies the property described by the
following condition

∀x∀y∀z(xRiy∧ xRiz =⇒ ∃wyRiw∧ zRiw).

The proof uses a Henkin-style completeness method, which is commonly used for these kinds of logics
[5] and was already available on Isabelle’s Archive of Formal Proofs [14].

As far as we know, all systems corresponding to some multi-agent epistemic logic already formalized
in Isabelle/HOL, which are all contained in [14] (the ground base for our formalization), were complete
with respect to a class of frames characterized by a universal formula, i.e., a property of frames given by
a first order formula of the form ∀xφ(x), where φ(x) is a quantifier-free formula with variable symbols
in x = (x1, . . . ,xn). However, the logic S4.2 is complete with respect to a class of frames that cannot
be characterized using a universal formula; instead it is characterized by a universal-existential formula.
This universal-existential characterization makes it harder to formalize its completeness result, since one
has to show the existence of an object in the universe of the canonical model satisfying a condition on a
union of consistent sets of formulas. For this, we followed an argument given by Stalnaker in [26] that
includes a set of theorems that are consequences of the axiom (.2) in K, which imply the consistency
of a set obtained by taking the union of all known facts for an agent in two different worlds that were
accessible from a third one.

Nonetheless, our formalization also includes some intermediate results that are well-known for all
normal modal logics, and that are commonly used when dealing with formal proofs in Hilbert-style
systems. Finally, we formalized the equivalence between two of the most used axiomatizations of S4,
the one presented in [15] which is commonly used when dealing with the relational semantics [5], and
the one introduced by McKinsey and Tarski for the topological semantics [1].

Related work

Our ground base is the Isabelle/HOL theory EpistemicLogic.thy [14], which contains not only the
formalization of other epistemic logics such as S4 and S5, but also formalizes the definition of an abstract
canonical model, as well as a simple and convenient way to work with any desired normal modal logic
by adding necessary the axioms to the basic system K [15]. A related paper to this formalization is [28],
which contains a broad and updated summary on formalizations of logical systems and correspondent
important results using different theorem provers. Other ways to formalize logical systems and their
completeness results on Isabelle have also been studied in [10] and [6], which include (but are not limited
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to) the use of natural deduction rules, sequent-style rules, and tableau rules for the formal systems, and
coinductive methods for soundness and completeness results.

However, given the already existent formalization of LTL in Isabelle/HOL [24], as well as the preva-
lence of Isabelle as a tool for formal verification of safety requirements for critical systems, it becomes
important to provide this formalization for this particular proof assistant. In addition to this, in [19] the
authors defined and investigated the notion of KBR-structures, which are used to represent a description
of the epistemic status of a rational agent that is not necessarily aware of their ignorance, and provided a
result that matches them with models of the epistemic logic S4.2. Modal logics between S4.2 and S5 are
of special interest for applications in epistemic logic, since they allow formalizations of several degrees
of ignorance for each one of the agents [22].

The paper is organized as follows: Section 2 introduces the necessary background on epistemic logic,
including its relational and topological semantics, and how the syntax and the relational semantics were
formalized in Isabelle/HOL in [14]. Section 3 explains our formalization of Stalnaker’s epistemic logic,
including the intermediate results necessary to prove the main results, and the limitations of these to
only countably many agents. Section 4 explains our formalization of the equivalence between the two
most common axiomatizations for S4, the one that arises from the topological semantics, and the one
commonly used when working with the relational semantics. Finally, in Section 5, we conclude with a
discussion about the results, limitations, and future work.

2 Background

2.1 Stalnaker’s Epistemic logic

We briefly present the axiomatic system developed by R. Stalnaker for both notions of knowledge and
belief, as well as the main result for the “knowledge formulas” (i.e., for those formulas that do not contain
any belief modal operators), which correspond to the multimodal system S4.2 [25]. We omit the proof
for this result, as the Isabelle theory “Epistemic logic: Completeness of Modal Logics” [14] does not
support belief formulas.

Consider the well-formed formulas obtained from the following grammar, where x ranges over the
set of propositional symbols and i ranges over the set of agent labels:

φ ,ψ ::=⊥|x |φ ∨ψ |φ ∧ψ |φ → ψ |Kiφ |Biφ .

The operators Ki and Bi mean “agent i knows” and “agent i believes,” respectively. Although Stalnaker
does not present his logic of knowledge and belief using this exact set of propositional connectives, but a
proper subset of these, we added the remaining ones given that From’s formalization includes all of them
[15].

Stalnaker’s principles (axioms) for knowledge and belief appear in Table 1, along with their interpre-
tations in natural language. Stalnaker’s logic for knowledge and belief corresponds to the formal system
obtained by adding these axioms to the axioms and rules of the multi-modal logic S4, that is, the smallest
logic containing the following axioms:

• all propositional tautologies,

• axiom K: (Ki(φ → ψ)∧Kiφ)→ Kiψ ,

• axiom T: Kiφ → φ , and

• axiom 4: Kiφ → KiKiφ ;
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and that is closed under Modus Ponens and the Necessitation rule, “from φ infer Kiφ”, where i ranges
over the set of agents.

Table 1: Axioms for knowledge and belief.
Biφ → KiBiφ Positive introspection
¬Biφ → Ki¬Biφ Negative introspection
Kiφ → Biφ Knowledge implies belief
Biφ →¬Bi¬φ Consistency of belief
Biφ → BiKiφ Strong belief

The following proposition summarizes some relevant properties of this logic.

Proposition 1. The following are some key properties of Stalnaker’s logic for knowledge and belief [25].

1. The following equivalences, one for each agent label i and formula φ , are theorems in this logic:

Biφ ←→¬Ki¬Kiφ .

2. As a consequence of the previous property, by replacing ‘Bi’ with ‘¬Ki¬Ki’ in the Consistency of
belief axiom, we get that ¬Ki¬Kiφ →Ki¬Ki¬φ (also known as axiom .2) is a theorem in this logic.
This implies that the knowledge formulas of this logic correspond exactly to the logic given by the
system S4.2, i.e., those that can be obtained from the rules and axioms of the multi-modal logic S4
in presence of the axiom .2.

The above proposition allows us to interpret this logic by giving a semantics only for the proposi-
tional variables, Boolean connectives and knowledge operators. Formally, we use structures M= (F ,π)
known as Kripke models, where the frame F = (W,(Ri)i) is a pair consisting of a non-empty set of
worlds W , a set of binary accessibility relations Ri ⊆W ×W , one for each agent i, and π : Var→ 2W is a
valuation of propositional symbols. Formula satisfiability at a given world w ∈W is defined as follows:

M,w ̸|=⊥
M,w |= x iff w ∈ π(x)
M,w |= φ ∨ψ iff M,w |= φ or M,w |= ψ

M,w |= φ ∧ψ iff M,w |= φ and M,w |= ψ

M,w |= φ → ψ iff M,w ̸|= φ or M,w |= ψ

M,w |= Kiφ iff ∀v ∈W (wRiv→M,v |= φ)
M,w |= Biφ iff M,w |= ¬Ki¬Kiφ .

One can use functions K : W → 2W instead of sets of ordered pairs R ⊆ W ×W , as there is a
correspondence between these objects by setting

wRv ⇐⇒ v ∈K (w),

for all w,v ∈W .

2.2 Epistemic Logic: Completeness of Modal Logics

The “Epistemic Logic: Completeness of Modal Logics” entry on Isabelle’s AFP [14] contains not only
a formalization for the completeness results for some epistemic logics, but also a formalization of the
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general strategy for Henkin-style proofs for completeness. This is what enabled us to formalize a proof
for the completeness result for S4.2. We show here the formalization of the Kripke models from [14],
which are structures consisting of a set of worlds of type ′w, a truth assignment for each propositional
variable on each world given by the function denoted π , and a set of accessible worlds from each possible
world for each agent ′i.
datatype ( ′i, ′w) kripke =

Kripke (W : ‹ ′w set›) (π: ‹ ′w⇒ id⇒ bool›) (K : ‹ ′i⇒ ′w⇒ ′w set›)

Consequently, given a Kripke model M = (W,(Ki)i∈I,π) with accessibility functions Ki for each
agent i, formula satisfiability is defined by setting

M,w |= Kiφ iff ∀v ∈Ki(w)(M,v |= φ).

Additionally, the dual operator for each knowledge operator Ki is denoted in this formalization as
Li and is defined as a short hand for “agent i does not know if something is false.” In other words,
Liφ := ¬Ki(¬φ), for all formulas φ . The Kripke semantics for this operator corresponds to [5, 8]

M,w |= Liφ iff ∃v ∈Ki(w)(M,v |= φ).

We show here the corresponding formalization presented in [15] for the Kripke semantics, which is
defined inductively on formulas for each world.
primrec semantics :: ‹( ′i, ′w) kripke⇒ ′w⇒ ′i fm⇒ bool›
(-, - |= - [50, 50] 50) where
‹(M, w |= ⊥) = False›
| ‹(M, w |= Pro x) = π M w x›
| ‹(M, w |= (p ∨ q)) = ((M, w |= p) ∨ (M, w |= q))›
| ‹(M, w |= (p ∧ q)) = ((M, w |= p) ∧ (M, w |= q))›
| ‹(M, w |= (p −→ q)) = ((M, w |= p) −→ (M, w |= q))›
| ‹(M, w |= K i p) = (∀v ∈ W M ∩K M i w. M, v |= p)›

From’s formalization then focuses on proving the soundness and completeness results for each of
the most commonly found normal modal logics in the literature concerning certain classes of frames
[5, 8, 15]. We now summarize the relevant ones for our formalization.

1. The basic logic, K, whose corresponding axiomatic system consists of all propositional tautologies
and the axiom K, and is closed under Modus Ponens and the Necessitation Rule, is sound and
complete with respect to the class of all frames.

2. The logic S4 is sound and complete with respect to the class of all transitive and reflexive frames.

Notice that From’s formalization does not include modal operators for belief, this restricts us to
the knowledge fragment of the language. However, Proposition 1 tells us that belief is equivalent to
knowledge, thus we do not lose any information by restricting to the knowledge fragment.

2.3 Topological semantics and its axioms

The topological semantics for modal logics was introduced before the relational semantics that presently
dominate the field [1], and the first semantics completeness proof for S4 was derives from there. Recall
the notion of this topological semantics for a language with a single modal operator □. Let L be the
language composed of all formulas given by the following grammar:

φ ,ψ ::= x |¬φ |φ ∧ψ |φ ∨ψ |φ → ψ |□φ ,
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where x ranges over the set of propositional symbols Var. Formulas in L are interpreted in a topological
model M = ⟨W,τ,v⟩, consisting of a non-empty set W , a topology τ over W , and a valuation v : Var→ 2W

in the following way:

• M,w |= x iff x ∈ v(x);

• M,w |= ¬φ iff M,x ̸|= φ ;

• M,w |= φ ∧ψ iff M,x |= φ and M,x |= ψ;

• M,w |= φ ∨ψ iff M,x |= φ or M,x |= ψ;

• M,w |= φ → ψ iff M,x ̸|= φ or M,x |= ψ;

• M,w |=□φ iff there exists U ∈ τ such that w ∈U and M,y |= φ for all y ∈U .

Although there is nothing inherently wrong with using the deductive system presented in [15] for the
logic S4, the following axiomatization is often preferable when working with the topological semantics,
as the meaning of the axioms and rules under this semantics resembles some well-known properties of
topological spaces [1].

Table 2: Topological S4 axioms and rules.
Axiom Formula Rule Formula

N □⊤
MP

φ → ψ φ

ψR □(φ ∧ψ)↔ (□φ ∧□ψ)

T □φ → ψ
M

φ → ψ

□φ →□ψ4 □φ →□□φ

Notice that at first it is not obvious weather or not the logic obtained from this axiomatization is
a normal modal logic, often defined as a logic that extends system K [5], as neither axiom K nor the
Necessitation Rule are present in the list of axioms and rules. However, we formalized a proof for the
equivalence between both axiomatizations in the context of a multi-agent epistemic logic, as in recent
years several authors have been developing topological semantics for notions of knowledge and belief
[2, 4, 3], where this result is often briefly mentioned and applied, but not proved in detail. Nonetheless,
it is also worth noticing here that the relational semantics of S4 is no more than a particular case for the
topological semantics, as one can assign a binary relation to each topological space by defining what is
known as the specialization order [1].

3 Formalization

We now consider the epistemic logic based on the axioms in Table 1 and the results in Proposition 1
for the knowledge fragment of the language. We prove the soundness and completeness of the pure
epistemic logic obtained from this system with respect to all frames consisting of weakly directed pre-
orders by combining and applying the results formalized in [15] with some auxiliary results provided in
the Utility section of our Isabelle theory. This allows us to utilize the canonical model strategy to prove
completeness of the obtained system. We do not formalize a logic for both knowledge and belief, since
we aimed to work on top of the formalization in [14], which considers modalities only for knowledge.
Formalizing the whole logic for both knowledge and belief will then require developing a new theory
almost from scratch that includes modalities for both notions.
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In order to do this, we prove first some intermediate results towards the completeness of the system
obtained by adding axiom .2 to the system K, also known as system G in the literature [8], including
some results about the underlying propositional logic. This system is known to be complete with respect
to the class of weakly directed frames, and, although we do not formalize this result completely, we do
formalize a version of the Truth lemma for this system, which is needed so that we can combine it with
the results for system S4 formalized in [15] to achieve our goal of formalizing the completeness result
for the logic S4.2 with respect to all weakly directed pre-orders.

3.1 Rewriting propositional and modal formulas

In the deductive system formalized in [14], deduction from a set of premises is defined as follows: given
a set of formulas Γ∪ {φ}, we say that “φ is derived from Γ” (denoted Γ ⊢ φ ) if there are formulas
ψ1, . . . ,ψk in Γ such that the formula ψ1→ (ψ2→ . . .(ψk→ φ)) is a theorem in the system, where k is a
non-negative integer. It is well-known that this formula is logically equivalent to (ψ1∧ . . .∧ψk)→ φ in
classical propositional logic, thus the notion can be defined by requiring the latter to be a theorem in the
system instead. Being able to translate between these two equivalent formulas in our formal deductive
system plays an important role for the proof of our main result, thus we provided a formalization of
several results of this kind in the Utility section of our Isabelle theory, which includes some results that
were not used later but that might become handy for the development of the formalizations of other
related theories in the future.

Similarly to the imply function in [14], which produces, from a list of formulas [ψ1, . . . ,ψk] and a
formula φ , the formula ψ1→ (ψ2→ . . .(ψk → φ)), we introduce the function conjunct, which takes a
list of formulas [ψ1, . . . ,ψk] and produces the formula ψ1 ∧ . . .∧ψk ∧⊤. (Notice that the input may be
an empty list, in which case the output is ⊤.) We formalized some results about logical equivalences,
and derived rules and maximal consistent sets regarding the imply and conjunct functions that are well-
known for the logic K, some of which are presented in the following lemmas. These are required to
prove in section 3.2 that the axiom .2 induces the weakly directed property on all frames that satisfy it,
following [26]. We include the proofs for those lemmas that require elaborated arguments.

Lemma 2 (Derived rules). For all formulas ψ1, . . . ,ψk,φ , it is the case that ⊢ (ψ1∧ . . .∧ψk)→ φ if and
only if ⊢ ψ1→ (ψ2→ . . .(ψk→ φ)).

Lemma 3 (Logical equivalences). The following two lemmas capture the fact that in system K, hence in
any normal modal logic, the formulas (Kiψ1∧ . . .∧Kiψk) and Ki(ψ1∧ . . .∧ψk) are equivalent, for any
finite set of formulas ψ1, . . . ,ψk and any agent i.

Lemma 4 (Closure under conjunctions for MCSs). The following lemma proves that maximal consistent
sets of formulas are closed under conjunctions, that is, if Γ is a maximal consistent set of formulas and
ψ1, . . . ,ψk are some formulas in Γ, then ψ1∧ . . .∧ψk ∈ Γ.

Lemma 5. For all formulas φ ,ψ,θ , it is the case that

⊢ ((Kiφ ∧Kiψ)→ θ)→ (Ki(φ ∧ψ)→ θ)

for any agent label i, as long as the type of i is countable.

lemma K-conj-imply-factor:
fixes A :: ‹(( ′i :: countable) fm⇒ bool)›
shows ‹A ⊢ ((((K i p) ∧ (K i q)) −→ r) −→((K i (p ∧ q)) −→ r))›
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Figure 1: Dependency graph showing the main results and the definitions, abbreviations, and interme-
diate results from their proofs that require the countable type condition. The dotted lines and the gray
text show the files or sections of the Isabelle theory corresponding to our formalization where these can
be found. Definitions and abbreviations appear in rounded rectangles, whereas lemmas and theorems
appear in rectangles. Those that explicitly mention the countability condition are colored in blue, and the
color orange means that this result is applied using the set of natural numbers to label the agents.

The assumption over the set of agent labels for the previous lemma is imposed by the proof that was
formalized for it, as it relies on the proof for the completeness of K in [14], which requires this condition,
as depicted in Figure 1.

Additionally, we formalize the following lemma, which plays a significant role in the proof of the
completeness result for Stalnaker’s epistemic logic that follows [26].

Lemma 6. Given any pair of formulas φ ,ψ , (Kiφ ∧ Liψ)→ Li(φ ∧ψ) is a theorem in system K, for
every agent label i.
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Proof. Notice that, for any formulas φ and ψ , ⊢ φ → (¬(φ ∧ψ)→¬ψ), hence

⊢ Kiφ → Ki(¬(φ ∧ψ)→¬ψ).

On the other hand, we have that ⊢ Ki(¬(φ ∧ψ)→¬ψ)→ ((Ki¬(φ ∧ψ))→ Ki¬ψ), thus

⊢ Kiφ → ((Ki¬(φ ∧ψ))→ Ki¬ψ).

This implies that ⊢ Kiφ → (Liψ → Li(φ ∧ψ)), which is equivalent to

⊢ (Kiφ ∧Liψ)→ Li(φ ∧ψ).

3.2 Axiom .2

We formalize axiom schema .2, which when added to the axioms and rules of system K imposes a
structure on the canonical model, namely, we obtain a weakly directed frame. For this, the inductive
command lets us define the axiom schema in such a way that i and p can be instantiated at will, as long
as the type for the agents labels is countable.

inductive Ax-2 :: ‹( ′i :: countable) fm⇒ bool› where
‹Ax-2 (¬ K i (¬ K i p) −→ K i (¬ K i (¬ p)))›

A frame F = (W,(R)i∈I) is said to be weakly directed if whenever vRiw and vRiu, there exists x ∈W
such that wRix and uRix, for each i ∈ I. Accordingly, we formalize this property for Kripke frames as
follows:

definition weakly-directed :: ‹( ′i, ′s) kripke⇒ bool› where
‹weakly-directed M ≡ ∀ i. ∀s ∈ W M. ∀ t ∈ W M. ∀r ∈ W M.
(r ∈K M i s ∧ t ∈K M i s)−→(∃ u ∈ W M. (u ∈K M i r ∧ u ∈K M i t))›

The soundness of axiom schema .2 with respect to weakly directed frames is formalized in our Is-
abelle theory, and it follows from the definitions for the semantics and the weakly directed property.
However, proving that the property holds for the canonical model when adding the axiom to a normal
modal logic is non-trivial. Unlike the frame properties imposed by the axioms considered in the Epis-
temic Logics formalized in [15], which are all universal properties, this property is universal-existential,
so to prove that the canonical model has this property means that one has to show the existence of a
possible world satisfying a property under some assumptions.

Recall that the canonical frame, F can = (W can,(Rcan
i )i∈I), consists of the set all maximal consistent

sets of formulas (with respect to K+.2) as the set of possible worlds, W can, and the accessibility relations
Rcan

i are defined as follows:
ΓRcan

i ∆ iff {φ : Kiφ ∈ Γ} ⊆ ∆,

for each agent i. Thus, showing that the canonical frame for a system including axiom .2 is weakly
directed involves verifying that if we have {φ : Kiφ ∈ Γ}⊆ ∆1 and {φ : Kiφ ∈ Γ}⊆ ∆2 for some maximal
consistent sets Γ, ∆1 and ∆2, then there exists a maximal consistent set Θ such that {φ : Kiφ ∈ ∆1}∪{φ :
Kiφ ∈ ∆2} ⊆Θ. We capture this in our formalization by the following lemma.

Lemma 7 (Weakly directed property and the axiom .2). Suppose that V,U,W are three maximal con-
sistent sets with respect to a normal modal logic containing the axiom .2. If V Rcan

i U and V Rcan
i W, then

there exists a maximal consistent set X such that URcan
i X and WRcan

i X.
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Proof. First, fix a set of formulas A and three maximal consistent sets of formulas V,U,W (with respect
to A) satisfying the lemma assumptions for some agent label i of a countable type. Assume towards
contradiction that such a set X does not exist, then

S := {φ : Kiφ ∈W}∪{φ : Kiφ ∈U}

has to be inconsistent with respect to A, hence there are formulas θ1, . . . ,θk ∈ {φ : Kiφ ∈ U} and
ψ1, . . . ,ψm ∈ {φ : Kiφ ∈W}, for some k,m ∈ N, such that

A ⊢ (α ∧β )→⊥,

where α = θ1 ∧ . . .∧θk and β = ψ1 ∧ . . .∧ψm. This implies that A ⊢ KiKi(¬(α ∧β )), since φ →⊥ is
equivalent to ¬φ for every formula φ , by applying the Necessitation rule twice. By definition, we have
that Kiθ1, . . . ,Kiθk ∈U and Kiψ1, . . . ,Kiψm ∈W , thus

Kiθ1∧ . . .∧Kiθk ∈U and Kiψ1∧ . . .∧Kiψm ∈W,

since these sets are closed under logical consequences. We then use the logical equivalences and prop-
erties for maximal consistent sets from the Utility section (see section 3.1) to obtain that Kiα ∈U and
Kiβ ∈W . This implies that the formulas LiKiα and LiKiβ are elements of V , and so is the formula KiLiα ,
since V contains every instance of axiom .2 and is closed under logical consequences. This implies that
(LiKiβ )∧ (KiLiα) ∈V , thus Li(Kiβ ∧Liα) ∈V , so there exists a maximal consistent set Z such that

V Rcan
i Z and Kiβ ∧Liα ∈ Z.

Applying the lemma K-thm we get that Li(β ∧α)∈ Z, but notice that Ki¬(α∧β )∈ Z, thus Ki¬(β ∧α)∈
Z, which is a contradiction because we have found a formula φ such that φ ,¬φ ∈ Z.

Note that we have restricted ourselves to countable types for the set of agent labels in formalization
of the previous two lemmas, as we are only allowed to extend a consistent set into a maximal one when
the language is countable, because of a dependency shown in Figure 1. Unlike in the respective result
for each normal modal logic formalized in [15], this restriction to a countable type was necessary as we
were dealing with a universal-existence property and not with a purely universal one. We then prove
a version of the Truth lemma for the minimal normal modal logic that includes axiom .2, which is the
relevant result about this system that will allow us to prove the completeness result for system S4.2 in
the next section.

Lemma 8 (Imply completeness for Axiom .2). Let Γ∪{φ} be a set of formulas. Suppose that, for all
weakly directed Kripke structures M, M,w |= Γ implies M,w |= φ , for each world w ∈M. Then there are
formulas γ1,γ2, . . . ,γm ∈ Γ such that

⊢.2 γ1→ (γ2→ . . .(γm→ φ) . . .).

We omit the proof for this lemma, since it follows the same strategy as the correspondent ones for
the systems formalized in [14].
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3.3 System S4.2

We define system S4.2 as the one obtained by adding to system K the axioms T, 4 and .2, by making use
of the abbreviation ⊕ introduced in [14] that allows combining axiom predicates:
abbreviation SystemS4-2 :: ‹( ′i :: countable) fm⇒ bool› (⊢S42 - [50] 50) where

‹⊢S42 p ≡ AxT ⊕ Ax4 ⊕ Ax-2 ⊢ p›

Recall that axioms T and 4 impose reflexivity and transitivity on the canonical frame, respectively
[5], which was formalized in [14]. This implies that the composition of these two with axiom .2 imposes
all three conditions on the canonical frame, which leads to the soundness and completeness of S4.2 with
respect to all weakly directed pre-orders. To prove the completeness result, we prove first the analog
results to Lemmas 7 and 8 but for S4.2 and Kripke models based on weakly directed preorders.
Lemma 9 (S4.2 and Weakly directed preorders). Let Γ∪{φ} be a set of formulas. Suppose that, for
all countable Kripke structures M based on weakly directed preorders, M,w |= Γ implies M,w |= φ , for
each world w ∈M. Then, there are formulas γ1, . . . ,γm ∈ Γ such that

⊢S42 γ1→ (. . .→ (γm→ φ) . . .).

lemma imply-completeness-S4-2:
assumes valid: ‹∀(M :: ( ′i :: countable, ′i fm set) kripke). ∀w ∈ W M.

w-directed-preorder M −→ (∀q ∈ G. M, w |= q) −→M, w |= p›
shows ‹∃qs. set qs ⊆ G ∧ (AxS4-2 ⊢ imply qs p)›

This implies that if a formula is valid in all countable Kripke structures based on weakly directed
preorders, then it is a theorem in S4.2.
lemma completenessS42:

assumes ‹∀(M :: ( ′i :: countable, ′i fm set) kripke). ∀w ∈ W M. w-directed-preorder M −→M, w |= p›
shows ‹⊢S42 p›

Our main result follows: the completeness of S4.2 with respect to all frames consisting of weakly
directed pre-orders.
Theorem 10 (Completeness of S4.2). A formula is valid in all countable Kripke structures based on
weakly directed preorders if and only if it is a theorem in S4.2.
theorem mainS42: ‹validS42 p←→ ⊢S42 p›

4 An alternative axiomatization for System S4

Inspired by the last section of [14], we formalize an alternative axiomatization for System S4 that is often
used when dealing with the topological semantics [1] for modal operators and we show its equivalence
to the one considered in [15]. We formalize the system corresponding to the axioms and rules in Table
2 in Isabelle, which we call topoS4, and, if a formula φ is a theorem in this system, we denote this by
⊢Top φ .
inductive System-topoS4 :: ‹ ′i fm⇒ bool› (⊢T o p - [50] 50) where

A1 ′: ‹tautology p =⇒ ⊢T o p p›
| AR: ‹⊢T o p ((K i (p ∧ q))←→ ((K i p) ∧ K i q))›
| AT ′: ‹⊢T o p (K i p −→ p)›
| A4 ′: ‹⊢T o p (K i p −→ K i (K i p))›
| AN: ‹⊢T o p K i ⊤›
| R1 ′: ‹⊢T o p p =⇒ ⊢T o p (p −→ q) =⇒ ⊢T o p q›
| RM: ‹⊢T o p (p −→ q) =⇒ ⊢T o p ((K i p) −→ K i q)›
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To show that this formulation is equivalent to the one in [15] (which is based on [5]), we provide
derivations of axiom K and the Necessitation Rule (from φ deduct □φ ). This is enough as our system
already includes axioms T and 4 in the same fashion as in [15], and is based on the same propositional
logic.

Lemma 11. For all formulas φ and ψ , ⊢top (Kiφ ∧Ki(φ → ψ))→ Kiψ and, if ⊢top φ , then ⊢top Kiφ .

Proof. For the first part, notice that ⊢top (φ ∧ (φ → ψ))→ ψ , since it is an instance of a propositional
tautology. Then, we apply RM to obtain that ⊢top Ki(φ ∧ (φ → ψ))→ Kiψ , which implies that ⊢top

(Kiφ ∧Ki(φ → ψ))→ Kiψ . For the second one, suppose that ⊢top φ and notice that ⊢top φ → (⊤→ φ),
hence ⊢top ⊤→ φ . Applying RM we get that ⊢top Ki⊤→ Kiφ , thus ⊢top Kiφ .

From this it then follows that any formula derivable in the classical S4 system (denoted ⊢S4) can be
derived in our system as well.

Lemma 12. All S4 theorems are theorems in topoS4.
lemma S4-topoS4: ‹⊢S4 p =⇒ ⊢T o p p›

The converse follows by a similar argument, we show that axioms and rules from our system are all
derivable in ⊢S4, under the condition that there are only countably many agents.

Lemma 13. All theorems in topoS4 are theorems in S4, assuming that there are only countably many
agents.
lemma topoS4-S4:

fixes p :: ‹( ′i :: countable) fm›
shows ‹⊢T o p p =⇒ ⊢S4 p›

By combining the last two results with the main result for S4 in [15], we obtain formalized sound-
ness and completeness for this alternative axiomatization of S4 over the class of S4 frames, namely, all
reflexive and transitive frames.

Theorem 14 (Soundness and Completeness of topoS4). A formula is valid in all S4 Kripke models if
and only if it is a theorem in topoS4.
theorem mainS4

′: ‹validS4 p←→ (⊢T o p p)›

5 Results, Discussion, and Future work

We have formalized the soundness and completeness for Stalnaker’s Epistemic Logic S4.2 with respect
to the class of Kripke frames consisting of weakly-directed pre-orders for countably many agents, which
has not been formalized before neither in Isabelle, nor in any other publicly available proof assistant.
Additionally, the equivalence between the topological axiomatization of S4 and the one in [14] is also
described in this document. The proofs for the main result, as well as for many of the intermediate results,
have been sketched before in multiple sources, but we were not able to find a unique source, making
this the first work of its kind. Additionally, given the recent interest in applications of the topological
semantics for epistemic modal operators [2, 4, 3], some of which coincide with Stalnaker’s epistemic
logic, this provides a reinforcement for the foundations of these works.

We emphasize on the assumption of the cardinality of the set of agent labels, as it was necessary to
impose such restriction even in some definitions in our formalization, thus creating a discrepancy with
the definitions commonly found in the literature. We present in Figure 1 a summary of the definitions
and results of our formalization and the one in [14] that rely on this condition, since the formalization
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for the general strategy applied to obtain the completeness results in [14] requires it to be able to obtain
maximal consistent sets. Although, in theory, it is possible to provide an argument for the general case
using Zorn’s lemma (this was also later noted in [15]), which is available in [13].

Further work in formalizing in Isabelle/HOL of different formal aspects of modal logics that include
S4 operators, as is the case with many temporal logics like LTL with its always operator, for which a
complete axiomatization is already known [18]; as well as concrete examples of epistemic scenarios
based on Stalnaker’s principles, like the example detailed in [20]. We hope that this work will facilitate
further work in formalizing different logical systems in Isabelle/HOL.

References

[1] Marco Aiello, Johan van Benthem & Guram Bezhanishvili (2003): Reasoning About Space: The
Modal Way. Journal of Logic and Computation 13(6), pp. 889–920, doi:10.1093/logcom/13.6.889.
arXiv:https://academic.oup.com/logcom/article-pdf/13/6/889/2936128/130889.pdf.

[2] Alexandru Baltag, Nick Bezhanishvili & Saúl Fernández González (2022): Topological Evidence Logics:
Multi-agent Setting. In Aybüke Özgün & Yulia Zinova, editors: Language, Logic, and Computation, Springer
International Publishing, Cham, pp. 237–257, doi:10.1007/978-3-030-98479-3_12.

[3] Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün & Sonja Smets (2013): The Topology of Belief, Be-
lief Revision and Defeasible Knowledge. In Davide Grossi, Olivier Roy & Huaxin Huang, editors: Logic,
Rationality, and Interaction, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 27–40, doi:10.1007/978-3-
642-40948-6_3.

[4] Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün & Sonja Smets (2016): Justified Belief and the Topol-
ogy of Evidence. In Jouko Väänänen, Åsa Hirvonen & Ruy de Queiroz, editors: Logic, Language, Informa-
tion, and Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 83–103, doi:10.1007/978-3-662-
52921-8_6.

[5] Robert Blackburn, Maarten de Rijke & Yde Venema (2001): Modal Logic. Modal Logic,
doi:10.1017/CBO9781107050884.

[6] Jasmin Christian Blanchette, Andrei Popescu & Dmitriy Traytel (2017): Soundness and Completeness Proofs
by Coinductive Methods. Journal of Automated Reasoning 58(1), pp. 149 – 179, doi:10.1007/s10817-016-
9391-3. Available at https://hal.inria.fr/hal-01643157.

[7] Marco Bozzano, Alessandro Cimatti, Marco Gario & Stefano Tonetta (2014): Formal design of fault detection
and identification components using temporal epistemic logic. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer, pp. 326–340, doi:10.1007/978-3-642-
54862-8_22.

[8] Alexander Chagrov (1997): Modal Logic. Oxford logic guides, Clarendon Press,
doi:10.1093/oso/9780198537793.001.0001. Available at https://books.google.com/books?id=
dhgi5NF4RtcC.

[9] Alessandro Cimatti, Marco Gario & Stefano Tonetta (2016): A Lazy Approach to Temporal Epistemic Logic
Model Checking. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, AAMAS ’16, International Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, p. 1218–1226.

[10] F Miguel Dionísio, Paula Gouveia & Joao Marcos (2005): Defining and using deductive systems with Is-
abelle. Computing, Philosophy, and Cognition, pp. 271–293. Available at http://temporallogic.org/
courses/AppliedFormalMethods/DefiningAndUsingDeductiveSystemsWithIsabelle.pdf.

[11] Hans van Ditmarsch, Wieve van der Hoek & Barteld Kooi (2008): Dynamic Epistemic Logic. Springer
Netherlands, doi:10.1007/978-1-4020-5839-4.

https://doi.org/10.1093/logcom/13.6.889
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/13/6/889/2936128/130889.pdf
https://doi.org/10.1007/978-3-030-98479-3_12
https://doi.org/10.1007/978-3-642-40948-6_3
https://doi.org/10.1007/978-3-642-40948-6_3
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://hal.inria.fr/hal-01643157
https://doi.org/10.1007/978-3-642-54862-8_22
https://doi.org/10.1007/978-3-642-54862-8_22
https://doi.org/10.1093/oso/9780198537793.001.0001
https://books.google.com/books?id=dhgi5NF4RtcC
https://books.google.com/books?id=dhgi5NF4RtcC
http://temporallogic.org/courses/AppliedFormalMethods/DefiningAndUsingDeductiveSystemsWithIsabelle.pdf
http://temporallogic.org/courses/AppliedFormalMethods/DefiningAndUsingDeductiveSystemsWithIsabelle.pdf
https://doi.org/10.1007/978-1-4020-5839-4


L.P. Gamboa Guzman and K. Y. Rozier 17

[12] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Vardi (1995): Reasoning About Knowledge. MIT
Press, London, England.

[13] Jacques D. Fleuriot, Tobias Nipkow & Christian Sternagel: Zorn’s Lemma (ported from Larry Paulson’s
Zorn.thy in ZF). Available at https://isabelle.in.tum.de/dist/library/HOL/HOL/Zorn.html.

[14] Asta Halkjær From (2018): Epistemic Logic: Completeness of Modal Logics. Archive of Formal Proofs.
https://isa-afp.org/entries/Epistemic_Logic.html, Formal proof development.

[15] Asta Halkjær From (2021): Formalized soundness and completeness of epistemic logic. In: International
Workshop on Logic, Language, Information, and Computation, Springer, pp. 1–15, doi:10.1007/978-3-030-
88853-4_1.

[16] Laura P. Gamboa Guzman (2021): Dynamical operators on models with evidence. Master’s thesis, Universi-
dad de los Andes, Bogota, Colombia. Available at https://repositorio.uniandes.edu.co/handle/
1992/55112.

[17] Laura P. Gamboa Guzman (2022): Stalnaker’s Epistemic Logic. Archive of Formal Proofs. https://
isa-afp.org/entries/Stalnaker_Logic.html, Formal proof development.

[18] Robert Goldblatt (1992): Logics of Time and Computation. CSLI Publications.
[19] Costas D. Koutras & Yorgos Zikos (2011): Relating Truth, Knowledge and Belief in Epistemic States. In

Weiru Liu, editor: Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 374–385, doi:10.1007/978-3-642-22152-1_32.

[20] Costas D. Koutras & Yorgos Zikos (2015): Relating Truth, Knowledge and Belief in epistemic states. Online:
http://users.uop.gr/~ckoutras/KZ-KBstructures-Dec2015.pdf.

[21] Stephan Merz (2005): TLA: Lamport’s Temporal Logic of Actions. Online: https://isabelle.in.tum.
de/library/HOL/HOL-TLA/README.html. Directory in the Isabelle/HOL Library.

[22] Leonardo Pacheco & Kazuyuki Tanaka (2022): On the Degrees of Ignorance: via Epistemic Logic and µ-
Calculus. In: Proceedings of SOCREAL2022 6th International Workshop on Philosophy and Logic of Social
Reality, pp. 74–78. Available at http://hdl.handle.net/2115/84806.

[23] Rasmus Rendsvig & John Symons (2021): Epistemic Logic. In Edward N. Zalta, editor: The Stanford
Encyclopedia of Philosophy, Summer 2021 edition, Metaphysics Research Lab, Stanford University.

[24] Salomon Sickert (2016): Linear Temporal Logic. Archive of Formal Proofs. https://isa-afp.org/
entries/LTL.html, Formal proof development.

[25] Robert Stalnaker (2006): On logics of knowledge and belief. Philosophical Studies 128, pp. 169–199,
doi:10.1007/S11098-005-4062-Y.

[26] Robert Stalnaker (2009): Lecture Notes | Modal Logic | Linguistics and Philosophy | MIT OpenCourseWare.
Available at https://dspace.mit.edu/bitstream/handle/1721.1/100157/24-244-fall-2009/
contents/lecture-notes/index.htm.

[27] Stefano Tonetta, Marco Gario, Alessandro Cimatti & Marco Bozzano (2015): Formal design of asynchronous
fault detection and identification components using temporal epistemic logic. Logical Methods in Computer
Science 11, doi:10.2168/LMCS-11(4:4)2015.

[28] Jørgen Villadsen, Asta Halkjær From, Alexander Birch Jensen & Anders Schlichtkrull (2022): Interac-
tive Theorem Proving for Logic and Information, pp. 25–48. Springer International Publishing, Cham,
doi:10.1007/978-3-030-90138-7_2.

https://isabelle.in.tum.de/dist/library/HOL/HOL/Zorn.html
https://isa-afp.org/entries/Epistemic_Logic.html
https://doi.org/10.1007/978-3-030-88853-4_1
https://doi.org/10.1007/978-3-030-88853-4_1
https://repositorio.uniandes.edu.co/handle/1992/55112
https://repositorio.uniandes.edu.co/handle/1992/55112
https://isa-afp.org/entries/Stalnaker_Logic.html
https://isa-afp.org/entries/Stalnaker_Logic.html
https://doi.org/10.1007/978-3-642-22152-1_32
http://users.uop.gr/~ckoutras/KZ-KBstructures-Dec2015.pdf
https://isabelle.in.tum.de/library/HOL/HOL-TLA/README.html
https://isabelle.in.tum.de/library/HOL/HOL-TLA/README.html
http://hdl.handle.net/2115/84806
https://isa-afp.org/entries/LTL.html
https://isa-afp.org/entries/LTL.html
https://doi.org/10.1007/S11098-005-4062-Y
https://dspace.mit.edu/bitstream/handle/1721.1/100157/24-244-fall-2009/contents/lecture-notes/index.htm
https://dspace.mit.edu/bitstream/handle/1721.1/100157/24-244-fall-2009/contents/lecture-notes/index.htm
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.1007/978-3-030-90138-7_2

	Introduction
	Background
	Stalnaker's Epistemic logic
	Epistemic Logic: Completeness of Modal Logics
	Topological semantics and its axioms

	Formalization
	Rewriting propositional and modal formulas
	Axiom .2
	System S4.2

	An alternative axiomatization for System S4
	Results, Discussion, and Future work

