
T. Ehrhard, M. Fernández, V. de Paiva, L. Tortora de Falco (Eds.):
Linearity-TLLA 2018
EPTCS 292, 2019, pp. 1–14, doi:10.4204/EPTCS.292.1

c© I. Cervesato, S. Khan, G. Reis & D. Žunić

Formalization of Automated Trading Systems
in a Concurrent Linear Framework∗

Iliano Cervesato Sharjeel Khan Giselle Reis Dragiša Žunić
Carnegie Mellon University

iliano@cmu.edu smkhan@andrew.cmu.edu giselle@cmu.edu dzunic@andrew.cmu.edu

We present a declarative and modular specification of an automated trading system (ATS) in the con-
current linear framework CLF. We implemented it in Celf, a CLF type checker which also supports
executing CLF specifications. We outline the verification of two representative properties of trading
systems using generative grammars, an approach to reasoning about CLF specifications.

1 Introduction

Trading systems are platforms where buy and sell orders are automatically matched. Matchings are ex-
ecuted according to the operational specification of the system. In order to guarantee trading fairness,
these systems must meet the requirements of regulatory bodies, in addition to any internal requirement of
the trading institution. However, both specifications and requirements are presented in natural language
which leaves space for ambiguity and interpretation errors. As a result, it is difficult to guarantee regu-
latory compliance [3]. For example, the main US regulator, the Securities and Exchanges Commission
(SEC), has fined several companies, including Deutsche Bank (37M in 2016), Barclay’s Capital (70M in
2016), Credit Suisse (84M in 2016), UBS (19.5M in 2015) and many others [6] for non-compliance.

Modern trading systems are complex pieces of software with intricate and sensitive rules of operation.
Moreover they are in a state of continuous change as they strive to support new client requirements and
new order types. Therefore it is difficult to attest that they satisfy all requirements at all times using
standard software testing approaches. Even as regulatory bodies recently demand that systems must
be “fully tested” [1], experience has shown that (possibly unintentional) violations often originate from
unforeseen interactions between order types [10].

Formalization and formal reasoning can play a big role in mitigating these problems. They provide
methods to verify properties of complex and infinite state space systems with certainty, and have already
been applied in fields ranging from microprocessor design [8], avionics [14], election security [11], and
financial derivative contracts [12, 2]. Trading systems are a prime candidate as well.

In this paper we use the logical framework CLF [5] to specify and reason about trading systems.
CLF is a linear concurrent extension of the long-established LF framework [7]. Linearity enables natural
encoding of state transition, where facts are consumed and produced thereby changing the system’s state.
The concurrent nature of CLF is convenient to account for the possible orderings of exchanges.

The contributions of this research are twofold: (1) We formally define an archetypal automated
trading system in CLF [5] and implement it as an executable specification in Celf. (2) We demonstrate
how to prove some properties about the specification using generative grammars [13], a technique for
meta-reasoning in CLF.

∗This paper was made possible by grant NPRP 7-988-1-178 from the Qatar National Research Fund (a member of the Qatar
Foundation). The statements made herein are solely the responsibility of the authors.

http://dx.doi.org/10.4204/EPTCS.292.1

2 Formalization of Automated Trading Systems

Γ;∆;Ψ ` P0

Γ;∆;Ψ,1 ` P0
1l

Γ;∆;Ψ,P,Q ` P0

Γ;∆;Ψ,P⊗Q ` P0
⊗l

Γ,a;∆;Ψ ` P0

Γ;∆;Ψ, !a ` P0
!l

Γ;∆,a;Ψ ` P0

Γ;∆;Ψ,a ` P0
st

Γ;∆ ` P0

Γ;∆; · ` P0
L

Γ; · ` 1
1r

Γ;∆1 ` P Γ;∆2 ` Q
Γ;∆1,∆2 ` P⊗Q

⊗r
Γ; · ` a
Γ; · ` !a

!r
Γ;∆ ` a
Γ;∆ ` a R

Γ;a ` a init

Γ;∆1 ` a Γ;∆2,N ` F
Γ;∆1,∆2,a (N ` F

(l
Γ; · ` a Γ;∆,N ` F

Γ;∆,a→ N ` F
→l

Γ;∆,N[x 7→ t] ` F
Γ;∆,∀x.N ` F

∀l
Γ;∆;P ` P0

Γ;∆,{P} ` P0
{}l

Γ;∆,a ` N
Γ;∆ ` a (N

(r
Γ,a;∆ ` N

Γ;∆ ` a→ N
→r

Γ;∆ ` N[x 7→ α]

Γ;∆ ` ∀x.N ∀r
Γ;∆ ` P

Γ;∆ ` {P}
{}r

Γ,N;∆,N `C
Γ,N;∆ `C

cont

Figure 1: Sequent calculus for a fragment of CLF. N is a negative formula, P and Q are positive formulas,
P0 is either an atom or {P}, F is any formula, a is an atom, α is an eigenvariable and t is a term.

The paper is organized as follows: Section 2 introduces the concurrent logical framework CLF. Sec-
tion 3 introduces the core concepts related to automated trading systems (ATS), followed by Section 4,
which presents the formalization of an ATS in CLF/Celf. Section 5 contains proofs of two properties
based on generative grammars, going towards automated reasoning in CLF. We conclude and outline
possible further developments in Section 6.

2 Concurrent Linear Logic and Celf

The logical framework CLF [5] is based on a fragment of intuitionistic linear logic. It extends the logical
framework LF [7] with the linear connectives (, N,>,⊗, 1 and ! to obtain a resource-aware framework
with a satisfactory representation of concurrency. The rules of the system impose a discipline on when
the synchronous connectives ⊗, 1 and ! are decomposed, thus still retaining enough determinism to
allow for its use as a logical framework. Being a type-theoretical framework, CLF unifies implication
and universal quantification as the dependent product construct. For simplicity we present only the
logical fragment of CLF (i.e., without terms) needed for our encodings. A detailed description of the full
framework can be found in [5].

We divide the formulas in this fragment of CLF into two classes: negative and positive. Negative
formulas have right invertible rules and positive formulas have left invertible rules. Their grammar is:

N,M ::= a (N | a→ N | {P} | ∀x.N | a (negative formulas)
P,Q ::= P⊗Q | 1 |!a | a (positive formulas)

where a is an atom (i.e., a predicate). Positive formulas are enclosed in the lax modality {·}, which
ensures that their decomposition happens atomically.

The sequent calculus proof system for this fragment of CLF is presented in Figure 1. The sequents
make use of either two or three contexts on the left: Γ contains unrestricted formulas, ∆ contains linear
formulas and Ψ, when present, contains positive formulas. The decomposition phase of a positive for-
mula is indicated in red on the right and in blue on the left. These phases end (by means of rules L or R)
after the formula is completely decomposed.

Since CLF has both the linear and intuitionistic implications, we can specify computation in two
different ways. Simplifying somewhat, linear implication formulas are interpreted as multiset rewriting:
the bounded resources on the left are consumed and those on the right are produced. State transitions can

I. Cervesato, S. Khan, G. Reis & D. Žunić 3

Figure 2: Visualization of the market view

be modeled naturally this way. Intuitionistic implication formulas are interpreted as backward-chaining
rules à la Prolog, providing a way to compute solutions for a predicate by matching it with the head
(rightmost predicate) of a rule and solving the body. In this paper, predicates defined by backward-
chaining rules are written in green.

The majority of our encoding involves rules in the following shape (for atomic pi and qi):
p1⊗ ...⊗ pn ({q1⊗ ...⊗qm} which is the uncurried version of: p1 (...(pn ({q1⊗ ...⊗qm}.

This framework is implemented as the tool Celf (https://clf.github.io/celf/) which we used
for the encodings. Following the tool’s convention, variable names start with an upper-case letter.

3 Automated Trading System (ATS)

Real life trading systems differ in the details of how they manage orders (there are hundreds of order
types in use [9]). However, there is a certain common core that guides all those trading systems, and
which embodies the market logic of trading on an exchange. We have formalized those elements in what
we call an automated trading system, or an ATS. In what follows we introduce the basic notions.

An order is an investor’s instruction to a broker to buy or sell securities (or any asset type which
can be traded). They enter an ATS sequentially and are exchanged when successfully matched against
opposite order(s). In this paper, we will be concerned with limit, market and cancel orders.

A limit order has a specified limit price, meaning that it will trade at that price or better. In the case
of a limit order to sell, a limit price P means that the security will be sold at the best available price in
the market, but no less than P. And dually for buy orders. If no exchange is possible, the order stays in
the market waiting to be exchanged – these are called resident orders. A market order does not specify
the price, and will be immediately matched against opposite orders in the market. If none are available,
the order is discarded. A cancel order is an instruction to remove a resident order from the market.

A matching algorithm determines how resident orders are prioritized for exchange, essentially defin-
ing the mode of operation of a given ATS. The most common one is price/time priority. Resident orders
are first ranked according to their price (increasingly for sell and decreasingly for buy orders); orders
with the same price are then ranked depending on when they entered.

Figure 2 presents a visualization of a (Bitcoin) market. The left-hand side (green) contains resident
buy orders, while the right-hand side (pink) contains resident sell orders. The price offered by the most
expensive buy order is called bid and the cheapest sell order is called ask. The point where they (almost)
meet is the bid-ask spread, which, at that particular moment, was around 2,468 USD.

Standard regulatory requirements for real world trading systems include: the bid price is always
strictly less than the ask price (i.e., no locked – bid is equal to ask – or crossed – bid is greater than ask –
states), the trade always takes place at either bid or ask, the price/time priority is always respected when
exchanging orders, the order priority function is transitive, among others.

https://clf.github.io/celf/

4 Formalization of Automated Trading Systems

4 Formalization of an ATS

We have formalized the most common components of an ATS in the logical framework CLF and imple-
mented them in Celf. The formalization of an ATS is divided into three parts. First, we represent the
market infrastructure using some auxiliary data structures. Then we determine how to represent the basic
order types and how they are organized for processing. Finally we encode the exchange rules which act
on incoming orders.

Since we are using a linear framework, the state of the system is naturally represented by a set of
facts which hold at that point in time. Each rule consumes some of these facts and generates others, thus
reaching a new state. Many operations are dual for buy and sell orders, so, whenever possible, predicates
and rules are parameterized by the action (sell or buy, generically denoted A). The machinery needed
in our formalization includes natural numbers, lists and queues. Their encoding relies on the backward-
chaining semantics of Celf.

The full encoding can be found at https://github.com/Sharjeel-Khan/financialCLF.

4.1 Infrastructure

The trading system’s infrastructure is represented by the following four linear predicates:

queue(Q) priceQ(A, P, Q) actPrices(A, L) time(T)

Predicate queue(Q) represents the queue in which orders are inserted for processing. As orders arrive
in the market, they are assigned a timestamp and added to Q. For an action A and price P, the queue Q
in priceQ(A, P, Q) contains all resident orders with those attributes. Due to how orders are processed,
the queue is sorted in ascending order of timestamp. We maintain the invariant that price queues are
never empty. Price queues correspond to columns in the graph of Figure 2. For an action A, the list L in
actPrices(A, L) contains the exchange prices available in the market, i.e., all the prices on the x-axis
of Figure 2 with non-empty columns. Note that the bid price is the maximum of L when A is buy and the
ask price is the minimum when A is sell. The time is represented by the fact time(T) and increases as
the state changes.

The begin fact is the entry point in our formalization. This fact starts the ATS. It is rewritten to an
empty order queue, empty active price lists for buy and sell, and the zero time:

begin({queue(empty)⊗actPrices(buy, nil)⊗actPrices(sell, nil)⊗time(z)}

4.2 Orders’ Structure

An order is represented by a linear fact order(O, A, P, ID, N), where O is the type of order, A is an
action, P is the order price, ID is the identifier of the order and N is the quantity. P, ID and N are natural
numbers. In this paper, O is one of limit, market, or cancel. An order predicate in the context is
consumed and added to the order queue for processing via the following rule:

order(O, A, P, ID, N)⊗queue(Q)⊗time(T)⊗enq(Q, ordIn(O, A, P, ID, N, T), Q′)
({queue(Q′)⊗time(s(T))}

https://github.com/Sharjeel-Khan/financialCLF

I. Cervesato, S. Khan, G. Reis & D. Žunić 5

The predicate is transformed into a term ordIn(O, A, P, ID, N, T) containing the same arguments
plus the timestamp T . This term is added to the order queue Q by the (backward-chaining) predicate
enq. This queue allows the sequential processing of orders given their time of arrival in the market, thus
simulating what happens in reality. The timestamp is also used to define resident order priority. Sequen-
tiality is guaranteed as all state transition rules act only on the first order in the queue. Nevertheless, due
to Celf’s non-determinism, orders are added to the queue in an arbitrary order.

4.3 Limit Orders

According to the matching logic, there are two basic actions for every limit order in the queue: exchange
(partially or completely) or add to the market (becomes resident). The action taken depends on the
order’s limit price (at which it is willing to trade), the bid and ask prices, as well as the quantity of
resident orders1.

Adding orders to the market An order is added to the market when its limit price P is such that
it cannot be exchanged against opposite resident orders. Namely when P < ask in the case of a buy
order, and when P > bid in the case of a sell order. There are two rules for adding an order, depending
on whether there are resident orders at that price in the market or not (see Figure 3). The (backward
chaining) predicate store is provable when the order cannot be exchanged.

limit/empty: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
store(A, L′, P)⊗actPrices(A, L)⊗notInList(L, P)⊗insert(L, P, LP)⊗time(T)

({queue(Q)⊗actPrices(A′, L′)⊗priceQ(A, P, consP(ID, N, T, nilP))
⊗actPrices(A, LP)⊗time(s(T))}

limit/queue: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
store(A, L′, P)⊗priceQ(A, P, PQ)⊗extendP(PQ, ID, N, T, PQ′)⊗time(T)

({queue(Q)⊗actPrices(A′, L′)⊗priceQ(A, P, PQ′)⊗time(s(T))}

Figure 3: Adding limit orders to the market

The first line is the same for both. Given the order at the front of the order queue, the predicate
dual will bind A′ to the dual action of A (i.e., if A is buy, A′ will be sell and vice-versa). Then
actPrices(A′, L′) binds L′ to the list of active prices of A′. The incoming order can be added to the
market only if there is no dual resident order at an acceptable price. For example, if A is buy at price P,
any resident sell order with price P or less would be an acceptable match. The predicate store holds
iff there is no acceptable match.

The second line of each rule distinguishes whether the new order to be added is the first one at that
price (limit/empty rule – notInList(L, P)) or not. If it is, the active price list is updated by backward
chaining on insert(L, P, LP), and rewriting actPrices(A, L) to actPrices(A, LP). Additionally,
a new price queue is created with that order alone: priceQ(A, P, consP(ID, N, T, nilP)). If there
are resident orders at the same price (and action), the existing price queue is extended with the new
order by backward chaining on extendP(PQ, ID, N, T, PQ′) and by rewriting priceQ(A, P, PQ) to
priceQ(A, P, PQ′). Both rules increment the time by one unit.

1Sometimes an incoming limit order will be partially filled, with the remainder (once resident orders that match this limit
price are filled) becoming a new resident order.

6 Formalization of Automated Trading Systems

Exchanging orders The rules for exchanging orders are presented in Figure 4. A limit order is ex-
changed when its limit price P satisfies P≤ bid, in the case of sell orders, or P≥ ask for buy orders.

limit/1: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N′, T ′, nilP))⊗remove(L′, X , L′′) ⊗
nat-equal(N, N′)⊗time(T)

({queue(Q)⊗actPrices(A′, L′′)⊗time(s(T))}

limit/2: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N′, T ′, consP(ID1, N1, T 1, L))) ⊗
nat-equal(N, N′)⊗time(T)

({queue(Q)⊗actPrices(A′, L′)⊗priceQ(A′, X , consP(ID1, N1, T 1, L))⊗time(s(T))}

limit/3: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N′, T ′, nilP))⊗remove(L′, X , L′′)⊗
nat-great(N, N′)⊗nat-minus(N,N′, N′′)

({queue(front(ordIn(limit, A, P, ID, N′′, T),Q))⊗actPrices(A′, L′′)}

limit/4: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N′, T ′, consP(ID1, N1, T 1, L)))⊗
nat-great(N, N′)⊗nat-minus(N,N′, N′′)

({queue(front(ordIn(limit, A, P, ID, N′′, T),Q))⊗actPrices(A′, L′)⊗
priceQ(A′, X , consP(ID1, N1, T 1, L))}

limit/5: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N′, T ′, L)) ⊗
nat-less(N, N′)⊗nat-minus(N′,N, N′′)⊗time(T)

({queue(Q)⊗actPrices(A′, L′)⊗priceQ(A′, X , consP(ID′, N′′, T ′, L))⊗time(s(T))}

Figure 4: Exchanging limit orders

The (backward chaining) predicate exchange binds X to the exchange price (either bid or ask). We
distinguish between an incoming order that “consumes” all the quantity available at price X , or only a
part of the combined quantity available. The arithmetic comparison and operations are implemented in
the usual backward-chaining way using a unary representation of natural numbers.

All five rules start the same way: the first line binds L′ to the list of active prices of the dual orders.
The backward-chaining predicate exchange(A, L′, P, X) holds iff there is a matching resident order. In
this case, it binds X to the best available market price. The first order in the price queue for X has priority
and will be exchanged. Let N be the quantity in the incoming order and N′ be the quantity of the resident
order with highest priority. There are three cases:

• N = N′ (rules limit/1 and limit/2): Both orders will be completely exchanged. The incoming
order is removed from the order queue by continuing with queue(Q). The resident order is removed
from its price queue and we distinguish two cases:

– It is the last element in the queue (limit/1): then the fact priceQ(, ,) is not rewritten and X
is removed from the list of active prices by the backward chaining predicate remove(L′, X , L′′).
This list is rewritten from actPrices(A′, L′) to actPrices(A′, L′′).

– Otherwise (limit/2), the resident order is removed from the price queue by rewriting
priceQ(A′, X , consP(ID′, N, T ′, consP(ID1, N1, T 1, L))) to
priceQ(A′, X , consP(ID1, N1, T 1, L)).

I. Cervesato, S. Khan, G. Reis & D. Žunić 7

• N > N′ (rules limit/3 and limit/4): The incoming order will be partially exchanged, and not
leave the order queue as long as there are matching resident orders. At each exchange its quantity
is updated to N′′, the difference between N and N′, computed by the backward-chaining predicate
nat-minus(N,N′, N′′). The order queue is rewritten to
queue(front(ordIn(limit, A, P, ID, N′′, T),Q)). The resident order will be completely consumed
and removed from the market. Therefore, we need to distinguish two cases as before (last element in
its price queue – limit/3 – or not – limit/4).

• N < N′ (rule limit/5): The incoming order is completely exchanged and removed from the order
queue (rewritten to queue(Q)). The resident order is partially exchanged and its quantity is updated
to N′′, computed by the backward chaining rule nat-minus(N′,N, N′′). Notice that the price queue
is rewritten with the order in the same position, so its priority does not change.

By convention, the time is only updated once an order is completely processed and removed from
the order queue.

4.4 Market Orders

A market order is meant to be exchanged immediately at current market prices. As long as there are avail-
able sellers or buyers, market orders are exchanged. The remaining part of a market order is discarded.
Certainty of execution is a priority over the price of execution.

In this case, there are no rules for adding/storing of market orders. The exchange rules are similar
to the ones for limit orders, with subtle differences. Market orders do not have a desired price as an
attribute, they only have a desired quantity. Therefore exchanging is continued as long as the quantity
was not reached and there are available resident orders (the price P is nominally presented but it is never
used). In the rules, the predicate exchange(A, L, P, X) is replaced with mktExchange(A, L, X), which
simply binds X to the best offer in the market. In the unlikely event that there are no more dual resident
orders (verified by checking if L in actPrices(A′, L) is empty), the order is removed from the order
queue.

The rules for exchanging market orders are given in Figure 5. The first rule, market/empty, ad-
dresses the situation when a market order is in the order queue, but there are no opposite resident orders
to be matched against. The order is then removed from the order queue. Rules market/1 and market/2

address the case when the incoming market order’s quantity is the same as the quantity of the best
available opposite resident order. In this case these orders are simply exchanged, and again we distin-
guish cases whether the resident order was the last in the queue (market/1) or not (market/2). Rules
market/3 and market/4 address the case when the incoming market order’s quantity is greater than the
quantity of the best available opposite resident order, i.e., when N > N′. In this case the resident order is
exchanged and the rest of the market order remains in the order queue. The two rules distinguish whether
the resident order was the last in the price queue (market/3) or not (market/4). Finally, rule market/5
describes the situation when an incoming market order is strictly less (quantity-wise) compared to the
best opposite resident order. The considered market order is exchanged completely whereas the resident
order only partially.

4.5 Cancel Orders

Cancel order is an instruction to remove a particular resident order from the trading system. Cancel
orders refer to a resident order by its identifier. If, by chance, the order to be canceled is not in the

8 Formalization of Automated Trading Systems

market/empty: queue(front(ordIn(market, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, nilN) ⊗
time(T)

({queue(Q)⊗actPrices(A′, nilN)⊗time(s(T))}

market/1: queue(front(ordIn(market, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′) ⊗
mktExchange(A, L′, Y)⊗priceQ(A′, Y, consP(ID′, N′, T ′, nilP))⊗remove(L′, Y, L′′) ⊗
nat-equal(N, N′)⊗time(T)

({queue(Q)⊗actPrices(A′, L′′)⊗time(s(T))}

market/2: queue(front(ordIn(market, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′) ⊗
mktExchange(A, L′, Y)⊗priceQ(A′, Y, consP(ID′, N′, T ′, (consP(ID1, N1, T 1, L)))) ⊗
nat-equal(N, N′)⊗time(T)

({queue(Q)⊗priceQ(A′, Y, (consP(ID1, N1, T 1, L)))⊗actPrices(A′, L′)⊗time(s(T))}

market/3: queue(front(ordIn(market, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
mktExchange(A, L′, Y)⊗priceQ(A′, Y, consP(ID′, N′, T ′, nilP))⊗remove(L′, Y, L′′) ⊗
nat-great(N, N′)⊗nat-minus(N,N′, N′′)

({queue(front(ordIn(limit, A, P, ID, N′′, T),Q))⊗actPrices(A′, L′′)}

market/4: queue(front(ordIn(market, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
mktExchange(A, L′, Y)⊗priceQ(A′, Y, consP(ID′, N′, T ′, (consP(ID1, N1, T 1, L)))) ⊗
nat-great(N, N′)⊗nat-minus(N,N′, N′′)

({queue(front(ordIn(limit, A, P, ID, N′′, T),Q)) ⊗
priceQ(A′, Y, (consP(ID1, N1, T 1, L)))⊗actPrices(A′, L′)}

market/5: queue(front(ordIn(market, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′) ⊗
mktExchange(A, L′, Y)⊗priceQ(A′, Y, consP(ID′, N′, T ′, L)) ⊗
nat-less(N, N′)⊗nat-minus(N′,N, N′′)⊗time(T)

({queue(Q)⊗priceQ(A′, Y, (consP(ID′, N′′, T ′, L)))⊗actPrices(A′, L′)⊗time(s(T))}

Figure 5: Exchanging market orders

market, nothing happens and the cancel order is removed from the order queue. If it is there, it is
removed from the price queue. Similarly as in exchanging limit orders this results in two sub-cases: the
order is the last one in its price queue or not.

The rules for performing order canceling are given in Figure 6.

5 Towards a Mechanized Verification of ATS Properties

Using our formalization we are able to check that this combination of order-matching rules does not
violate some of the expected ATS properties. Although CLF is a powerful logical framework fit for
specifying the syntax and semantics of concurrent systems, stating and proving properties about these
systems goes beyond its current expressive power. For this task, one needs to consider states of com-
putation, and the execution traces that lead from one state to another. Recent developments show that
CLF contexts (the states of computation) can be described in CLF itself through the notion of generative
grammars [13]. These are grammars whose language consists of all possible CLF contexts which satisfy
the property being considered. The general idea is to show that every reachable state consists of a context
in this language.

Using such grammars plus reasoning on steps and traces of computation, it is possible to state and

I. Cervesato, S. Khan, G. Reis & D. Žunić 9

cancel/inListNil: queue(front(ordIn(cancel, A, P, ID, N, T),Q))⊗actPrices(A, L′) ⊗
priceQ(A, P, consP(ID, N, T ′, nilP))⊗remove(L′, P, L′′)⊗time(T)

({queue(Q)⊗actPrices(A, L′′)⊗time(s(T))}

cancel/inListCons: queue(front(ordIn(cancel, A, P, ID, N, T),Q1)) ⊗
priceQ(A, P, Q)⊗inListF(Q, ID)⊗removeF(Q, ID, Q′)⊗time(T)

({queue(Q1)⊗priceQ(A, P, Q′)⊗time(s(T))}

cancel/notInListQueue: queue(front(ordIn(cancel, A, P, ID, N, T),Q1)) ⊗
priceQ(A, P, Q)⊗notInListF(Q, ID)⊗time(T)

({queue(Q1)⊗priceQ(A, P, Q)⊗time(s(T))}

cancel/notInListActive: queue(front(ordIn(cancel, A, P, ID, N, T),Q1))⊗actPrices(A, L′) ⊗
notInList(L′, P)⊗time(T)

({queue(Q1)⊗actPrices(A, L′)⊗time(s(T))}

Figure 6: Cancel orders

prove meta-theorems about CLF specifications. This method is structured enough to become the meta-
reasoning engine behind CLF [4], and therefore it is used for the proofs in this paper.

5.1 No Locked or Crossed Market

Here we show that the bid price B is always less than the ask price S in any reachable state using the
rules presented in the previous sections. In other words, we show the following invariant:

Property 1 (No locked-or-crossed market) If actPrices(buy, LB) and actPrices(sell, LS) and
maxP(LB, B) and minP(LS, S), then B < S.

Definition 2 shows a grammar that generates contexts, or states, satisfying Property 1. This is
achieved by the guards maxP(LB, B), minP(LS, S), B < S on the rewriting rule gen/0 for the start
symbol gen(Q, LB, LS, T).

Definition 2 The following generative grammar ΣNLC
2 produces only contexts where bid < ask.

gen/0 : gen(Q, LB, LS, T)⊗maxP(LB, B)⊗minP(LS, S)⊗B < S
({queue(Q)⊗actPrices(buy, LB)⊗actPrices(sell, LS)⊗time(T)
⊗ gen-buy(LB)⊗gen-sell(LS)}.

gen/buy1 : gen-buy(nilP)({1}.
gen/buy2 : gen-buy(P :: LB)({priceQ(buy, P, L)⊗gen-buy(LB)}.
gen/sell1 : gen-sell(nilP)({1}.
gen/sell2 : gen-sell(P :: LS)({priceQ(sell, P, L)⊗gen-sell(LS)}.

Intuitively, to show that the market is never in a locked-or-crossed state, we show that, given a context
generated by the grammar in Definition 2, the application of an ATS rule (one step) will result in another
context that can also be generated by this grammar. Coupled with the fact that computation starts at a
valid context, this shows that the property is always preserved. More formally, we will show the theorem:

Theorem 3 For every ∆ ∈ L(ΣNLC) and rule σ , if ∆
σ−→ ∆′, then ∆′ ∈ L(ΣNLC).

2NLC stands for no locked-or-crossed.

10 Formalization of Automated Trading Systems

This theorem can be represented visually as:

gen(Q, LB, LS, T)

ε

��

gen(Q′, L′B, L′S, T ′)

ε ′

��

∆
σ // ∆′

The proof consists in showing the existence of ε ′.

Proof The proof proceeds by case analysis on σ . We consider only rules that change the linear facts
actPrices(buy, LB) and actPrices(sell, LS), since otherwise we can simply take ε ′ = ε (possibly
with different instantiations for the variables L in gen/sell2 and gen/buy2). Moreover, we restrict
ourselves to the case of incoming buy orders. The case for sell is analogous.

Case σ = limit/empty This rule rewrites LB, the list of buy prices, to a list L′B which extends LB

by a new price P. Since store was provable, we know that P is less than the minimum sell price in the
market. For limit/empty to be applicable, we need:

∆ = {queue(Q),actPrices(buy, LB),actPrices(sell, LS),time(T)}∪∆1

In which case we conclude that:

Q = front(ordIn(buy, A, P, ID, N, T),Q′)
ε = gen/0(Qg,LB,LS,T);ε1;ε2

where ε1;ε2 rewrite gen-buy(LB) and gen-sell(LS) to the priceQ(, ,) facts that form ∆1.
After applying the rule, the context is modified to:

∆′ = {queue(Q′),actPrices(buy, L′B),actPrices(sell, LS),time(s(T))}
∪ {priceQ(buy, P, consP(ID, N, T, nilP)),∆1}

where L′B is computed by the insert(LB, P, L′B) rule and consists of LB augmented by P.
A derivation of ∆′ can be obtained via the following steps:

ε
′ = gen/0(Q,L′B,LS,s(T));ε1;gen/sell2;ε2

where one extra step gen/sell2, with L = consP(ID, N, T, nilP), generates priceQ(buy, P, L).
Observe that the guard B < S in gen/0 still holds: if maxP(L′B, B) and B 6= P, then B < S was part
of the assumption. In case maxP(L′B, P), observe that store(buy, LS, P) only holds if P < S, where
minP(LS, S). This property is related only to backward chaining predicates and can be proved in the LF
framework Twelf using standard techniques.

Case σ = limit/1 This rule rewrites LS, the list of sell prices, to a list L′S which consists of LS

without a price X . For limit/1 to be applicable, we need:

∆ = {queue(Q),actPrices(buy, LB),actPrices(sell, LS),time(T)}
∪ {priceQ(sell, X , consP(ID′, N, T ′, nilP)), ∆1}

where X ∈ LS is computed by exchange(buy, LS, P, X).
This can be derived by:

Q = front(ordIn(limit, buy, P, ID, N, T),Q′)
ε = gen/0(Qg,LB,LS,T);ε1;gen/sell2;ε2

I. Cervesato, S. Khan, G. Reis & D. Žunić 11

where ε1;gen/sell2;ε2 rewrite gen-buy(LB) and gen-sell(LS) to the priceQ(, ,) facts that form
∆1, with the explicit gen/sell2 generating the fact priceQ(sell, X , consP(ID′, N, T ′, nilP)).
After applying the rule, the context is modified to:

∆
′ = {queue(Q′),actPrices(buy, LB),actPrices(sell, L′S),time(s(T))}∪∆1

where L′S is computed by the remove(LS, X , L′S) rule and consists of LS without X .
A derivation of ∆′ can be obtained via the following steps:

ε
′ = gen/0(Q,LB,L′S,s(T));ε1;ε2

Since L′S ⊂ LS, then, considering minP(LS, S) and minP(L′S, S′), it is the case that S ≤ S′. Thus B < S
implies B < S′. This can be proved in Twelf given the specification of the appropriate relations (such as
⊂).

Case σ = limit/3 This case is analogous to limit/1, except that the incoming order is only par-
tially exchanged because its quantity N is greater than the quantity N′ of the matching resident order.
The initial context is:

∆ = {queue(Q),actPrices(buy, LB),actPrices(sell, LS),time(T)}
∪ {priceQ(sell, X , consP(ID′, N′, T ′, nilP)),∆1}

where X ∈ LS is computed by exchange(buy, LS, P, X).
Which can be derived as before:

Q = front(ordIn(limit, buy, P, ID, N, T),Q′′), N > N′

ε = gen/0(Q,LB,LS,T);ε1;gen/sell2;ε2

where ε1;gen/sell2;ε2 rewrite gen-buy(LB) and gen-sell(LS) to the priceQ(, ,) facts that form
∆1, with the explicit gen/sell2 generating the fact priceQ(sell, X , consP(ID′, N′, T ′, nilP)).
After applying the rule, the context is modified to:

∆
′ = {queue(Q′),actPrices(buy, LB),actPrices(sell, L′S),time(s(T))}∪∆1

where L′S is computed by the remove(LS, X , L′S) rule and consists of LS without X .
A derivation of ∆′ can be obtained via the following steps (note that time does not change for this rule):

Q′ = front(ordIn(limit, buy, P, ID, N−N′, T),Q′′)
ε ′ = gen/0(Q′,LB,L′S,T);ε1;ε2

Since L′S ⊂ LS, then, considering minP(LS, S) and minP(L′S, S′), it is the case that S ≤ S′. Thus B < S
implies B < S′. As before, this argument can be developed in Twelf.

The cases for market orders, σ = market/_, are analogous to the limit/_ cases above. As for the case
σ = cancel/inListNil - this rule rewrites LB, the list of buy prices, to L′B which is LB without a price
P. This case is analogous to limit/1 and limit/3, except that ε contains an application of gen/buy2
which is deleted to obtain ε ′.

12 Formalization of Automated Trading Systems

5.2 Exchanges happen at bid or ask

Every incoming order will either be exchanged or, if this is not possible, stored as a resident order to
be exchanged when it is matched (if ever). The exchange predicate will be provable exactly when the
incoming order can be exchanged, i.e., there exists an opposite resident order at an “acceptable” price.
The acceptable price is: lower than the price of an incoming buy order, or greater than the price of an
incoming sell order. Since orders have an associated quantity, the exchange may partially or totally
consume the orders.

The price at which the exchange takes place is the best possible with respect to the incoming order.
Consequently, an incoming buy order is exchanged at the minimal sell price (ask), while an incoming
sell order is exchanged against the maximal available buy price (bid). Therefore whenever an order
is exchanged it happens at either bid or ask price, and only at that price. In this section we show that
this is indeed the case for our encoding. We will consider only the rules specifying exchange of limit
orders (Figure 4). The case for market orders follows in a similar fashion, but considering the predicate
mktExchange instead of exchange.

Property 4 All exchanges happen at and only at the price bid or ask.

Note that Property 1 is a property of the reachable states, while Property 4 is concerns transitions
between states. We can split it into two parts: (1) in every exchange, only one resident order of price X
is consumed; and (2) X is bid or ask.

Part (1) can be more formally stated as:

Theorem 5 Let ∆,∆′ ∈ L(ΣNLC), and σ be one of the exchange rules limit/i for 1≤ i≤ 5. If ∆
σ−→ ∆′,

then for all priceQ(A, Y, L) ∈ ∆ if Y 6= X then priceQ(A, Y, L) ∈ ∆′, where X is determined by
exchange(A′, L, P, X) on the left side of rule σ .

Proof By inspection of the rules limit/i, we observe that the only facts of the shape priceQ(A, Z, L)
involved in the rewriting are those where Z = X , where X is bound by exchange(A′, L, P, X).

Part (2) of the property can be stated more precisely as:

Theorem 6 If exchange(buy, L, P, X) then minP(L, X).
If exchange(sell, L, P, X) then maxP(L, X).

The statement concerns only a backward chaining predicate, so the proof follows standard meta-
reasoning techniques from LF, and can be implemented in a few lines in Twelf.

Taken together, Theorems 5 and 6 guarantee Property 4.

6 Conclusion and Future Work

We have formalized the core rules guiding the trade on exchanges worldwide. We have done this by
formalizing an archetypal automated trading system in the concurrent logical framework CLF, with an
implementation in Celf.

Encoding orders in a market as linear resources results in straightforward rules that either consume
such orders when they are bought/sold, or store them in the market as resident orders. Moreover the
specification is modular and easy to extend with new order types, which is often required in practice.
This was our experience when adding market and immediate-or-cancel types of orders to the system.

I. Cervesato, S. Khan, G. Reis & D. Žunić 13

The concurrent aspect of CLF simulates the non-determinism when orders are accumulated in the order
queue, but, as explained, orders from the queue are processed sequentially3.

Using our formalization we were able to prove two standard properties about a market working
under these rules. First we proved that at any given state the bid price is smaller than the ask, i.e., the
market is never in a locked-or-crossed state. Secondly we showed that the trade always take place at
bid or ask. The first property was proved using generative grammars, an approach motivated by our
goal to automate meta reasoning on CLF specifications (not implemented in the current version of Celf).
Recent investigations indicate that this approach can handle many meta-theorems [13, 4] related to state
invariants, and ours is yet another example. The second property is a combination of: (1) a property of a
backward chaining predicate; and (2) a transition invariant. The former can be proved using established
methods in LF (in fact, we have proved the desired property in Twelf). The second can be verified by
inspection of the rules: the only linear facts that change in the next state, are those rewritten on the right
side of (.

This specification is an important case study for developing the necessary machinery for automated
reasoning in CLF. It is one more evidence of the importance of quantification over steps and traces
of a (forward-chaining) computation. It is interesting to note that our example combines forward and
backward-chaining predicates, but the generative grammar approach still behaves well. In part because
we are only concerned with a linear part of the context. Nevertheless, the proof still relied on some
properties of backward chaining predicates. In the second proof, this is even more evident. This in-
dicates, unsurprisingly, that meta-reasoning of CLF specifications must include the already developed
meta-reasoning of LF specifications. In the meantime, we are investigating other properties of finan-
cial systems that present interesting challenges for meta-reasoning, such as showing that the price/time
priority is respected upon exchange.

The difference between the proofs presented might be an indication that we need to follow a more
general approach than the one used in LF. In that framework, most theorems that motivated the work
have the same shape and their proofs follow the same strategy. Therefore, it is possible to save the user
a lot of work by asking them to specify only the necessary parts that fills in a “proof template”, which
is then checked mechanically. When working with more ad-hoc systems, such as the case of financial
exchanges, the properties and proofs are less regular, making it harder to figure out a good “template” that
fits all properties of interest. In this case, it may be beneficial to leave more freedom (and consequently
more work) to the user, in order to allow more flexible meta-reasoning.

Concurrently, we plan to formalize other models of financial trading systems, as this is a relevant
application addressing some critical challenges.

References

[1] Financial Conduct Authority (2018): Algorithmic Trading Compliance in Wholesale Mar-
kets. Available at https://www.fca.org.uk/publication/multi-firm-reviews/

algorithmic-trading-compliance-wholesale-markets.pdf.

[2] Patrick Bahr, Jost Berthold & Martin Elsman (2015): Certified Symbolic Management of Financial Multi-
party Contracts. In: Proceedings of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2015, ACM, pp. 315–327, doi:10.1145/2784731.2784747.

[3] Jan De Bel (1993): Automated Trading Systems and the Concept of an Exchange in an International Context
Proprietary Systems: A Regulatory Headache. U. Pa. J. Int’l Bus. L 14(2), pp. 169–211.

3As far as we know, no real life trading system performs parallel order matching and execution.

https://www.fca.org.uk/publication/multi-firm-reviews/algorithmic-trading-compliance-wholesale-markets.pdf
https://www.fca.org.uk/publication/multi-firm-reviews/algorithmic-trading-compliance-wholesale-markets.pdf
http://dx.doi.org/10.1145/2784731.2784747

14 Formalization of Automated Trading Systems

[4] Iliano Cervesato & Jorge Luis Sacchini (2013): Towards Meta-Reasoning in the Concurrent Logical Frame-
work CLF. Electronic Proceedings in Theoretical Computer Science 120, p. 216, doi:10.4204/eptcs.120.2.

[5] Iliano Cervesato, Kevin Watkins, Frank Pfenning & David Walker (2003): A Concurrent Logical Framework
I: Judgments and Properties. Technical Report CMU-CS-02-101, Carnegie Mellon University.

[6] Matthew Freedman (2015): Rise in SEC Dark Pool Fines. Review of Banking and Financial Law 35(1), pp.
150–162.

[7] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. J. ACM 40(1),
pp. 143–184, doi:10.1145/138027.138060.

[8] Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, Mark D. Aagaard & Thomas F. Melham
(2001): Practical Formal Verification in Microprocessor Design. IEEE Des. Test 18(4), pp. 16–25,
doi:10.1109/54.936245.

[9] Phil Mackintosh (2014): Demystifying Order Types. Available at http://www.smallake.kr/

wp-content/uploads/2016/02/KCG_Demystifying-Order-Types_092414.pdf.
[10] Grant Olney Passmore & Denis Ignatovich (2017): Formal Verification of Financial Algorithms. In

Leonardo de Moura, editor: Automated Deduction – CADE 26, Springer International Publishing, pp. 26–41,
doi:10.1007/978-3-319-63046-5 3.

[11] Dirk Pattinson & Carsten Schürmann (2015): Vote Counting as Mathematical Proof. In Bernhard Pfahringer
& Jochen Renz, editors: AI 2015: Advances in Artificial Intelligence, Springer International Publishing, pp.
464–475, doi:10.1007/978-3-319-26350-2 41.

[12] Simon Peyton Jones, Jean-Marc Eber & Julian Seward (2000): Composing Contracts: An Adventure in
Financial Engineering (Functional Pearl). In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’00, ACM, pp. 280–292, doi:10.1145/351240.351267.

[13] Robert J. Simmons (2012): Substructural Logical Specifications. Ph.D. thesis, Carnegie Mellon University.
AAI3534965.

[14] Jean Souyris, Virginie Wiels, David Delmas & Hervé Delseny (2009): Formal Verification of Avionics Soft-
ware Products. In Ana Cavalcanti & Dennis R. Dams, editors: FM 2009: Formal Methods, Springer Berlin
Heidelberg, pp. 532–546, doi:10.1007/978-3-642-05089-3 34.

http://dx.doi.org/10.4204/eptcs.120.2
http://dx.doi.org/10.1145/138027.138060
http://dx.doi.org/10.1109/54.936245
http://www.smallake.kr/wp-content/uploads/2016/02/KCG_Demystifying-Order-Types_092414.pdf
http://www.smallake.kr/wp-content/uploads/2016/02/KCG_Demystifying-Order-Types_092414.pdf
http://dx.doi.org/10.1007/978-3-319-63046-5_3
http://dx.doi.org/10.1007/978-3-319-26350-2_41
http://dx.doi.org/10.1145/351240.351267
http://dx.doi.org/10.1007/978-3-642-05089-3_34

	1 Introduction
	2 Concurrent Linear Logic and Celf
	3 Automated Trading System (ATS)
	4 Formalization of an ATS
	4.1 Infrastructure
	4.2 Orders' Structure
	4.3 Limit Orders
	4.4 Market Orders
	4.5 Cancel Orders

	5 Towards a Mechanized Verification of ATS Properties
	5.1 No Locked or Crossed Market
	5.2 Exchanges happen at bid or ask

	6 Conclusion and Future Work

