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The consensus problem is a fundamental problem in distributed systems. It involves a set of ac-

tors, or entities, that need to agree on some values or decisions. The Raft algorithm is a solution to

the consensus problem that has gained widespread popularity as an easy-to-understand and imple-

ment alternative to Lamport’s Paxos algorithm. In this paper we discuss a formalisation of the Raft

algorithm and its associated correctness properties in the mCRL2 specification language.

1 Introduction

Consensus is the process of reaching an agreement on a particular issue or decision among a group of

entities or individuals. In the context of distributed systems, reaching consensus is challenging, in par-

ticular because the entities are scattered across the network and need to use communication to reach

agreement on decisions. Naive solutions to consensus may then lead to faulty decisions, mainly due to

communication being asynchronous and potentially unreliable, or entities that may disappear and reap-

pear. Consensus is a fundamental ingredient for guaranteeing security and reliability of, e.g., blockchains

and distributed ledgers.

The Paxos algorithm [8], devised by Lamport, and its variations, is one of the most well-known

solutions to the consensus protocol. While the algorithm has been studied widely, it is considered to be

rather involved and hard to understand and implement. Consequently, there have been many attempts to

find alternative, simpler solutions to the consensus problem. The Raft algorithm [12, 11], proposed by

Ongaro and Ousterhout in 2014, is one such alternative. It is generally regarded to be simpler because

it breaks down the process of reaching consensus in smaller subproblems. Raft is used in, e.g., etcd,

a popular key-value store for coordinating distributed systems, facilitating service discovery, etc. The

Raft algorithm is based on a leader-follower model, where a leader is elected among the entities to

make decisions and propagate them to other entities. The other entities follow the leader’s decisions and

thereby reach consensus.

The Raft algorithm achieves fault tolerance using state machine replication. This is a technique for

implementing a fault-tolerant service, which uses replication of servers and which coordinates the inter-

actions between clients and server replicas. Each server hosts a state machine that generates an identical

copy of a particular state [13], thus ensuring that in the event of (a limited number of) server failures,

the system remains operational. Typically, state machine replication involves log replication. In the Raft

algorithm, the log is simply a sequence of commands with some minimal additional information, which

it keeps consistent. The logs are maintained by every server in the network and executed sequentially by

these, and their uniformity guarantees that servers processes the same commands in the same order.
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Given the practical significance of the consensus problem and the complexity of the solutions to the

problem, found in the literature, formalising and analysing these solutions is highly relevant. The Raft

algorithm has been modelled and verified in TLA+ [9] by Ongaro 1, one of the authors proposing the Raft

algorithm. This specification contained a couple of minor mistakes which have been fixed, as pointed out

by Evrard in [4], where an LNT [5] model of Raft is discussed. An earlier version of the LNT model has

been used in the Model Checking contest [7] in 2015, where a few generic requirements were analysed.

Another model of the Raft algorithm was presented in [14]. They used the Verdi framework to formally

prove the State Machine Safety property, i.e., the property that logs that appear in each node must provide

a uniform, consistent view on the state of the servers.

In this paper, we discuss a model written in the mCRL2 language [6] and the formalisation of several

properties coined in [12, 11]. The mCRL2 language is a process algebra with data; its process language

is based on the algebra of communicating processes (ACP), whereas its data language is based on the

theory of abstract data types. The language is supported by the mCRL2 tool set [1], which allows

for generating and visualising state spaces, and which can be used to verify properties expressed in

the modal µ-calculus with data. While both mCRL2 and LNT are process algebras, their syntax is

quite different, and modelling in both languages requires quite a different style. We discuss the design

decisions underlying our model of the Raft algorithm, and present modal µ-calculus formalisations of

the properties.

Outline. We discuss our mCRL2 model of the Raft algorithm in Section 2. The mCRL2 language is

introduced and explained using snippets of our model. For a full explanation of the language, we refer

to [6]. In Section 3, we describe the properties that we formalised in the modal µ-calculus. We discuss

some of our findings in Section 4, and end with conclusions and future work in Section 5. Full details of

the model and the properties can be found in the accompanying artefact in the Mars repository2 .

2 Modelling RAFT in mCRL2

Our mCRL2 model of the Raft Algorithm focusses on the behaviour of the nodes in the network. For our

models, we draw inspiration from the TLA+ [11] and LNT [4] specifications of the protocol and, like

the LNT and TLA+ specifications, focus on leader election and log replication as these form the core of

the protocol. Features such as cluster membership changes and log compaction have not been modelled

for simplicity’s sake and in the interest of keeping the state space minimal. We additionally model a

communication infrastructure that facilitates reliable communication between nodes. Our network model

can be modified easily to also capture unreliable communication, but this is not our initial focus. The

nodes process commands that can be sent by clients; in our model, the latter is a simple process that has

no other purpose than to send commands.

All actors are modelled as dedicated (parameterised) processes in mCRL2: we have Node processes,

a Network process and a Client process. The actors run in parallel and can synchronise and exchange

data by executing communicating actions. In mCRL2, this is defined by a top-level process such as:

init allow( {sendRPC, receiveRPC, clientCommand, advanceCommitIndex, timeout, sendRPCset ...},

comm ( { sendClientRequest | recvClientRequest -> clientCommand,

sendToNetwork | receiveFromServer -> sendRPC,

sendToServer | receiveFromNetwork -> receiveRPC,

sendToNetworkSet | receiveFromServerSet -> sendRPCset },

1https://github.com/ongardie/raft.tla
2http://mars-workshop.org/repository.html

https://github.com/ongardie/raft.tla
http://mars-workshop.org/repository.html


Parth Bora, Pham Duc Minh, Tim Willemse 9

Client(1) || Node(...) || Node(...) || ... || HealthyNetwork(...)

)

);

Parallelism is modelled by means of the parallel operator ‘||’; which actions communicate is de-

clared using the communication operator ‘comm’, by specifying which pairs of action labels can engage

in a communication. For instance, sendToNetwork | receiveFromServer -> sendRPC specifies that

when a parameterised action with action label sendToNetwork and a parameterised action with action

label receiveFromServer can happen simultaneously (provided their parameters match), this results in

a sendRPC action carrying the parameters of the individual actions. By disallowing actions that are meant

to communicate, synchronisation is enforced. This is achieved by means of the ‘allow’ operator, which

blocks any action other than the ones for which an action label is specified in the set of allowed action

labels. For instance, by including the sendRPC action label, every action with an sendToNetwork action

label is blocked and only actions with an sendRPC action label are allowed.

A Raft cluster may have any number of Nodes. Analysing our model using simulation (i.e., stepping

through the model interactively) or verification (e.g., computing the validity of requirements fully auto-

matically) to assess the correctness of (our model of) the algorithm, however, requires a fixed, concrete

number of servers. Since the behaviour of the Raft algorithm crucially depends on the number of Nodes

in the network, we model this number by means of a constant that all our processes can refer to. This is

done as follows:

map NumberOfServers: Nat;

eqn NumberOfServers = 3;

This declares a constant NumberOfServers and sets it to 3; this constant should be the same as the

number of Node processes running in parallel in the top-level process. Our model contains a few other

constants which can be set similarly.

In the remainder of this section, we describe the Client process and the Network process (Sec-

tion 2.1) and the Node process (Section 2.2).

2.1 The Raft Environment

Clients of the Raft algorithm can use it to store data and request commands that are to be executed on

multiple interconnected Nodes. These Nodes operate independently and may hold different copies of

the same data, with the consistency thereof being guaranteed by the Raft algorithm. For the purpose of

analysing the algorithm, we introduce a simple client model: only a single client and, since we are not

interested in the actual data or the commands issued by this client, we use unique ID’s, modelled by

natural numbers Nat, to abstract from the different messages of the client:

proc Client(clientCommandID: Nat) =

(clientCommandID <= NumberOfClientRequests) ->

sendClientRequest(clientCommandID) . Client(clientCommandID+1);

This defines a process Client that can be instantiated by passing a positive number as argument. As-

suming that the constant NumberOfClientRequests is 3, process Client(1) then executes the action

sendClientRequest(1), followed by sendClientRequest(2) and finally sendClientRequest(3), af-

ter which the process is unable to perform any further actions. This behaviour is described compactly

using the sequential composition operator ‘.’ of mCRL2, and through the use of recursion.

We assume that communication between the client and the Raft cluster is synchronous, unlike the

communication among the different nodes in a Raft cluster, which proceeds asynchronously. Raft claims
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to be correct even when network communication between nodes is unreliable, including delays, parti-

tions, and packet loss, duplication, and reordering. As mentioned earlier, communication in our model

of Raft happens via the communication of actions between the various Node processes and the Network

process. If node A wants to send a message to node B, it sends the message to the network, which then

sends it to node B. The network layer is introduced as an intermediary in message exchange between

nodes to model message reordering. While we do not analyse the Raft algorithm in the presence of mes-

sage loss or duplication, our network model can easily be modified to accommodate for these. Messages

exchanged between nodes are essentially Remote Procedure Calls (RPCs). Raft utilises two distinct

types of RPCs: vote request/response RPCs and append entries request/response RPCs.

sort RPC = struct RequestVoteRequest(currentTermRPC: Nat, endLogIndex: Nat, endLogTerm: Nat)

?isRequestVoteRequest

| RequestVoteResponse(currentTermRPC: Nat, isVoteGranted: Bool)

?isRequestVoteResponse

| ...

We model the messages exchanged between a node and a network using the data type NetworkPayload,

which is a triple consisting of the ID of the sending node, a command of type RPC and the ID of the

receiving node:

sort NetworkPayload = struct Message(senderID: Nat, rpc: RPC, receiverID: Nat);

Our network model allows a node to send a message to another nodes using a SendToNetwork action,

which can then communicate with a receiveFromServer action offered by the network. Alternatively,

a set of nodes can be addressed in one go, using a sendToNetworkSet action and which can commu-

nicate with a receiveFromServerSet action offered by the network. The network then takes care of

dispatching the messages to these nodes using a sendToServer action. This is achieved by the following

process:

proc Network(messageCollection: FSet(NetworkPayload)) =

(# messageCollection < NetworkSize) ->

sum msg: NetworkPayload . receiveFromServer(msg)

. Network(messageCollection = messageCollection + {msg})

+

(# messageCollection + NumberOfServers < NetworkSize + 1) ->

sum msgs: FSet(NetworkPayload) . receiveFromServerSet(msgs)

. Network(messageCollection = messageCollection + msgs)

+

sum msg: NetworkPayload .

(msg in messageCollection) ->

sendToServer(msg) . Network(messageCollection = messageCollection - {msg});

Informally, this process can, execute a receiveFromServer action carrying a (non-deterministically

chosen) message of type NetworkPayload, as long as the network is not yet full, indicated by the condi-

tion # messageCollection < NetworkSize. Once the action was executed, the process again behaves

as Network, but the parameter messageCollection has been updated to also contain the message msg.

Alternatively, as indicated by the binary non-deterministic choice operator ‘+’, the process may receive

a message that is to be sent to all other nodes (second summand), or send a message that is in the set of

messages messageCollection.

Note that the model depicted above models a ‘perfect’ network; however, using a minor adjustment,

it can be turned into an unreliable network. For instance, by extending the third summand to include an

option to lose the message instead of sending the message, message loss can be modelled as follows:

...

+

sum msg: NetworkPayload .
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(msg in messageCollection) ->

(

sendToServer(msg) . Network(messageCollection = messageCollection - {msg})

+

lose . Network(messageCollection = messageCollection - {msg})

);

Here, lose is a new action indicating a message is lost, not revealing which message this is. By including

this action in the set of actions that are in the allow set of the top-level process, the network can non-

deterministically decide to drop messages.

2.2 Node

The core logic of the Raft algorithm is described by the Node processes. This process needs to deal with

messages received from other Node processes, and, send messages (potentially received from a Client

process) to other Node processes. Logical decisions are based on the local state of the process; this state

is reflected in the parameters of the Node process:

proc Node(id: Nat, currentState: State, currentTerm: Nat, log: LogType,

commitIndex: Nat, votedFor: Int, voterLog: FSet(Nat), nextIndex: List(Nat),

matchIndex: List(Nat), replyToBeSent: replyHelper) =

currentState != Crashed ->

( (IsNone(replyToBeSent)) ->

Node_process_receiveFromNetwork(id, currentState, currentTerm, log,

commitIndex, votedFor, voterLog, nextIndex,

matchIndex, replyToBeSent)

+

Node_process_sendToNetwork(id, currentState, currentTerm, log, commitIndex,

votedFor, voterLog, nextIndex, matchIndex, replyToBeSent)

+

(currentState != Leader && currentTerm < MaxTerm) ->

timeout . Node(currentState = Candidate, currentTerm = currentTerm + 1,

votedFor = id, voterLog = {id}, replyToBeSent = none)

)

+

currentState == Crashed -> ...;

As can be seen, for the sake of readability we have split part of the Node process in two subpro-

cesses, viz., the process Node_process_receiveFromNetwork and Node_process_sendToNetwork. So

long as the node has not crashed, it offers a non-deterministic choice between the behaviour described

by these two processes and (conditionally) timing out (as described by the third summand). Subpro-

cess Node_process_receiveFromNetwork handles all messages the node receives through the network,

whereas Node_process_sendToNetwork takes care of sending messages, received from the client, or

replies to previous messages, to other nodes. If the node has crashed, a recovery mechanism can be

initiated (not depicted here).

The Raft algorithm divides time into terms of arbitrary length. The current term number is repre-

sented by the currentTerm parameter of type Nat of the Node process. Each node in a Raft cluster can

be in one of three states: Leader, Follower, or Candidate; see also Fig. 1. This state is maintained by

parameter currentState in process Node. In addition to these three possible states, we have introduced

a fourth state to indicate that the node has crashed. The data type State thus is as follows:

sort State = struct Leader | Candidate | Follower | Crashed;

The way Raft (and algorithms like Raft) implements replicated state machines is by means of a replicated

log. Each node in the Raft cluster stores a log consisting of entries that contain a state machine command

and the term number that indicates when the entry was received by the Leader. In our log entries, the
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Follower Candidate Leader

Crashed

timeout

become leader

majority of votes

timeout
receive new term, or

detect current leader

receive RPC with higher term

crash
crash

crashresume

Figure 1: State transitions for a node in Raft.

state machine commands are represented by the command ID, since we are not interested in the actual

command itself. The parameter log of process Node is thus basically a list of entries that contain a

command ID and term:

sort logEntry = struct Command(term: Nat, commandID: Nat);

sort LogType = List(logEntry);

A practical complication with our formalisation is that mCRL2 lists are zero-indexed, unlike the logs

described in the original Raft paper [12, 11], which are one-indexed. While converting from one repre-

sentation to the other is straightforward, it is equally easy to make mistakes. We have circumvented this

by utilising helper functions that make the conversion less error-prone.

The Raft State Machine. All nodes start out as Followers. Depending on the state of the node, certain

actions are permitted. Only when a node is in state Leader, it can start accepting messages from a

client. A node that is Leader sends periodic heartbeats to followers to assert its presence. During an

election, nodes that are Candidates send vote request RPCs to other nodes to garner votes. Subprocess

Node_process_sendToNetwork takes care of these events. If a Follower does not receive either of these

messages over a period of time, called the election timeout and modelled by means of the timeout action,

it starts a new election by changing into a Candidate state and increments its term. Subsequently, it will

vote for itself. We remark that we here closely follow the LNT model, allowing the Candidate to vote

for itself rather than by sending a vote request RPC to itself, and by modelling the timeout by means of

non-determinism rather than by imposing hard real-time requirements. Safety requirements should not

be affected by modelling timeouts using non-determinism. However, due to this abstraction, we cannot

analyse real-time requirements, nor the real-time performance of the algorithm. Also, when phrasing

liveness requirements, the abstraction may require one to be explicit about the absence or occurrence of

these timeouts.

After a node becomes a Candidate, it sends a vote request RPC to all other servers in the cluster. In

our model, this is achieved using a sendToNetworkSet action, carrying a set of messages consisting of

the RPC and a target node as its parameter; the Network process then relays the request to all targeted

nodes. The set of messages is created using a recursive function CreateRequestVoteSet that builds the

set by iterating over all possible node IDs that have not voted for the Candidate node yet; the latter is
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specified in an auxiliary function CreateRequestVoteSetHelper:

map CreateRequestVoteSet: Nat # Nat # Nat # Nat # FSet(Nat) -> FSet(NetworkPayload);

var sender, termNode, lengthLog, lastTermLog: Nat;

voterLog: FSet(Nat);

eqn CreateRequestVoteSet(sender, termNode, lengthLog, lastTermLog, voterLog)

=

CreateRequestVoteSetHelper(sender, RequestVoteRequest(termNode, lengthLog, lastTermLog),

voterLog, 0);

map CreateRequestVoteSetHelper: Nat # RPC # FSet(Nat) # Nat -> FSet(NetworkPayload);

var sender, receiver: Nat;

rvr: RPC;

voterLog: FSet(Nat);

eqn (receiver==NumberOfServers) ->

CreateRequestVoteSetHelper(sender, rvr, voterLog, receiver) = {};

(receiver<NumberOfServers ) ->

CreateRequestVoteSetHelper(sender, rvr, voterLog, receiver) =

CreateRequestVoteSetHelper(sender, rvr, voterLog, receiver + 1 )

+ if(receiver!=sender && !(receiver in voterLog), {Message(sender, rvr, receiver)},{});

If a node receives a stale message, i.e., a message with a term smaller than currentTerm, it immedi-

ately discards it. When it receives a message with a term greater than currentTerm, the node steps down

to the Follower state and resets the votedFor parameter to -1, to indicate it has not voted for anyone in

that term, and it sends a reply. The type of message received determines the type of reply sent by the

node. This reply is then stored in the replyToBeSent parameter so that it can be sent out before the node

engages in other interactions but potentially only after the node has updated its state. This allows for

analysing the effects (in any) of nodes crashing random moments. In particular, when nodes crash, part

of their state information is saved and restored, and, hence, the order of events might matter.

When a server receives a vote request RPC from a Candidate, it votes for them if it has not yet voted

for any other node in that term previously. Additionally, to prevent a Candidate with an out-of-date log

from becoming Leader, the node compares the index and term of the last entries in the logs of the voter

and the Candidate. The Raft algorithm uses an ingeneous scheme—taking the type of RPC, the current

term of the node and the message and the log of the Candidate into account—to decide whether the vote

is granted to the Candidate or not; it then informs the Candidate of its decision. On receiving a reply

from the node, the Candidate evaluates the number of votes it has received. If it successfully acquires

votes from a majority of the nodes in the cluster, it becomes a Leader by changing to state Leader. While

waiting for votes, if the Candidate receives a valid heartbeat from a Leader, it steps down to become a

Follower. In case of a split vote, the Candidate can timeout again and start a new election.

Log Replication. When a Leader receives a request from the client, the request is appended to the log

and all other nodes are informed using append entries request RPCs. In our model, this is achieved in a

way that is similar to how Candidate nodes deal with vote request RPCs. A Leader sends only one log

entry at a time; this is in line with the TLA+ specification, although the Raft algorithm supports sending

multiple log entries at once.

In an append entries request RPC, the Leader includes the index and term of the log entry immedi-

ately preceding the new entries. If a Follower does not find a matching entry in its log with the same

index and term, then it refuses the entry and sends back a negative response. The Leader, upon receiving

a negative response, decrements the Follower’s nextIndex, which is a list where each index corresponds

to the same serverID and which stores the index of the log entry the Leader will send to that node.

The Leader, when first elected, initialises all nextIndex values to the index just after the last one in its

log. After decrementing the nextIndex, the append entries RPC is retried. Eventually nextIndex will
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reach the point where the Leader and Follower logs match. When this happens, any subsequent conflict-

ing entries in the Follower’s log are removed and entries from the Leader’s log are appended (if any).

Consequently, a positive response is sent back to the Leader and log replication is successful.

Once the leader has sucessfully replicated a log entry on majority of the servers, the entry is deemed

committed. We use the action advanceCommitIndex to model this. Moreover, we have introduced a

function MaxAgreeIndex to find the highest possible index that can be committed. Once an entry has

been committed, the Leader applies it to its state machine. The Leader keeps track of the highest index it

knows to be committed, in parameter commitIndex, and includes this in append entries RPCs (heartbeat

messages included) so other nodes can commit the entries, too. This method of counting successful repli-

cation on a majority is not used to commit entries from previous terms: only log entries from the Leader’s

current term are committed by counting replicas. Once an entry from the current term has been commit-

ted in this way, then all prior entries are committed indirectly. The function isAdvanceCommitIndexOk

is used to keep this in check.

Model Statistics. We have generated state spaces of various instances of the model as described (see

also the Mars repository for the full model). The base case is a configuration in which there are 3 nodes, 2

commands from clients, 1 term, a network capacity of 3 messages, and no crashes and recovery of nodes.

This basic configuration already leads to a rather large state space of over 200k states, which can be

generated in slightly under a minute on a 2017 Macbook Pro. We do note that there is some redundancy

in the model, since strong bisimilarity reduction manages to compress the state space with almost a factor

of 5. Table 1 shows the statistics of all configurations we explored, including a configuration that shows

the effect of using a lossy network. To give a rough indication of the time required to generate these state

spaces, we have included the time it takes for a 2017 Macbook Pro with 16GB memory to generate these

state spaces. This clearly shows the dramatic effect of nodes crashing and of increasing the number of

possible terms.

#Nodes #Commands #Terms #Network Lossy Crashing Size Time

Capacity Network

3 2 1 3 no no 2.14105
∼ 1 min.

3 1 2 3 no no 1.17106
∼ 2 min.

3 1 3 3 no no 1.32107
∼ 13 min.

3 2 1 3 no yes 1.79107
∼ 5 min.

3 2 2 3 no no 2.25107
∼ 19 min.

3 2 1 3 yes yes 5.97107
∼ 105 min.

3 1 2 3 no yes 1.48108
∼ 24 min.

3 1 3 3 no yes 2.38109
∼ 820 min.†

Table 1: Some statistics for the state space sizes for various configurations of the Raft algorithm; (†) this

experiment was conducted on a compute server so the runtime is not directly comparable to the other

runtimes reported.

3 Raft Properties

The Raft algorithm is quite involved, and it is easy to make small mistakes when formalising the al-

gorithm. A simple example of the subtleties include the aforementioned difference between the zero-

indexed lists of mCRL2 and the one-indexed arrays used in the original description of the algorithm. As



Parth Bora, Pham Duc Minh, Tim Willemse 15

part of the original description of the algorithm, the authors also list several properties that the algorithm

guarantees; such properties can be seen as partial specifications of the algorithm. We have taken some

of these properties and formalised them as modal µ-calculus formulas. These formulas have been used

throughout the model development to hunt for bugs in our formalisation, and provide an extra layer of

validation in addition to manual simulation of the model, increasing our confidence in the model.

One central complication in formalising the original properties in the modal µ-calculus is the fact that

the properties refer to the variables that span the state of each node; in our case, those are, for instance,

the parameters of the Node process. Since the mCRL2 language is action-based rather than state-based,

these parameters cannot be referred to in the modal µ-calculus formulas. We have sidestepped this issue

by extending our model with auxiliary actions that expose the relevant information. For instance, for

the purpose of verification, we have introduced self-loops labelled by actions such as exposeLeader,

exposeLogLeader and exposeLog.

In what follows, we will briefly discuss four main properties that have been formalised and their

modal µ-calculus formalisation next to it. The Append Entries property that is also mentioned in [12, 11]

is omitted since it follows immediately from the operations a Leader can carry out in our model. All

formulas happen to fall in a category of formulas that can be represented in a PDL-style language,

called regular formulae, that abstracts from the fixed points one typically expects in modal µ-calculus

formulas. We will explain the meaning of the formulas as we proceed. All main properties hold true for

all configurations of Table 1; verification of each property takes roughly 2-3 times that of generating the

state space using the symbolic technique described in [10]. We additionally verify a number of simple

liveness properties that demonstrate that the main properties we verify do not hold true vacuously. Also

these can be expressed in terms of regular formulae, save one.

Election Safety. One of the fundamental properties on which the Raft algorithm relies for its correct

functioning is the property that at most one Leader can be elected in a term. This is called the Election

Safety property in [12, 11]. Since the state of each node cannot be read directly, we use the exposeLeader

action to expose that the state of a node is Leader. Then, the correctness property can be phrased as the

inability for two distinct nodes to execute exposeLeader actions in the same term. The formula we use

to express this is as follows:

[true*] forall id1, termx: Nat . [exposeLeader(id1, termx)]

[true*] forall id2: Nat . val(id1!=id2) => [exposeLeader(id2, termx)] false

This formula should be read as follows. Invariantly (captured by the first occurrence of [true*]), ex-

ecuting any exposeLeader action, carrying some ID (here represented by id1) of a node and a term,

will lead to a state from which invariantly (captured by the second [true*] formula) it is impossible to

execute another exposeLeader action carrying an ID (represented by id2) of a different node and the

same term. The latter part is captured by the [exposeLeader(id2, termx)]false subformula.

Note that this property can hold true trivially if no Leader is ever elected. To exclude this scenario,

we have additionally phrased a liveness property that verifies that such actions can indeed take place:

<true*> exists id1, termx:Nat . <exposeLeader(id1, termx)>true

This property, which should be read as follows: following zero or more actions, it is possible that an

exposeLeader action can be executed, carrying some ID (represented by id1) and some term (repre-

sented by termx). Also this property holds true for all the configurations of Table 1. To assess whether

there is a scenario in which two different nodes can be a leader, we can check the following formula:

<true*> exists id1, termx:Nat . <exposeLeader(id1, termx)>

<true*> exists id2, termy:Nat. val(id1 != id2) && <exposeLeader(id2,termy)>true
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This formula only holds true in configurations in which there are at least two terms, as can be expected.

Taking this into account, we can verify a formula that states that there is a sequence of events in which

we see MaxTerm times a different leader announce itself. Such a formula requires us to explicitly use a

least fixed point and keep track of the number of times we have witnessed the exposeLeader action and

the ID of the leader that announced itself most recently.

mu X(id:Nat = 1, n:Nat = 0).

( val(n >= MaxTerm) || <true>X(id,n)

|| exists id2, termy:Nat. (val(id != id2) && <exposeLeader(id2,termy)>X(id2,n+1))

)

This formula holds true in all configurations.

Log Matching. The log replication mechanism ensures that each node in the Raft cluster has the same

view on the state of the cluster. In particular, if, for two nodes, their logs contain an entry with the same

index and term, then these logs are identical in all entries up to (and including) the given index. This

is called the Log Matching property in [12, 11]. Log information of nodes, which is tracked in the log

parameter of the Node process cannot be inspected using the modal µ-calculus formula without exposing

the information through actions. This is achieved by extending the model with self loops of exposeLog

actions; the property can then be formalised as follows:

[true*] forall id1, term1, commitIndex1: Nat, log1: LogType .

val(log1!=[]) => [exposeLog(id1, term1, commitIndex1, log1)]

[true*] forall id2, term2, index, commitIndex2: Nat, log2: LogType .

val(index<#log1 && index<#log2 && id1!=id2 && log2!=[] && log1.index == log2.index)

=>

([exposeLog(id2, term2, commitIndex2, log2)]

val(slice(log1, 1, index+1) == slice(log2, 1, index+1)))

Again, the [true*] should be read as ‘invariantly’. The formula can then be understood to state the

following: invariantly, for any state in which there is a node (the ID of which is id1) with a non-empty

log log1 it is the case that invariantly from that moment onwards, any other state in which there is another

node (the ID of which is id2) with a non-empty log log2 that has an entry at position index in common,

the slices of log1 and log2 coincide up to, and including position index.

Leader Completeness. Another aspect of the log replication mechanism is that log entries, committed

in a given term, will persist in the logs of the Leaders in future terms; in [12, 11] this is referred to

as the Leader Completeness property. This ensures that the logs are indeed a proper reflection of what

has happened in the past. We modify the model to include exposeLogLeader self-loops that expose

the log information of the node that is currently in state Leader. The advanceCommitIndex actions,

already present in the model, are used as signals that information has been committed in the log up to,

and including entry currentCommitIndex. Note that in our model, the advanceCommitIndex action also

exposes the log of the leader through the log1 parameter.

[true*] forall currentCommitIndex, nextCommitIndex, term1: Nat, log1: LogType .

[advanceCommitIndex(currentCommitIndex, nextCommitIndex, term1, log1)]

[true*] forall term2, index: Nat, log2: LogType .

val(term2>term1 && index>currentCommitIndex && index<=nextCommitIndex)

=>

[exposeLogLeader(term2, log2)] val((log1 . index) in log2)

This formula should be read as follows: invariantly, whenever a advanceCommitIndex action happens,

exposing the current commit index currentCommitIndex, the next commit index nextCommitIndex, the
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term term1 and the Leader’s log log1, then whenever we subsequently inspect the log of a Leader in a fu-

ture term term2, then those log entries in log1 that can be found at indices beyond currentCommitIndex

and nextCommitIndex are contained in the log entries of log2.

State Machine Safety. The logs that appear in each node furthermore must provide a uniform, consis-

tent view on the state of the cluster. That means that after a node has applied a log entry at a given index

to its state machine, no other node will ever apply a different log entry for the same index. This property

is referred to as the Sate Machine Safety property in [12, 11]. In order to express this property, we again

assume that the model has been extended with self-loops labelled with exposeLog actions. The property

can then be formalised as follows:

[true*] forall id1, term1, commitIndex1: Nat, log1: LogType .

val(commitIndex1 > 0)

=>

[exposeLog(id1, term1, commitIndex1, log1)]

[true*] forall id2, term2, commitIndex2: Nat, log2: LogType .

val(id1!=id2 && commitIndex2>=commitIndex1)

=>

[exposeLog(id2, term2, commitIndex2, log2)]

val(slice(log1, 1, commitIndex1) == slice(log2, 1, commitIndex1))

This formula can be understood as follows: invariantly, whatever the log of a node is, given the commit

index commitIndex1 of the node at that time, the log will overlap up-to and including this index in any

future moment in which the commit index commitIndex2 of a node is equal or larger. This ensures

consistency of the logs over time, meaning that the same entries have been applied to the state machine.

Note that the condition commitIndex1 > 0 ensures that an entry has been committed.

In order to assess whether or not the property holds true vacuously, we have phrased the following

simple liveness requirement:

<true*> exists id1, term1, commitIndex1: Nat, log1: LogType .

val(commitIndex1 > 0) && <exposeLog(id1, term1, commitIndex1, log1)>

<true*> exists id2, term2, commitIndex2: Nat, log2: LogType .

val(id1 != id2 && commitIndex2 >= commitIndex1)

&&

<exposeLog(id2, term2, commitIndex2, log2)> true

This property holds true for every model we have analysed.

4 Discussion

We briefly touch on a few observations related to modelling in mCRL2, but also related to how our model

compares to existing formalisations of the Raft algorithm.

Modelling in mCRL2. The mCRL2 language has all the features that allow one to concisely describe

the workings of complex distributed algorithms. Parallelism and message passing, both key ingredients

in the Raft algorithm, are key concepts that allow the model to stay close to reality. Furthermore, param-

eterisation of processes and actions allows for reusing parts of the specifications, avoiding copy-paste

mistakes and improving readability. Finally, the rich and expressive data language of mCRL2 is essential

when describing the more complex operations on arrays that are part of the Raft algorithm. Built-in types

such as lists, natural numbers, and sets, and the facility to specify custom data types and operations on

these turned out to be essential for keeping the specification readable and its size to a minimum.
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Modelling in the mCRL2 language does require experience, and there is not really a practical guide-

book that explains how to use the language effectively. This can lead to sub-optimal ways of modelling.

For instance, the initial model, which was created by the first two authors and who had no prior experi-

ence of using mCRL2, used a modelling style that is perfectly valid but that led to state spaces that were

orders of magnitude larger than needed. To illustrate, consider the following mCRL2 specification:

act a:Bool;

proc X(c:Bool) = sum b:Bool. a(b). ( (b -> X(true) + !b -> X(false)));

init X(true);

The transition system that is generated for this specification has 3 states and 6 transitions. Based on

the specification, one would expect at most 2 states: one representing X(true) and one representing

X(false). The third state is introduced by the pre-processing of the mCRL2 toolset, which rewrites the

above specification to normal form and which may introduce extra process parameters. Now consider

the following mCRL2 specification:

act a:Bool;

proc X(c:Bool) = sum b:Bool. ( b -> a(b).X(true) + !b -> a(b).X(false));

init X(true);

The state space generated for this specification has only 1 state and 2 transitions. It is strongly bisimilar

to the state space of the previous example, and therefore, for all intents and purposes, equivalent to it.

In this case, the pre-processing conducted by the mCRL2 toolset does not lead to an additional state

because the process is already in a shape it wishes to produce. Even better, during the pre-processing it

detects that parameter c of process X is irrelevant, which can easily be seen because it does not appear in

the right-hand side.

Comparison to Other Formalisations. As we have indicated earlier, in constructing the mCRL2

model for the Raft algorithm, we have drawn inspiration from both the TLA+ and the LNT specifi-

cations. However, there are cases where the TLA+ and LNT specifications make different modelling

choices, and, consequently, we have had to make a choice between the two. A case in point is the way

the TLA+ specification deals with stale RPC messages: it drops stale responses but stale requests are

replied to, to alert the sending party of the newer term. The LNT specification, on the other hand, dis-

cards stale requests as well. In our model, we chose to here follow the LNT specification. An example

where we followed the TLA+ specification is where we send the minimum between commitIndex of the

current node and the nextIndex of the receiver when sending the append entries request, rather than

LNT’s choice to send the commitIndex of the Leader. There are other places where our model devi-

ates subtly from the LNT model, for instance in dealing with crashed nodes. In particular, the LNT

model does not appear to allow for nodes to reboot, and the inclusion of rebooting nodes has had some

implications on how we dealt with sending replies to requests.

Concerning the TLA+, LNT and mCRL2 modelling languages, we remark that due to LNT having

many traits of an imperative language, unlike mCRL2 and TLA+, the LNT specification is in all likeli-

hood more appealing to the average software engineer than the TLA+ or mCRL2 specifications. Also,

the ability to specify crashing of nodes using LNT’s disrupt operator is rather elegant; in our mCRL2

model, this requires hard-coding the option to crash. While in our model, the difference turns out to be

minimal, this would not have been the case if our model had used large numbers of actions that could

be executed sequentially. For instance, specifying that a crash action can interrupt the process a.b.c

would require a specification of the form crash + a. (crash + b. (crash + c)).
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5 Conclusions and Future Work

In this paper, we have highlighted and discussed several parts of our mCRL2 model of the Raft algorithm

and the modal µ-calculus formulas capturing its properties. The full details of the model and the formulas

can be found in the Mars repository. While our model shares many aspects with the TLA+ and LNT

specification that have been published before, the formalisation of some of the key properties of the

algorithm using a modal logic appear to be new. Note that only the simplest configurations can be

verified in reasonable time, but it may still be interesting to verify the more complex configurations as

well, including non-perfect network behaviour. We consider this part of future work.

Furthermore, it would be interesting to verify stronger liveness requirements. We have only covered

a few very basic, weak liveness properties, asserting that it is possible to, e.g., (repeatedly) become a

leader. Stronger liveness requirements, asserting that always inevitably a leader must be elected, are

simply not true in our model because in some configurations, messages are lost or nodes crash, but also

due to us imposing limits on the maximum number of terms we consider. Phrasing the exact properties

while taking all exceptions into account is non-trivial: for some properties, a counterexample may not

simply be a run of the system but it can consist of an entire subgraph of the transition system [2, 3],

consisting of a 1 000 or more states. In such cases, understanding the root cause of the violation can be

virtually impossible. Proving liveness properties for the unrestricted model (i.e., when not limiting the

number of terms) can be even more challenging.

Furthermore, in the model, when a node receives a message, it computes the reply atomically. This

simplifies the model but does not accurately reflect real-world scenarios where the computation of a

reply would involve multiple steps and could be interrupted by other events. Refining these aspects

would increase the applicability of the model to real-life scenarios but a careful tradeoff must be made

between the level of abstraction and the granularity of the model to keep the state space from exploding.

Finally, like the TLA+ and LNT specifications, our model lacks real-time, even though the algorithm

suggests typical timing intervals. For instance, Raft chooses election timeouts arbitrarily from a fixed

interval (e.g., 150–300ms), whereas in our model a timeout can happen non-deterministically. While

mCRL2 has facilities to model real-time aspects, the current status of the tooling is not sufficiently

powerful to deal with real-time systems with state spaces of this size. A real-time extension of our model

could therefore serve as a challenging benchmark for real-time model checking tools.
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