
F. Lang, M. Volk (Eds):
Models for Formal Analysis of Real Systems (MARS 2024)
EPTCS 399, 2024, pp. 169–191, doi:10.4204/EPTCS.399.8

© Bjarne Johansson et al.
This work is licensed under the
Creative Commons Attribution License.

Formal Verification of Consistency for Systems with
Redundant Controllers

Bjarne Johansson
ABB AB, Västerås, Sweden

Mälardalen University, Västerås, Sweden

bjarne.johansson@se.abb.com

Bahman Pourvatan Zahra Moezkarimi Alessandro Papadopoulos Marjan Sirjani
Mälardalen University, Västerås, Sweden

firstname.lastname@mdu.se

A potential problem that may arise in the domain of distributed control systems is the existence of
more than one primary controller in redundancy plans that may lead to inconsistency. An algorithm
called NRP FD is proposed to solve this issue by prioritizing consistency over availability. In this
paper, we demonstrate how by using modeling and formal verification, we discovered an issue in
NRP FD where we may have two primary controllers at the same time. We then provide a solution
to mitigate the identified issue, thereby enhancing the robustness and reliability of such systems.

1 Introduction

Control systems are essential in the automation solution of domains such as offshore oil extraction,
refineries, and hydropower plants - sectors where downtime can lead to significant financial losses or
even life-threatening incidents. These automation solutions incorporate redundancy to mitigate the risk
of unplanned downtime due to hardware failures by duplicating critical components like controllers.
The common approach is standby redundancy, where an active primary controller manages the pro-
cess, and a passive backup is ready to take over in case of primary failure [21]. These controllers,
or Distributed Controller Nodes (DCN), interact with the physical world through Field Communica-
tion Interfaces (FCI), connecting to input/output (I/O) devices. The FCI supplies process values to the
DCN, which then executes control actions based on these inputs and sends outputs back to the FCI.

DCN 1
(P)

Redundancy link (A)

Redundancy link (B)

Redudant DCN

I/O I/O I/O

FCI
Fieldbus

DCN 2
(B)

Figure 1: A redundant DCN (con-
troller) pair synchronized with ded-
icated, redundant redundancy link.

For a backup DCN to seamlessly assume the primary role, it
must detect the primary’s failure and resume the primary role
with the former primary’s last known state. The primary cycli-
cally replicates its latest state to the backup and sends a heartbeat,
i.e., a message with predetermined intervals for failure detection.
Heartbeat absence signifies a possible primary failure. Controller
redundancy communication is conventionally carried out over a
dedicated, point-to-point connection [27, 18, 20], as illustrated in
Figure 1. Failure of the redundancy link can partition the DCN
pair, disrupting synchronization and causing their internal states
to diverge. This divergence might result in inconsistent outputs to
the FCI.

Two strategies are common when managing failures in redun-
dancy communication links: (i) disabling redundancy following

http://dx.doi.org/10.4204/EPTCS.399.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

170 Formal Verification of Consistency in Systems with Redundant Controllers

the failure of one of the links or (ii) continuing in redundant mode. These strategies reflect the alterna-
tives a distributed system has in case of partitioning: remain consistent and sacrifice availability or vice
versa—consequence of the Consistency, Availability, and Partitioning tolerance (CAP) theorem [6].

Disabling redundancy after a redundancy link failure compromises availability, as the backup won’t
activate if the primary controller fails before the link is repaired. While this method prioritizes consis-
tency, a concurrent loss of both redundancy links can still lead to a dual primary situation [20].

The alternative, operating redundantly with only one functioning redundancy link, risks causing
a dual primary situation if the remaining redundancy link fails. This is because the backup can not
distinguish missing heartbeats due to a failure of the link from a failure of the primary. Some vendors call
a dual primary scenario non-synchronized active units, signifying the consistency compromise following
from CAP [18]. Controllers unable to communicate can not synchronize, leading to an inconsistent state
in the redundant pair.

The advent of Industry 4.0 is steering industrial controllers towards a network-centric design [2, 4,
16]. As defined by the Open Process Automation Forum (OPAF), the DCNs and FCI are integrated
into a cohesive communication network. Additionally, this network backbone can support redundancy
communication and replace the redundancy link shown in Figure 1 with a network, see Figure 2.

Switch A1 Switch A2

FCI A I/O I/O
DCN 1

(P)
DCN 2

(B)FCI A I/O I/O

Switch B1 Switch B2

FCI A I/O I/O

Switch A3

Switch B3

Figure 2: Redundant controllers connected over a redundant, disjoint network backbone.

When communication between a redundant DCN pair fails, as shown in Figure 3a, traditional ap-
proaches either disable redundancy at the first failure (F1) or allow the system to operate in a non-
synchronized dual-primary mode, as shown in Figure 3b. Johansson et al. [10] introduce the Network
Reference Point Failure Detection (NRP FD) for such redundant DCN systems. NRP FD prioritizes con-
sistency while reducing the impact on availability. It uses an external Network Reference Point (NRP) as
a tiebreaker for primary role determination, aiding the backup DCN in differentiating between primary
and network failures. For a DCN to attain and retain the primary role, it must maintain communication

Switch A1 Switch A2 F1

F2

FCI A I/O I/O
DCN 1

(P)
DCN 2

(B)FCI A I/O I/O

Switch B1 Switch B2

FCI A I/O I/O

Switch A3

Switch B3

Heartbeat

Heartbeat

(a)

Switch A1 F1

F2

FCI A I/O I/O
DCN 1

(P)
DCN 2

(P)FCI A I/O I/O

Switch B1

FCI A I/O I/O

Switch A3

Switch B3

DCN 1 output values

Switch A2

DCN 2 output values

Switch B2

(b)

Figure 3: (a) F1 and F2 exemplify network failures partitioning the redundant controller pair, preventing
the heartbeat (and other communication) between DCN 1 and DCN 2. (b) Due to F1 and F2 caused
partitioning, both DCN 1 and DCN 2 become primary and drive potentially inconsistent outputs.

Bjarne Johansson et al. 171

with the NRP. The importance of addressing dual primary risks is emphasized in manuals recommend-
ing spatially separated redundancy links in current systems to avoid simultaneous damage and undefined
system states [20].

To design an algorithm that guarantees the uniqueness of the primary the following questions need
to be answered:

• How should the backup know about a failure?

• When should the backup become a primary?

As described by Johansson et al. in [10], the NRP FD uses heartbeats for primary failure detection
(heartbeat) and a separate message for NRP reachability testing and detecting network failure. This
introduces a potential vulnerability: the absence of a heartbeat is a sign of the primary failure, while NRP
reachability is verified separately. Consequently, temporary disturbances could lead to inconsistencies,
underscoring the importance of testing with temporal disturbances. Hence, one other question also have
to be answered:

• How should we take care of the transient errors in switches or DCNs?

Since nondeterministic behavior is generally undesirable in control systems, particularly in high-
integrity systems crucial for safety-critical solutions, like the ABB AC 800M High Integrity system [1],
we need assurance of the correctness of the algorithm. Therefore, this paper describes in detail the
modeling and formal verification of the NRP FD algorithm, considering the main safety property of
"NoDualPrimary". We use Timed Rebeca which is an actor-based modeling language for reactive and
distributed systems and its model checker tool Afra to model and verify NRF FD. We model different
failures including transient errors and illustrate the results. We also propose an enhanced lease-based
version of NRP FD that ensures a singular primary in the case of transient errors.

2 Network Reference Point Failure Detection (NRP FD) Algorithm

NRP FD targets failure detection in redundant controller pairs. In a standard system, two controllers,
DCN 1 and DCN 2, function as primary and backup, respectively, as illustrated in Figure 4. The primary
is unique in the system and interacts with I/O devices, while the backup, in standby mode, activates only
upon primary failure. This concept is known as standby redundancy [21]. These controllers, DCN 1
and DCN 2, require communication, typically through a network facilitated by switches [4, 16]. Redun-
dant controllers are often paired with dual independent networks for enhanced reliability, as depicted in
Figure 4.

NRP FD is a heartbeat-based failure detection algorithm where the primary controller sends regu-
lar heartbeat messages to the backup via the networks connecting the redundant DCN pair [10]. These
heartbeats, a push-based failure detection method, involve the primary sending messages to the backup
at a known interval [19]. NRP FD differs from traditional heartbeat-based failure detection due to its
NRP usage. An NRP must meet two requirements: (i) it should not share common cause failures with
the redundant DCN pair, and (ii) be accessible from only one DCN in case of network partitioning.
Each controller typically has one NRP candidate per independent network, as illustrated in Figure 4,
where network switches serve as potential NRPs. The uper network in Figure 4 includes three switches
Switch A1, Switch A2, and Switch A3, and the lower network includes Switch B1, Switch B2, and
Switch B3. The NRP candidate set for the primary is {Switch A1,Switch B1} and for the backup is
{Switch A3,Switch B3}, and Switch A1 is the NRP.

172 Formal Verification of Consistency in Systems with Redundant Controllers

NRP candidate NRP candidate

NRP
(NRP candidate)

NRP candidate

Switch A1

FCI A I/O I/O
DCN 1

(P)
DCN 2

(B)FCI A I/O I/O

Switch B1

FCI A I/O I/O

Switch A3

Switch B3

Switch A2

Switch B2

Figure 4: The redundant network backbone with the NRP and NRP candidates highlighted.

The operational procedure of NRP FD is as follows: before enabling redundancy, the primary DCN
selects an NRP from the available NRP candidates. The heartbeat message communicates the NRP
selection to the backup. The primary continuously monitors the NRP, ensuring its accessibility and
proposing a change to the backup if the NRP is unreachable. If the backup doesn’t acknowledge this
change within a set time, the primary leaves the primary role. Concurrently, the backup continuously
monitors heartbeats from the primary. If these are missing for a predetermined duration, the backup
assesses its NRP connection. Should this connection be active, the backup takes the primary role. The
following section will provide more details of the algorithm and its Timed Rebecca model.

3 Modeling and Verification of NRP FD using Timed Rebeca

We use Timed Rebeca language and its integrated model checker tool, Afra, to model and verify NRP FD.
For modeling NRP FD, we have used the description of the protocol and the diagrams provided in [10]
as well as several meetings with the industrial partners to clarify the details and choose the appropriate
level of abstraction, which we will discuss in the remainder of this section.

3.1 The actor-based language, Timed Rebeca

Rebeca (Reactive Object Language) [26, 22] is an actor-based language designed for modeling and for-
mal verification of reactive concurrent and distributed systems. Actors [8, 3] are units of concurrency. In
Rebeca models, reactive objects known as rebecs resemble actors with no shared variables, asynchronous
message passing, and unbounded message buffers. Each rebec has a single thread of execution. Commu-
nication with other rebecs is achieved by sending messages, and periodic behavior is executed by sending
messages to itself. Rebeca has no explicit receive statement, and its send statements are non-blocking.
Each rebec has variables, methods (message servers), and a dedicated message queue for received mes-
sages. How a rebec reacts to a message is specified in message servers. The rebec processes messages by
de-queuing from the top and executing the corresponding message server non-preemptively. The state of
a rebec can change during the execution of its message servers through assignment statements.

Rebeca is an imperative language with a syntax similar to Java. A Rebeca model consists of several
reactive classes and a main section. Each reactive class describes the type of a certain number of rebecs.
Rebecs (actors) are instantiated in the main block. While message queues in the semantics of Rebeca
are inherently unbounded, a user-specified upper bound for the queue size is necessary to ensure a finite
state space during model checking. Reactive classes include constructors, sharing the same name as the
class, responsible for initializing the actor’s state variables and placing initially required messages in the
actor’s message buffer.

Bjarne Johansson et al. 173

In this work, we use Timed Rebeca (the timed extension of Rebeca) [24, 12] with a global logical
time. Timed Rebeca considers synchronized local clocks for all actors throughout the model. Instead
of a message queue, Timed Rebeca uses a message bag in which messages carry their respective time
tags. The sender tags its local time to a message at the time of sending. Timed Rebeca introduces three
timing primitives: "delay," "after," and "deadline." A delay statement represents the passage of time
for an actor while executing a message server, i.e., it is used to model computation times. All other
statements are assumed to execute instantaneously. The keywords "after" and "deadline" are augmented
to a message send statement. The term "after(n)" means it takes n units of time for a message to reach
its receiver. Using the after construct, we can model network delay and periodic events. We can use a
nondeterministic assignment to n, and model nondeterministic arrival times for a message (event). The
term "deadline(n)" conveys that if the message is not retrieved within n units of time, there will be a
timeout. An abstract syntax of Timed Rebeca is provided in Appendix A. Timed Rebeca is extended
with priorities [25]. Priorities are assigned to rebecs and message handlers to control the order of their
execution and hence enhance the determinism of the system’s behavior [14]. If more than one actor or
event are enabled at the same time, then the model checker builds all the possible execution traces, using
priorities you can cut some of the branches.

3.2 Modeling NRP-FD in Timed Rebeca

We model Figure 4 using Timed Rebeca. The model is extensible meaning that the number of switches
and nodes can be increased. In the Timed Rebeca model each node and each switch is modeled as an
actor, their communication is modeled as message passing, and reactions to each message, signal, and
timed event are modeled using message servers. A Rebeca model includes reactive class definitions,
defining the behavior of the rebecs (actors) within the model. L11 illustrates some parts of the Timed
Rebeca model for NRP FD.

In the NRP-FD model, we have two different element types, Node and Switch. Each element type
is defined as a reactive class, Node (L1, line 10) and Switch (L1, line 40). Each reactive class has a
constructor. A constructor is a unique method which is called when the actor is instantiated. Initialization
of the variables is done in the constructor. We instantiate two nodes with ids 100 and 101 and six switches
(A1-A3 and B1-B3) in the main section (L1, lines 59-68). A node can be a primary or a backup, and a
switch can be a non-terminal switch (not connected to a DCN), an NRP candidate, or an NRP. Each node
has an NRP candidate (switch) for each network, i.e., switches A1 and B1 with ids 1 and 4, respectively
for DCN1 and switches A3 and B3 for DCN2 with ids 3 and 6, respectively (L1, lines 66-67). The
parameters in the instantiation statements are used to set different types and also pass other necessary
information to the constructor.

We select DCN1 with id 100 as the primary at the beginning of the algorithm (second parameter
in lines 66-67 of L1). There are two known rebecs in the reactive class Node, meaning it can send
messages to these rebecs. We have a method call in the constructor of the Node, i.e., runMe (L1, line
22). In runMe (L1, line 28) the DCN checks its state using the state variable mode and then serves
the corresponding behavior (L1, lines 30-34). Note that, the last line of runMe (L1, line 35) is a
self-call followed by an after with heartbeat_period as its parameter, modeling a periodic event, i.e.,
"runMe()a f ter(heartbeat_period);". It means that in every heartbeat_period (determined in the code
L1, line 1), runMe is executed. The heartbeat_period should be significantly larger than other timing
parameters. This is because all events must be handled during a heartbeat interval. Regarding timing

1We use L1, L2 and L3 to refer to Listing 1, Listing 2 and Listing 3, respectively.

174 Formal Verification of Consistency in Systems with Redundant Controllers

1 env int heartbeat_period = 1000;
2 env int max_missed_heartbeats = 2;
3 env int ping_timeout =500;
4 env int nrp_timeout = 500;
5 env byte NumberOfNetworks = 2;
6 env int switchA1failtime = 2500;
7 ...
8 env int networkDelay = 1;
9 env int networkDelayForNRPPing = 1;

10 reactiveclass Node (4){
11 knownrebecs {Switch out1, out2;}
12 statevars {...}
13 Node (int Myid, int Myprimary, int NRPCan1_id, int NRPCan2_id, int myFailTime) {
14 id = Myid;
15 NRPCandidates[0] =NRPCan1_id;
16 NRPCandidates[1] =NRPCan2_id;
17 NRP_network = -1;
18 primary = Myprimary;
19 mode = WAITING;
20 ...
21 if(myFailTime!=0) nodeFail() after(myFailTime);
22 runMe();
23 }
24 msgsrv new_NRP_request_timed_out(){...}
25 msgsrv ping_timed_out() {...}
26 msgsrv pingNRP_response(int mid){...}
27 msgsrv new_NRP(int mid,int prim, int mNRP_network, int mNRP_switch_id) {...}
28 msgsrv runMe(){
29 if(?(true,false)) nodeFail();
30 switch(mode){
31 case 0: //WAITING : ...
32 case 1: //PRIMARY : ...
33 case 2: //BACKUP : ...
34 case 3: //FAILED : ...
35 self.runMe() after(heartbeat_period);
36 }
37 msgsrv heartBeat(byte networkId, int senderid) {...}
38 msgsrv nodeFail(){...}
39 }
40 reactiveclass Switch(10){
41 knownrebecs {...}
42 statevars {...}
43 Switch (int myid, byte networkId, boolean endSwitch , Switch sw1, Switch sw2, int myFailTime) {
44 mynetworkId = networkId;
45 id = myid;
46 terminal=endSwitch;
47 amINRP = false;
48 failed = false;
49 switchTarget1 = sw1;
50 switchTarget2 = sw2;
51 ...
52 }
53 msgsrv switchFail(){ failed = true; amINRP=false;}
54 msgsrv pingNRP_response(int senderNode){...}
55 msgsrv pingNRP(int switchNode, int senderNode, int NRP) {...}
56 msgsrv new_NRP(int senderNode, int mNRP_network, int mNRP_switch_id) {...}
57 msgsrv heartBeat(byte networkId, int senderNode) {...}
58 }
59 main {
60 @Priority(1) Switch switchA1(DCN1):(1, 0, true , switchA2 , switchA2 , switchA1failtime);
61 @Priority(1) Switch switchA2(DCN1):(2, 0, false , switchA1 , switchA3 , switchA1failtime);
62 @Priority(1) Switch switchA3(DCN2):(3, 0, true , switchA2 , switchA2 , switchA3failtime);
63 @Priority(1) Switch switchB1(DCN1):(4, 1, true , switchB2 , switchB2 , switchB1failtime);
64 @Priority(1) Switch switchB2(DCN1):(5, 1, false , switchB1 , switchB3 , switchB1failtime);
65 @Priority(1) Switch switchB3(DCN2):(6, 1, true , switchB2 , switchB2 , switchB3failtime);
66 @Priority(2) Node DCN1(switchA1, switchB1):(100, 100, 1, 4, node1failtime);
67 @Priority(2) Node DCN2(switchA3, switchB3):(101, 100, 3, 6, node2failtime);
68 }

Listing 1: (L1) An abstracted version of the Timed Rebeca model of NRP FD (Full version in Ap-
pendix C).

Bjarne Johansson et al. 175

parameters in modeling, we carefully consider values so that the model matches the reality. We will
discuss more on timing in the following.

PRIMARY BACKUP

FAILED

WAITING
Primary role acknowledged

No pingNRP answer &
NRP change not possible

Error acknowledged manually

(Heartbeat timeout & pingNRP answer) || (Simultaneous heartbeat timeout)

Backup role acknowledged
Startup

Heartbeat received

Figure 5: Different modes of a DCN in NRP FD in the Rebeca model. WAIT ING is the initial mode. The
node transitions from WAIT ING to PRIMARY or BACKUP based on the value passed to its constructor.
From PRIMARY , it moves to FAILED if after sending a pingNRP it receives no response from NRP
within the deadline, and it cannot change the NRP either. In the BACKUP state, the node transitions
to PRIMARY if the heartbeat timeouts and pingNRP detects a responsive NRP, or when the heartbeat
timeout occurs simultaneously for both networks. In the latter case the backup node assumes that the
primary node failed, because it is unlikely that there is a failure in both networks. The node stays in
BACKUP mode as long as it is receiving heartbeats. It remains in FAILED until the situation is resolved
manually.

In NRP FD, DCNs have four modes, WAIT ING, BACKUP, PRIMARY , and FAILED, as detailed
in the diagram in Figure 5. In the Rebeca model, we set the initial mode of DCN to WAIT ING in the
constructor of Node, L1, line 19. We pass the primary id to both nodes and in the WAIT ING mode the
variable denoting the role is set accordingly, and an NRP is announced.

In the PRIMARY mode, the primary DCN tests the NRP reachability with pingNRP, i.e., sends
message pingNRP to the NRP which then is served using the message server pingNRP (L1, line 55). In
a real system, the pingNRP could be realized with an Internet Control Message Protocol (ICMP) echo
(commonly known as ping) or another suitable protocol depending on the NRP’s capabilities. If the NRP
fails to respond, the primary announce a new NRP, assuming alternatives are available (using new_NRP
message server, L1, line 56). After assuring that an NRP exists, the primary DCN sends heartbeats. If
there is no available NRP, the primary transition to the FAILED mode (ping_timed_out in L1, line 25).

In the BACKUP mode, the DCN expects heartbeats from the primary. The heartbeat period and
tolerance limits (i.e., the number of missed heartbeats before a timeout is declared) must be carefully set
to minimize false positives due to transient disturbances. Given that typical DCN redundancy involves
two disjoint network paths, a heartbeat is expected on each network path per period. Simultaneous
timeouts on all paths likely indicate a primary failure rather than failure of both networks. Thus, NRP
FD offers an optimization: transitioning directly to the PRIMARY mode upon simultaneous heartbeat
timeouts, bypassing the pingNRP exchange. However, this optimization slightly increases the risk of
dual primaries. This is a bug that model checking catches. The number of maximum missed heartbeats
is set to 2 (max_missed_heartbeat in L1, line 2). L2, shows the BACKUP part of the message server
runMe. The variables heartbeats_missed_1 and heartbeats_missed_2 are counters for heartbeats on
the two networks which will increase at each period, and is reset to zero when a heartbeat is received.

176 Formal Verification of Consistency in Systems with Redundant Controllers

The backup DCN counts consecutive heartbeats_missed for each network. If both counters exceed the
defined limit of max_missed_heartbeat (L2, line 4), the backup detects a failure and sends a pingNRP
to the NRP to verify its reachability. If the NRP is reachable, the DCN transitions from BACKUP to the
PRIMARY state (in ping_timed_out, L1, line 25).

In the FAILED mode, NRP FD awaits the acknowledgment that manually confirms the resolution of
the issues that triggered the transition to FAILED.

1 case 2: //BACKUP :
2 heartbeats_missed_1++;
3 heartbeats_missed_2++;
4 if (heartbeats_missed_1 > max_missed_heartbeats && heartbeats_missed_2 > max_missed_heartbeats){
5 if(heartbeats_missed_1==heartbeats_missed_2 && heartbeats_missed_2==max_missed_heartbeats+1){
6 mode = PRIMARY;
7 primary=id;
8 ...
9 }else{

10 heartbeats_missed_1 =
(heartbeats_missed_1>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_1;↪→

11 heartbeats_missed_2 =
(heartbeats_missed_2>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_2;↪→

12 if(NRP_network==0){
13 ping_pending = true;
14 NRP_network=-1;
15 out1.pingNRP(id, NRP_switch_id) after(5);
16 ping_timed_out() after(ping_timeout);
17 }else{ ... // the other network }
18 NRP_pending = true;
19 }
20 }
21 else if(heartbeats_missed_1 > max_missed_heartbeats || heartbeats_missed_2 >

max_missed_heartbeats){...}↪→

Listing 2: (L2) The behavior of a DCN in BACKUP mode, in the message server runMe (full version is
provided in Appendix C).

Accuracy of the model. Based on the real situation, we consider the topology and the way the DCNs
interact with each other. The rationale for tolerating up to two lost heartbeats (max_missed_heartbeats=
2) is based on the low bit error rate of gigabit Ethernet and the ability of a heartbeat message to fit within
a standard 1500-byte Ethernet frame. This suggests a low likelihood of losing heartbeat messages, espe-
cially across two disjoint networks, thus minimizing the risk of false positives due to regular disturbances.
The heartbeat_period, combined with max_missed_heartbeats, determines the reaction time - the du-
ration from the occurrence of a primary failure to the point at which the backup takes over the primary
role. The takeover time requirement varies by domain; for process control, a maximum of 500 millisec-
onds is tolerable, as suggested by Hegazy et al. [7]. System manuals indicate feasible heartbeat periods
are in the tens of milliseconds range[20, 18]. Regarding propagation and pingNRP response times, the
propagation of a full-sized Ethernet frame on Gigabit Ethernet is about 12 microseconds, negligible com-
pared to the heartbeat period. The NRP’s response time is implementation-dependent, potentially under
a millisecond. If ICMP ping is employed, a few milliseconds response times are achievable [10]. We’ve
defined the heartbeat_period as 1000 time units and set the ping_timeout and nrp_timeout to 500 time
units. We also consider networkDelay and networkDelayForNRPPing as 1 unit of time. We use the
keyword a f ter when DCNs ping the NRP node and set it to 5 units of time. These values are chosen to
be approximately close to the actual values and preserve the sequence of the messages. Therefore, they
may vary, for instance, to a greater or lesser extent. But all timing events should be handled within one

Bjarne Johansson et al. 177

period, 1000 time units in our model. We used the a f ter construct where we needed to respect the order
of execution.

4 Model checking of NRP FD using Afra

We can define our desired properties using assertions in a separate file in Afra and perform model check-
ing. A snapshot of Afra is provided in Appendix B. The main safety property, "NoDualPrimary," is
shown in L3. This property is set to recognize the dual primary state, i.e., in no state the modes of the
two DCNs are both primary. We first define a set of atomic propositions, and then the assertions based
on these propositions. Timed Rebeca has a TCTL model checking but it is not integrated in Afra. In
many cases, looking at the visualization of the state space helps us see the problems with the algorithm.

1 property {
2 define {
3 DCN1Primary = (DCN1.mode ==1);
4 DCN2Primary = (DCN2.mode ==1);
5 }
6 Assertion{ NoDualPrimary:!(DCN1Primary && DCN2Primary); }}

Listing 3: The safety property "NoDualPrimary" for NRP FD.

For model checking, we consider the regular system behaviour, and scenarios where we have failures
of DCNs and switches. We examine all the possible failure combinations of DCNs and switches at the
start of handling an event, and perform model checking to provide a comprehensive analysis. We have
modeled failures in three scenarios each of which can have different cases:
1. Failures on each event. In this scenario, we add the following commands at the beginning of each
message server for DCNs and switches, simulating the possibility of their failure. Since this scenario
models the failure where an event should be handled, we refer to it as event-based. The expression
"?(true, f alse)" represents a nondeterministic choice between true and false. When the value true is
chosen then a variable is set, this variable is checked in the beginning of the messages servers and if it is
set the message server is not executed.

//Possible failure for a DCN:
if(?(true,false)) nodeFail();
//Possible failure for a Switch:
if(?(true,false)) switchFail();

2. Failures that occur at specific times. We define a set of variables to model the failure of different
DCNs and switches at specific times. By manipulating these variables, we can model various combina-
tions of DCN and switch failures at different times across multiple model checking runs.

env int switch1failtime = 0; env int switch2failtime = 2500; env int switch3failtime = 0;
env int switch4failtime = 2500;
env int node1failtime = 0; env int node2failtime = 0;
..
//Failure of a DCN at a specific point of time. Value zero means no failure.
if(myFailTime!=0) nodeFail() after(myFailTime);
...
//Failure of a Switch at a specific point of time. Value zero means no failure.
if (myFailTime!=0) switchFail() after(myFailTime);

3. Transient failures. These failures could occur, for example, if an attacker deliberately drops the
heartbeats for more than the maximum allowed misses (max_missed_heartbeats) on both networks.

178 Formal Verification of Consistency in Systems with Redundant Controllers

Subsequently, the backup DCN, upon detecting missed heartbeats, checks the NRP. If the NRP is reach-
able, it becomes the primary, assuming that the primary has failed, resulting in a dual-primary situation.
So we model a transient failure where both heartbeats are missed. Part (not all) of the code for this
scenario is the following, which states that only if we do not have an attacker, then the heartbeats will be
sent.

if(attacker<1){
out1.heartBeat(0, id) after(networkDelay);
out2.heartBeat(1, id) after(networkDelay);

}
Table 1 illustrates the scenarios we have considered and checked. Number of states and transitions are

also reported. Note that in the cases where the the assertion is violated, model checking is stopped after
reaching a counter example. Case 1 is the case with no failure. Case 2 is the event-based failure scenario
where we investigate all combinations of failures for any DCN or switch, where they stop reacting to
the events. Cases 3 to 5 consider failures at time 2500 for DCN1, switchA1 and switchA3, respectively.
This number is intended to go through a full round of algorithm execution, with two heartbeats. We have
considered case 3 for the PRIMARY failure as DCN1 is initially set as the primary DCN. We also consider
cases 4, 6, and 7 as failures of switches A1 and B1 can cause the primary DCN to be disconnected from
the networks. Case 5 is also considered to model a situation where the backup cannot ping the NRP. Case
8 is modeling the transient error. There are three cases where the model violates the property.

Table 1: Different test scenarios, without any failures, and with different types of failures

Case Configuration for failures Result no. of states and transitions
1 Without failure ✓ 38, 49
2 Failures on each event ✗ 3539, 4677
3 DCN1 fails at time 2500 ✓ 113, 138
4 switchA1 fails at time 2500 ✓ 114, 134
5 switchA3 fails at time 2500 ✓ 146, 179
6 switchA1 fails at time 2500 and switchB1 at time 3500 ✓ 187, 223
7 switchA1 and switchB1 fails simultaneously at time 2500 ✗ 70, 88
8 Heartbeats are missing because of transient errors ✗ 35, 42

Afra generates a counter-example in cases of any violation (here for cases 2, 7 and 8 of Table 1). We
can explore the states in the counter-example and see the value of the state variables in each of them.
A snapshot of the state space showing the dual primary situation for the case 7 is depicted in Figure 8
of Appendix D. These cases may be rare situations in reality, but in formal verification we detect and
eliminate the corner cases. To overcome these issues, we provide an extension for NRP FD, which will
be described next.

4.1 Leasing NRP FD

To address failure issues, we provide an enhanced NRP FD version called Leasing NRP FD. First, we
remove the optimization, i.e., transitioning directly from BACKUP to the PRIMARY mode upon simul-
taneous heartbeat timeouts, bypassing the NRPPing exchange (L2, lines 5-9).

While NRP FD prioritizes consistency, even without optimization, there remains a non-zero prob-
ability of failure. The heartbeat and pingNRP messages are separate: the heartbeat indicates whether
the primary is alive, and the pingNRP informs the backup about its separation from the NRP or the
NRP’s failure. Since these messages are distinct and can be independently disrupted, it’s theoretically
possible, as indicated by verification, that a temporary disturbance might disrupt the heartbeats. This

Bjarne Johansson et al. 179

disruption could lead the backup to believe the primary has failed, and upon a successful pingNRP fol-
lowing the transient disturbance, it might erroneously become the PRIMARY , even while the other DCN
remains primary. To address this vulnerability, we introduce the Leasing NRP FD, where the primary
role is ’leased’ from the NRP. This leasing can be implemented in various ways. In our model, the NRP
timestamps the latest pingNRP from the primary, and then the backup checks this timestamp. Full ver-
sion of Leasing NRP FD is provided in Appendix C and also on the Rebeca GitHub page2. Even with
a low probability of dual primary occurrences in the original NRP FD, this inherent algorithmic trait
could lead to nondeterministic behavior, which is unacceptable in safety-critical solutions. Thus, there’s
a need for algorithms like Leasing NRP FD, which eliminate such violations and are more suitable for
safety-critical systems. For this new algorithm, Afra created 15891 states, and 34053 transitions, and the
assertion is satisfied.

5 Why Timed Rebeca?

In [23], Sirjani argues that when selecting a modeling language, expressiveness is a key factor, but
faithfulness to the system being modeled and usability for the modeler are equally crucial. Faithfulness
is about how similar the model and the system are. It determines if and how the structures and features
supported by the modeling language match with the requirements of the system’s domain. Faithfulness
makes reusability possible, also in cases gives us better analyzability and traceability. Usability concerns
the modeler, and how swiftly the modeler can use the language. These two aspects together are called as
friendliness in [23].

Timed Rebeca is a language for modeling asynchronous communication in distributed systems, in-
corporating a focus on time-related aspects. Regarding faithfulness, actors are units of concurrency like
the controllers and switches in our case study. Timed Rebeca is event-driven, taking messages/events
from the message/event bags and executing their corresponding message servers. Timed Rebeca is used
for modeling and verification in many domains including different network protocols, schedulability in
sensor networks and Network on Chip (NoC) [23]. Considering our problem in the domain of distributed
control systems, Timed Rebeca provides a natural mapping of structures, features, and flow of control
for our purpose such as modeling the topology of the network, behavior of the DCNs and switches based
on their roles, the way they communicate using message passing, progress of time required for handing
a message, network delay, and periodic events using primitive timing keywords. Message queues/buffer
are not explicit and the modeler does not need to manage them. Timing concept is intuitive, and you
model the behavior from the perspective of each actor.

Regarding usability, it has a structure like a programming language, hence, it is easy for programmers
to use. Debugging can be done based on the counterexamples and going through the model checking
process iteratively. Timed Rebeca is supported by an Eclipse IDE called Afra [11]. Afra provides a
model checker tool for the family of Rebeca languages. The modeler enters the model and the properties
in separate files, then model check and debug the model in Afra. Timed models result in an infinite
number of states in the state space due to the progress of time, leading to unbounded transition systems.
A shift-equivalence relation is introduced for Timed Rebeca in [12, 13] to ensure a bounded state space.
Afra utilizes this relation to generate the state space including local actor states and logical time. Desired
properties can be written as assertions in a separate file in Afra. In case of violation, a counter-example
is shown visually alongside the model which gives us the ability to traverse and check the values of
the actors’ variables. As the state space is provided in an XML file, it is also possible to have a visual

2https://github.com/rebeca-lang

180 Formal Verification of Consistency in Systems with Redundant Controllers

representation of the entire state space (see an example in Figure 8, App. D). All the above gives us a
natural and easy way to model our system, and also provide us analzability and traceability.

6 Related work

Control systems evolve from hierarchical, controller-centric structures toward a flatter, network-centric
architecture, enhancing interconnectivity and facilitating communication with cloud services and edge
devices [4, 16]. These advancements have been leveraged for fault tolerance—employing backup DCNs
in the cloud or orchestrators to recover from DCN failures [7, 9]. To our knowledge, the NRP FD
algorithm is the first effort to reduce the CAP theorem’s [6] availability tradeoff while preserving con-
sistency in DCN redundancy scenarios [10]. The tradeoff mandated by the CAP theorem is evident in
today’s redundant DCN systems. Control system user manuals concretize the tradeoff with the different
approaches described, which either strive to maintain consistency or prioritize availability upon redun-
dancy link failure [20, 18]. Fault tolerance is ensured using duplicate links, as depicted in Figure 1.
With duplicated links, consistency can be prioritized by disabling DCN redundancy if one link fails [20].
However, a dual primary situation arises if both links fail simultaneously. Vice versa, availability is pri-
oritized by not disabling redundancy upon one link failure [18]. The Leasing NRP FD version assures
consistency by maintaining a single primary in all failure scenarios.

Appointing a primary is a leader election problem, and various leader election algorithms exist, such
as the well-known Bully algorithm [5]. However, the Bully algorithm, and variants thereof, elects mul-
tiple leaders in networking partitioning situations, one leader per partition. Alternatively, consensus
protocols like Raft and Paxos require a majority [17, 15], ensuring consistency even when partitions
occur, as only the majority-containing partition progresses. However, the most common DCN redun-
dancy configurations, typically comprising a primary and a backup, do not allow a majority to form in
the event of a partition separating the DCNs [21]. The NRP FD method introduces the NRP that, in
combination with a DCN, establishes a majority [10]. The NRP could be as simple as a layer two net-
work switch responding to an ICMP Ping, providing a means to favor consistency over availability. This
paper describes the modeling and verification of the NRP FD strategy, along with a novel, lightweight
enhancement ensuring a single primary, i.e., guaranteeing that consistency is preserved due to more than
one DCN taking the primary role. The algorithm is being extended in different directions, considering
different configurations and features. Our aim is to enrich our model align with the extensions of NRP
FD, when the extensions are available.

7 Conclusion and Future Work

In this paper we describe the process of modeling and formal verification of NRP FD protocol which
is used for preserving consistency in DCN redundancy scenarios using Timed Rebeca and Afra. We
investigate different failure scenarios and identify situations where network partitioning can lead to a
dual primary. We propose an extension, Leasing NRP FD, which preserves consistency and ensures ro-
bustness against different failures. For future research, we focus on the extensibility and flexibility of
the proposed protocol including the exploration of a dynamic network topology, multiple backups and
multiple primaries. The latter could be a redundancy plan with a single backup for multiple primaries,
each with different and unique characteristics such as specific heartbeat time and network delay. Ad-
ditionally, we aim to incorporate probability considerations rather than just focusing on the possibility

Bjarne Johansson et al. 181

(of failures). As another future direction, we plan to investigate the availability trade-off. While NRP-
FD prioritizes consistency, this may result in compromising availability. Quantifying this trade-off is a
potential direction for further research.

Acknowledgment

We acknowledge the support of the Swedish Knowledge Foundation via the synergy project SACSys
(Safe and Secure Adaptive Collaborative Systems) and the Profile DPAC (Dependable Platforms for
Autonomous Systems and Control). We also acknowledge the support of the Swedish Foundation for
Strategic Research (SSF) via the Serendipity project.

References

[1] AC 800M High Integrity. https://new.abb.com/control-systems/safety-systems/
system-800xa-high-integrity/ac-800m-hi-controller. Accessed: 2024-03-07.

[2] The DCS of Tomorrow - ABB’s Process Automation System Vision
Whitepaper. https://new.abb.com/control-systems/control-systems/
envisioning-the-future-of-process-automation-systems/automation-system-whitepaper.
Accessed: 2024-03-07.

[3] Gul Agha (1986): Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cam-
bridge, MA, USA, doi:10.7551/mitpress/1086.001.0001.

[4] Johan Åkerberg, Johan Furunäs Åkesson, Jorgen Gade, Maryam Vahabi, Mats Björkman, Mehrzad
Lavassani, Rahul Nandkumar Gore, Thomas Lindh & Xiaolin Jiang (2021): Future industrial networks
in process automation: Goals, challenges, and future directions. Applied Sciences 11(8), p. 3345,
doi:10.3390/app11083345.

[5] H. Garcia-Molina (1982): Elections in a Distributed Computing System. IEEE Trans. Comput. 31(1), pp.
48–59, doi:10.1109/TC.1982.1675885.

[6] Seth Gilbert & Nancy Lynch (2002): Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. Acm Sigact News 33(2), pp. 51–59, doi:10.1145/564585.564601.

[7] T. Hegazy & M. Hefeeda (2015): Industrial Automation as a Cloud Service. IEEE Trans. Par. and Distr. Syst.
26(10), pp. 2750–2763, doi:10.1109/TPDS.2014.2359894.

[8] Carl Hewitt, Peter Bishop & Richard Steiger (1973): A universal modular actor formalism for artificial
intelligence. In: Proceedings of the 3rd international joint conference on Artificial intelligence, Morgan
Kaufmann Publishers Inc., pp. 235–245. Available at http://ijcai.org/Proceedings/73/Papers/
027B.pdf.

[9] Bjarne Johansson, Mats Rågberger, Thomas Nolte & Alessandro V Papadopoulos (2022): Kubernetes or-
chestration of high availability distributed control systems. In: IEEE Int. Conf. on Ind. Tech. (ICIT),
doi:10.1109/ICIT48603.2022.10002757.

[10] Bjarne Johansson, Mats Rågberger, Alessandro Papadopoulos & Thomas Nolte (2023): Consis-
tency Before Availability: Network Reference Point based Failure Detection for Controller Redun-
dancy. In: 28th International Conference on Emerging Technologies and Factory Automation, pp. 1–8,
doi:10.1109/ETFA54631.2023.10275664.

[11] Ehsan Khamespanah, Marjan Sirjani & Ramtin Khosravi (2023): Afra: An Eclipse-Based Tool with Exten-
sible Architecture for Modeling and Model Checking of Rebeca Family Models. In Hossein Hojjat & Erika
Ábrahám, editors: Fundamentals of Software Engineering, Springer Nature Switzerland, Cham, pp. 72–87,
doi:10.1007/978-3-031-42441-0_6.

https://new.abb.com/control-systems/safety-systems/system-800xa-high-integrity/ac-800m-hi-controller
https://new.abb.com/control-systems/safety-systems/system-800xa-high-integrity/ac-800m-hi-controller
https://new.abb.com/control-systems/control-systems/envisioning-the-future-of-process-automation-systems/automation-system-whitepaper
https://new.abb.com/control-systems/control-systems/envisioning-the-future-of-process-automation-systems/automation-system-whitepaper
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.3390/app11083345
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/TPDS.2014.2359894
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1109/ICIT48603.2022.10002757
https://doi.org/10.1109/ETFA54631.2023.10275664
https://doi.org/10.1007/978-3-031-42441-0_6

182 Formal Verification of Consistency in Systems with Redundant Controllers

[12] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi-Kaviani, Ramtin Khosravi & Mohammad-Javad Izadi
(2015): Timed Rebeca schedulability and deadlock freedom analysis using bounded floating time transition
system. Science of Computer Programming 98, pp. 184–204, doi:10.1016/j.scico.2014.07.005.

[13] Ehsan Khamespanah, Marjan Sirjani, Mahesh Viswanathan & Ramtin Khosravi (2015): Floating time tran-
sition system: more efficient analysis of timed actors. In: Formal Aspects of Component Software, Springer,
pp. 237–255, doi:10.1007/978-3-319-28934-2_13.

[14] Ramtin Khosravi, Ehsan Khamespanah, Fatemeh Ghassemi & Marjan Sirjani (2024): Actors Upgraded for
Variability, Adaptability, and Determinism. In: Workshop on State-of-the-Art of Active Objects, pp. 226–
260, doi:10.1007/978-3-031-51060-1_9.

[15] Leslie Lamport (2001): Paxos Made Simple. ACM SIGACT News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001), pp. 51–58. Available at https://www.microsoft.com/en-us/
research/publication/paxos-made-simple/.

[16] Björn Leander, Bjarne Johansson, Tomas Lindström, Olof Holmgren, Thomas Nolte & Alessandro V Pa-
padopoulos (2023): Dependability and Security Aspects of Network-Centric Control. In: 2023 IEEE
28th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, pp. 1–
8, doi:10.1109/ETFA54631.2023.10275344.

[17] Diego Ongaro & John Ousterhout (2014): In search of an understandable consensus algorithm. In: 2014
USENIX annual technical conference (USENIX ATC 14), pp. 305–319. Available at https://www.
usenix.org/conference/atc14/technical-sessions/presentation/ongaro.

[18] PACSys (2023): PACSystems™ RX3i Hot Standby CPU Redundancy.
https://emerson-mas.my.site.com/communities/en_US/Documentation/
PACSystems-Hot-Standby-CPU-Redundancy-Users-Manual. Accessed: 2024-03-07.

[19] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler & Theo Ungerer (2007): A new Adaptive Accrual
Failure Detector for Dependable Distributed Systems. In: In ACM Symposium on Applied Computing (SAC
2007, pp. 551–555, doi:10.1145/1244002.1244129.

[20] Siemens (2024): Siemens System Manual S7-1500R/H redundant system. https://cache.industry.
siemens.com/dl/files/833/109754833/att_965668/v3/s71500rh_manual_en-US_en-US.pdf.
Accessed: 2024-03-07.

[21] Andrei Simion & Calin Bira (2023): A review of redundancy in PLC-based systems. Advanced Topics in
Optoelectronics, Microelectronics, and Nanotechnologies XI 12493, pp. 269–276, doi:10.1117/12.2644462.

[22] Marjan Sirjani (2006): Rebeca: Theory, Applications, and Tools. In Frank S. de Boer, Marcello M. Bon-
sangue, Susanne Graf & Willem P. de Roever, editors: Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006, Revised Lec-
tures, Lecture Notes in Computer Science 4709, Springer, pp. 102–126, doi:10.1007/978-3-540-74792-5_5.

[23] Marjan Sirjani (2018): Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness, and Usability
in Modeling: The Actor Experience. In Marten Lohstroh, Patricia Derler & Marjan Sirjani, editors: Principles
of Modeling - Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science 10760, Springer, pp. 423–448, doi:10.1007/978-3-319-95246-8_25.

[24] Marjan Sirjani & Ehsan Khamespanah (2016): On Time Actors. In Erika Ábrahám, Marcello M. Bonsangue
& Einar Broch Johnsen, editors: Theory and Practice of Formal Methods, Lecture Notes in Computer Science
9660, Springer, pp. 373–392, doi:10.1007/978-3-319-30734-3_25.

[25] Marjan Sirjani, Edward A. Lee & Ehsan Khamespanah (2020): Verification of Cyberphysical Systems. Math-
ematics 8(7), doi:10.3390/math8071068.

[26] Marjan Sirjani, Ali Movaghar & MohammadReza Mousavi (2001): Compositional Verification of an Object-
Based Model for Reactive Systems. In: AVoCS 2001. Available at https://rebeca-lang.org/assets/
papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf.

https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1007/978-3-319-28934-2_13
https://doi.org/10.1007/978-3-031-51060-1_9
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1109/ETFA54631.2023.10275344
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://emerson-mas.my.site.com/communities/en_US/Documentation/PACSystems-Hot-Standby-CPU-Redundancy-Users-Manual
https://emerson-mas.my.site.com/communities/en_US/Documentation/PACSystems-Hot-Standby-CPU-Redundancy-Users-Manual
https://doi.org/10.1145/1244002.1244129
https://cache.industry.siemens.com/dl/files/833/109754833/att_965668/v3/s71500rh_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/833/109754833/att_965668/v3/s71500rh_manual_en-US_en-US.pdf
https://doi.org/10.1117/12.2644462
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-319-95246-8_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.3390/math8071068
https://rebeca-lang.org/assets/papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf
https://rebeca-lang.org/assets/papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf

Bjarne Johansson et al. 183

[27] Jacek Stój (2020): Cost-effective hot-standby redundancy with synchronization using EtherCAT and real-
time ethernet protocols. IEEE Transactions on Automation Science and Engineering 18(4), pp. 2035–2047,
doi:10.1109/TASE.2020.3031128.

A Rebeca Syntax

An abstract syntax of Timed Rebeca is provided in Figure 6.

Figure 6: An abstract syntax for Timed Rebeca. The identifiers className, rebecName, methodName,
literal and type are self-explanatory. The identifier v denotes a variable. The symbol e denotes an
expression, which can be either arithmetic, boolean or a non-deterministic choice. Angular brackets ⟨...⟩
serve as meta-parenthesis, with superscript + denoting at least one repetition and superscript ∗ denoting
zero or more repetitions. Meanwhile, the use of ⟨...⟩ with repetition indicates a comma-separated list.
Square brackets [...] indicate that the enclosed text is optional [23].

https://doi.org/10.1109/TASE.2020.3031128

184 Formal Verification of Consistency in Systems with Redundant Controllers

B Afra

A snapshot of Afra is provided in Figure 7. The state space statistics are shown in the bottom middle.
The generated counterexample is shown in the top right of the panel. At the bottom right, we can see the
value of the state variables in each selected state from the counterexample.

Figure 7: A snapshot of Afra.

C Timed Rebeca model of the Leasing NRP FD

In the following the Timed Rebeca model of the Leasing NRP FD is provided.

Bjarne Johansson et al. 185

1 env int heartbeat_period = 1000;
2 env int max_missed_heartbeats = 2;
3 env int ping_timeout =100;
4 env int nrp_timeout = 100;
5 // Node Modes
6 env byte WAITING = 0;
7 env byte PRIMARY = 1;
8 env byte BACKUP = 2;
9 env byte FAILED = 3;

10 env byte NumberOfNetworks = 2;
11

12 env byte MAX_SWITCHES = 99;
13 // for testing
14 env int fails_at_time = 0; //zero for no failure
15

16 env int switchA1failtime = 0;
17 env int switchA2failtime = 0;
18 env int switchA3failtime = 0;
19 env int switchB1failtime = 0;
20 env int switchB2failtime = 0;
21 env int switchB3failtime = 0;
22

23 env int node1failtime = 0;
24 env int node2failtime = 0;
25

26 env int networkDelay = 1;
27 env int networkDelayForNRPPing = 1;
28

29 reactiveclass Node (4){
30 knownrebecs {
31 Switch out1, out2;
32 }
33 statevars {
34 byte mode;
35 int id;
36 int [2] NRPCandidates;
37 int heartbeats_missed_1;
38 int heartbeats_missed_2;
39 int NRP_network;
40 int attacker;
41 int which;
42 boolean prevWhich;
43 int NRP_switch_id;
44 boolean NRP_pending;
45 boolean become_primary_on_ping_response;
46 int primary;
47 boolean ping_pending;
48 boolean init;
49 }
50 Node (int Myid, int Myprimary, int NRPCan1_id, int NRPCan2_id, int myFailTime) {
51 id = Myid;
52 attacker = 0;
53 which=0;
54 prevWhich=true;
55 NRPCandidates[0] =NRPCan1_id;
56 NRPCandidates[1] =NRPCan2_id;
57 heartbeats_missed_1 = 0;
58 heartbeats_missed_2 = 0;
59 NRP_network = -1;
60 NRP_switch_id = -1;
61 NRP_pending = true;
62 become_primary_on_ping_response = false;
63 primary = Myprimary;
64 ping_pending = false;
65 init=true;
66

67 mode = WAITING;
68 if(myFailTime!=0) nodeFail() after(myFailTime);
69 runMe();
70 }

186 Formal Verification of Consistency in Systems with Redundant Controllers

71 msgsrv new_NRP_request_timed_out() {
72 // if(?(true,false)) nodeFail();
73 if (mode == BACKUP) {
74 if (NRP_pending) {
75 NRP_pending = false;
76 if (become_primary_on_ping_response)
77 become_primary_on_ping_response = false;
78 }
79 }
80 }
81 // logical action ping_timed_out(ping_timeout)
82 msgsrv ping_timed_out() {
83 // if(?(true,false)) nodeFail();
84 if (mode == BACKUP) {
85 if (ping_pending) ping_pending = false;
86 else{
87 if(which>1){
88 mode = PRIMARY;
89 heartbeats_missed_1 = 0;
90 heartbeats_missed_2 = 0;
91 primary=id;
92 if(NRP_network==0) out1.new_NRPBack(id, id,NRP_network, NRP_switch_id);
93 else out2.new_NRPBack(id,id, NRP_network, NRP_switch_id);
94 mode = PRIMARY;
95 heartbeats_missed_1 = 0;
96 heartbeats_missed_2 = 0;
97 primary=id;
98 NRP_pending = true;
99 }else NRP_pending = true;

100 }
101 }else if (mode == PRIMARY){
102 if (ping_pending){
103 NRP_network++;
104 if(NRP_network<NumberOfNetworks){
105 NRP_switch_id = NRPCandidates[NRP_network];
106 if(NRP_network==0) out1.new_NRP(id, id,NRP_network, NRP_switch_id);
107 else out2.new_NRP(id,id, NRP_network, NRP_switch_id);
108 } else {
109 NRP_network=NumberOfNetworks;
110 mode= WAITING;
111 }
112 NRP_pending = true;
113 } else{
114 if(attacker<1){
115 out1.heartBeat(0, id) after(networkDelay);
116 out2.heartBeat(1, id) after(networkDelay);
117 }
118 }
119 }
120 }
121 msgsrv pingNRP_response(int mid, boolean w, boolean pw){
122 // if(?(true,false)) nodeFail();
123 if (mode==WAITING);
124 else if (mode == BACKUP){
125 if(!w && !pw) which++;
126 else which=0;
127 if(which>1)
128 ping_pending = false;
129 }
130 else if (mode == PRIMARY)
131 ping_pending = false;
132 else if (mode==FAILED);
133 }
134 msgsrv new_NRP(int mid,int prim, int mNRP_network, int mNRP_switch_id) {
135 // if(?(true,false)) nodeFail();
136 if(mode!= FAILED){
137 NRP_network = mNRP_network;
138 NRP_switch_id = mNRP_switch_id;
139 }
140 }

Bjarne Johansson et al. 187

141 msgsrv new_NRPBack(int mid,int prim, int mNRP_network, int mNRP_switch_id) {
142 // if(?(true,false)) nodeFail();
143 if(mode!= FAILED){
144 NRP_network = mNRP_network;
145 NRP_switch_id = mNRP_switch_id;
146 }
147 }
148 msgsrv runMe(){
149 switch(mode){
150 case 0: //WAITING :
151 if(init){
152 if (id == primary){
153 mode = PRIMARY;
154 NRP_network++;
155 if(NRP_network<NumberOfNetworks){
156 NRP_switch_id = NRPCandidates[NRP_network];
157 if(NRP_network==0)out1.new_NRP(id,id, NRP_network, NRP_switch_id);
158 else out2.new_NRP(id,id, NRP_network, NRP_switch_id);
159 } else NRP_network=NumberOfNetworks;
160 } else mode =BACKUP;
161 init=false;
162 }
163 break;
164 case 1: //PRIMARY :
165 attacker++;
166 if(attacker>1) attacker=1;
167 if(NRP_network==0){
168 ping_pending = true;
169 out1.pingNRP(id,id, NRP_switch_id) after(5);
170 ping_timed_out() after(ping_timeout);
171 }else{
172 ping_pending = true;
173 out2.pingNRP(id,id, NRP_switch_id) after(5);
174 ping_timed_out() after(ping_timeout);
175 }
176 NRP_pending = true;
177 break;
178 case 2: //BACKUP :
179 heartbeats_missed_1++;
180 heartbeats_missed_2++;
181 if (heartbeats_missed_1 > max_missed_heartbeats && heartbeats_missed_2 >

max_missed_heartbeats){↪→
182 heartbeats_missed_1 =

(heartbeats_missed_1>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_1;↪→
183 heartbeats_missed_2 =

(heartbeats_missed_2>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_2;↪→
184 // if(heartbeats_missed_1==heartbeats_missed_2 &&

heartbeats_missed_2==max_missed_heartbeats+1){↪→
185 // mode = PRIMARY;
186 // heartbeats_missed_1 = 0; // Prevent detecting again immediately.
187 // heartbeats_missed_2 = 0;
188 // primary=id;
189 // NRP_pending = true;
190 // }else{
191 if(NRP_network==0){
192 ping_pending = true;
193 //NRP_network=-1;
194 out1.pingNRP(id,id, NRP_switch_id) after(15);
195 ping_timed_out() after(ping_timeout);
196 }else{
197 ping_pending = true;
198 //NRP_network=-1;
199 out2.pingNRP(id,id, NRP_switch_id) after(15);
200 ping_timed_out() after(ping_timeout);
201 }
202 NRP_pending = true;
203 // }
204 }else if(heartbeats_missed_1 > max_missed_heartbeats|| heartbeats_missed_2 >

max_missed_heartbeats){↪→
205 if(NRP_network==0 && heartbeats_missed_1 > max_missed_heartbeats) {

188 Formal Verification of Consistency in Systems with Redundant Controllers

209 ping_pending = true;
210 out1.pingNRP(id,id, NRP_switch_id) after(5);
211 ping_timed_out() after(ping_timeout);
212 }else if(NRP_network==1 && heartbeats_missed_2 > max_missed_heartbeats){
213 ping_pending = true;
214 out2.pingNRP(id,id, NRP_switch_id) after(5);
215 ping_timed_out() after(ping_timeout);
216 }
217 heartbeats_missed_1 =

(heartbeats_missed_1>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_1;↪→
218 heartbeats_missed_2 =

(heartbeats_missed_2>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_2;↪→
219 }
220 break;
221 case 3: //FAILED :
222 break;
223 }
224 self.runMe() after(heartbeat_period);
225 }
226 msgsrv heartBeat(byte networkId, int senderid) {
227 // if(?(true,false)) nodeFail();
228 if (mode==BACKUP){
229 if (networkId == 0) heartbeats_missed_1 = 0;
230 else heartbeats_missed_2 = 0;
231 }
232 }
233 msgsrv nodeFail(){
234 primary=-1;
235 mode = FAILED;
236 NRP_network=-1;
237 NRP_switch_id=-1;
238 heartbeats_missed_1 = 0;
239 heartbeats_missed_2 = 0;
240 NRP_pending = true;
241 become_primary_on_ping_response = false;
242 ping_pending = false;
243 }
244 }
245 reactiveclass Switch(10){
246 knownrebecs {
247 Node nodeTarget1;
248 }
249 statevars {
250 byte mynetworkId;
251 int id;
252 boolean which;
253 boolean prevWhich;
254 boolean failed;
255 boolean amINRP;
256 boolean primaryPinged;
257 boolean terminal;
258 Switch switchTarget1;
259 Switch switchTarget2;
260 int primary;
261 }
262 Switch (int myid, byte networkId, boolean endSwitch , Switch sw1, Switch sw2, int myFailTime) {
263 mynetworkId = networkId;
264 primary=0;
265 id = myid;
266 primaryPinged=false;
267 terminal=endSwitch;
268 amINRP = false;
269 failed = false;
270 switchTarget1 = sw1;
271 switchTarget2 = sw2;
272 which=true;
273 if (myFailTime!=0) switchFail() after(myFailTime);
274 }
275 msgsrv switchFail(){
276 failed = true;

Bjarne Johansson et al. 189

276 amINRP=false;
277 }
278 msgsrv pingNRP_response(int senderNode,boolean w,boolean pw){
279 // if(?(true,false)) switchFail();
280 if(!failed)
281 if(terminal && senderNode <= MAX_SWITCHES) nodeTarget1.pingNRP_response(id, w,pw); //Pass back
282 else if(senderNode >id) switchTarget1.pingNRP_response(id, w,pw);
283 else switchTarget2.pingNRP_response(id, w,pw);
284 }
285 msgsrv pingNRP(int switchNode, int senderNode, int NRP) {
286 // if(?(true,false)) switchFail();
287 if(!failed)
288 if(terminal && NRP==id){
289 prevWhich = which;
290 which= (senderNode==primary);
291 if(switchNode <= MAX_SWITCHES) switchTarget1.pingNRP_response(id,which, prevWhich);

//Response↪→
292 else nodeTarget1.pingNRP_response(id,which, prevWhich);
293 }else if(switchNode >id) switchTarget1.pingNRP(id,senderNode,NRP);
294 else switchTarget2.pingNRP(id,senderNode, NRP);
295 }
296 msgsrv new_NRP(int senderNode,int prim, int mNRP_network, int mNRP_switch_id) {
297 // if(?(true,false)) switchFail();
298 if(!failed){
299 if(id==mNRP_switch_id) {
300 amINRP=true;
301 primary=prim;
302 } else amINRP=false;
303 if(terminal && senderNode <= MAX_SWITCHES)nodeTarget1.new_NRP(id,prim, mNRP_network,

mNRP_switch_id);↪→
304 else if(senderNode >id) switchTarget1.new_NRP(id,prim, mNRP_network, mNRP_switch_id); //Pass

back↪→
305 else switchTarget2.new_NRP(id,prim, mNRP_network, mNRP_switch_id);
306 }
307 }
308 msgsrv new_NRPBack(int senderNode,int prim, int mNRP_network, int mNRP_switch_id) {
309 // if(?(true,false)) switchFail();
310 if(!failed){
311 if(id==mNRP_switch_id) {
312 amINRP=true;
313 primary=prim;
314 } else amINRP=false;
315 if(terminal && senderNode <= MAX_SWITCHES)nodeTarget1.new_NRPBack(id,prim, mNRP_network,

mNRP_switch_id);↪→
316 else if(senderNode >id) switchTarget1.new_NRPBack(id,prim, mNRP_network, mNRP_switch_id);

//Pass back↪→
317 else switchTarget2.new_NRPBack(id,prim, mNRP_network, mNRP_switch_id);
318 }
319 }
320 msgsrv heartBeat(byte networkId, int senderNode) {
321 // if(?(true,false)) switchFail();
322 if(!failed)
323 if(terminal && senderNode <= MAX_SWITCHES) nodeTarget1.heartBeat(networkId,id)

after(networkDelay);↪→
324 else if(senderNode > id) switchTarget1.heartBeat(networkId,id) after(networkDelay);
325 else switchTarget2.heartBeat(networkId,id) after(networkDelay);
326 }
327 }
328

329 main {
330 @Priority(1) Switch switchA1(DCN1):(1, 0, true , switchA2 , switchA2 , switchA1failtime);
331 @Priority(1) Switch switchA2(DCN1):(2 ,0, false , switchA1 , switchA3 , switchA1failtime);
332 @Priority(1) Switch switchA3(DCN2):(3, 0, true , switchA2 , switchA2 , switchA3failtime);
333 @Priority(1) Switch switchB1(DCN1):(4, 1, true , switchB2 , switchB2 , switchB1failtime);
334 @Priority(1) Switch switchB2(DCN1):(5, 1, false , switchB1 , switchB3 , switchB1failtime);
335 @Priority(1) Switch switchB3(DCN2):(6, 1, true , switchB2 , switchB2 , switchB3failtime);
336

337 @Priority(2) Node DCN1(switchA1, switchB1):(100, 100, 1, 4, node1failtime);
338 @Priority(2) Node DCN2(switchA3, switchB3):(101, 100, 3, 6, node2failtime);
339 }

190 Formal Verification of Consistency in Systems with Redundant Controllers

D State Space

The state space of Timed Rebeca model for the NRP FD (including the problematic optimization) imple-
menting case 7 of Table 1 has 70 states and 88 transitions. Case 7 is where switchA1 and switchB1 fail
simultaneously at time 2500. A portion of the visualized state space is provided in Figure 8. We define
the followings in the the property file (see L3):

DCN1Primary = (DCN1.mode ==1);
DCN2Primary = (DCN2.mode ==1);
DCN2Backup = (DCN2.mode ==2);
switchA1Failed = (switchA1.failed);
switchB1Failed = (switchB1.failed);
switchA1NRP = (DCN1.NRP_switch_id==1 && DCN2.NRP_switch_id==1);
...

The term DCN1Primary means that the mode of DCN1 is PRIMARY (similar for DCN2) and the
term switchA1Failed means that the state variable f ailed of switcheA1 is true (similar for switcheB1).
switchA1NRP means that the state variable NRP_switch_id equals 1 (the id of switchA1) for both DCNs.
In case 7 of Table 1, both switches fail at time 2500. As we are at the time 3000 in S59, switchA1Failed
and switchB1Failed are true at the states depicted. Both DCN1 and DCN2 execute a runMe in each
heartbeat period:

heartbeat_period = 1000 // line 1 of Listing 1
...
self.runMe() after(heartbeat_period) // line 35 of Listing 1
..

In each period, PRIMARY (DCN1) checks its NRP availability. In the state S63, DCN1 sends a
PINGNRP message to switchA1 in the new heartbeat period, @3000. By receiving PINGNRP, switchA1
which is failed, does nothing (line 296 of Appendix C). In the state S65, by running Ping_timed_out,
DCN1 will notice that switchA1 has failed. DCN1 tries to select a new NRP from its NRP candidate set
(here switchB1 which is not operational at the moment). Note that there is no active NRP in S66. At the
next runMe, @4000, DCN2 changes its mode to PRIMARY due to missing more than maximum heart-
beats allowed on both networks simultaneously. We can see in S70 a dual primary situation occurred.
We commented out the assertion such that the model checker continues creating the state space.

Bjarne Johansson et al. 191

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

Figure 8: A part of the visualized state space for the Timed Rebeca model of the NRP FD.

	Introduction
	Network Reference Point Failure Detection (NRP FD) Algorithm
	Modeling and Verification of NRP FD using Timed Rebeca
	The actor-based language, Timed Rebeca
	Modeling NRP-FD in Timed Rebeca

	Model checking of NRP FD using Afra
	Leasing NRP FD

	Why Timed Rebeca?
	Related work
	Conclusion and Future Work
	Rebeca Syntax
	Afra
	Timed Rebeca model of the Leasing NRP FD
	State Space

