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In robotic radiation therapy, high-energy photon beams from different directions are directed at a
target within the patient. Target motion can be tracked by robotic ultrasound and then compensated
by synchronous beam motion. However, moving the beams may result in beams passing through
the ultrasound transducer or the robot carrying it. While this can be avoided by pausing the beam
delivery, the treatment time would increase. Typically, the beams are delivered in an order which
minimizes the robot motion and thereby the overall treatment time. However, this order can be
changed, i.e., instead of pausing beams, other feasible beam could be delivered.

We address this problem of dynamically ordering the beams by applying a model checking
paradigm to select feasible beams. Since breathing patterns are complex and change rapidly, any
offline model would be too imprecise. Thus, model checking must be conducted online, predicting
the patient’s current breathing pattern for a short amount of time and checking which beams can be
delivered safely. Monitoring the treatment delivery online provides the option to reschedule beams
dynamically in order to avoid pausing and hence to reduce treatment time.

While human breathing patterns are complex and may change rapidly, we need a model which
can be verified quickly and use approximation by a superposition of sine curves. Further, we simplify
the 3D breathing motion into separate 1D models. We compensate the simplification by adding
noise inside the model itself. In turn, we synchronize between the multiple models representing the
different spatial directions, the treatment simulation, and corresponding verification queries.

Our preliminary results show a 16.02 % to 37.21 % mean improvement on the idle time com-
pared to a static beam schedule, depending on an additional safety margin. Note that an additional
safety margin around the ultrasound robot can decrease idle times but also compromises plan quality
by limiting the range of available beam directions. In contrast, the approach using online model
checking maintains the plan quality. Further, we compare to a naive machine learning approach that
does not achieve its goals while being harder to reason about.

1 Introduction

Radiation therapy presents a widely used option for cancer treatment. Typically, beams from a range of
different directions are used to deliver a therapeutically effective dose to the tumor while maintaining a
tolerable dose for all other tissues. The latter is particularly important for critical structures where radia-
tion damage would result in severe side effects. While different treatment systems have been proposed,
one interesting approach is robotic radiosurgery where a robotic arm carries the beam source, allowing
for a very large solid angle of possible beam directions. The optimal choice of beams results from careful
treatment planning[14], which accounts for the beams’ attenuation when passing through the patient.
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Figure 1: Illustration of the situation we consider. Figure a) shows the the general setup with the patient
and the robot mounted ultrasound (US) transducer, as well as the target which moves along the patient’s
superior-inferior axis. Figure b) depicts a position of the target where two beams, A and B, are both fea-
sible and can be delivered. Figure c) shows another target position for which beam B would be partially
blocked and therefore infeasible. Note, that the range of motion of the target may vary and for some
intervals during the overall treatment, beam B may also be feasible throughout the full breathing cycle.

One of the particular advantages of robotic beam delivery is the ability to adjust the position and
orientation of the beam source quickly. This is desirable, as some tumors are subject to substantial
motion, especially due to respiration and in regions close to the diaphragm. Different respiratory motion
prediction and control strategies have been studied to realize real-time motion compensated treatments,
which are now routinely used with the robotic CyberKnife (Accuray, USA)[5]. However, a key aspect
of motion compensation is the detection of the tumor’s actual motion. Typically, this is achieved by
a combination of X-ray imaging and external marker tracking. However, recently the use of robotic
ultrasound has been considered, which would allow fast, continuous and non-ionizing imaging of the
tumor’s motion[8, 6, 7]. This advantage comes at the cost of integrating the ultrasound transducer and
the robot carrying it into the overall system setup. Particularly, safe beam delivery must be guaranteed at
all times, i.e., as Figure 1 shows, the treatment beams must not pass through ultrasound transducer and
robot, as this would compromise the dose estimate.

At planning time, the overall collision free delivery of all beams can be optimized, i.e., a generalized
traveling salesman problem (GTSP) is solved to determine the best sequence of beams and to obtain the
coordinated motion of both robots[15]. However, during treatment the motion trajectories of the tumor
vary, e.g., as patients may change from chest to abdominal breathing. A straightforward approach to
maintain the planned dose is to pause the treatment beam whenever the motion causes the current beam
to collide with the ultrasound transducer or robot. Given that this prolongs the overall treatment time
and that other beams may be feasible, it would be desirable to predict the feasibility of collision free
beam delivery given the current tumor motion pattern and to select beams which can be safely delivered
without interruption.

In this setting, we propose studying model checking as a means to realize safe and effective treat-
ments. Instead of using a fixed order on the beams, we consider modeling the current respiratory motion
and to verify for each beam whether it is feasible, i.e., can be delivered. While model checking veri-
fies properties—regarding safety, in particular—of modeled systems, in case of a breathing patient it is
impossible to provide a full model of all possible future behavior. Thus, if we want to verify if a beam
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is feasible during a treatment session, we need to reduce the scope of this verification, both in terms of
detail represented by the model and in terms of the covered time span, down to the next few seconds.
Still, we need to regularly verify whether beams are feasible based on current motion data to make up
for inaccurancies and to cover the whole treatment session. This approach of repeated verification with
current data is called Online Model Checking.

While the basic breathing motion is similar among patients, the specifics of their situation are dif-
ferent e.g., whether their inhalation is short or deep, fast or slow, how much it varies over time, when
exactly, how grave the differences between those patterns are. Overall, a model will necessarily be inac-
curate and the online checking approach is used to limit this effect. The predicted patient’s motion—as
the foundation to strategically select beams—needs to be formally verified to ensure safety, whether it
stays within the safe region. Moreover, at any time it would be important to consider a number of beams
in order to determine some feasible beam to be delivered next, because verification of a single beam may
not be sufficient to get an optimal or even viable beam. At the same time it is possible that multiple
beams satisfy the safety requirements, requiring a decision as part of an optimization problem.

We want to satisfy above requirements within a software system that improves the overall treatment
delivery. For this software, its timeliness is important, since the online verification is necessarily limited
in its future scope and we need to offer new beams in a timely manner. Instead of terminating when the
time allotted for the session is insufficient, it will use the available time more efficiently and thus allow
for more completed treatments. Based on these requirements and existing tools, our work resulted in the
following contributions:

• An approach for a verified schedule of beams in radiation therapy. This approach is based on an
existing online model checking environment for respiratory motion. We contribute the statistical
verification of dynamically selected beam candidates in real time.

• A representation of 3-dimensional respiratory motion as product of three 1-dimensional model
slices to limit the model’s complexity. This requires synchronization of verfication queries and
results within the real time environment.

• An implementation in Rust, using the UPPAAL model checker for verification. Further, the im-
plementation of experiments including data generation for evaluation of supporting our approach
with machine learning methods.

The result is a dynamic beam scheduling which selects feasible beams and thereby reduces the treat-
ment time. Upcoming beams are selected according to our online model of patient motion data, while
the timing requirements of the approach are honored. We can keep the timing requirements by the use of
a simple, 1D model that allows us to keep verification times short. In turn, we necessarily increase the
complexity of our implementation that needs to synchronize the 3 parallel online models and its beam
verification tasks. We propose an architecture that combines three parallel, model-generating processes,
the verification processes for beams as required, and the actual client that simulates the therapy. We
reduce idle time where no beam can be delivered due to collisions by 16.02 % to 37.21 % depending on
the amount of additional safety margin around the ultrasound robot.

Furthermore, we discuss an approach to improve the beam selection by using AI models to make
predictions on the breathing patterns and beam verification times. This would allow us to make better
decisions in our selection and verification. We tried to train a multi-layer perceptron regressor on beam
verification duration, as well as a classifier on 1D breathing movement data to discern breathing pattern
irregularities into different categories. However, this was not successful to derive meaningful strategies
from: The regressor predicted verification durations on the lower end of their range and the classifier did
not learn the intended categories, where more difficult patterns are characterized by noisier or rapidly
changing movements. Here, an algorithm detecting extreme values may be better suited.
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Figure 2: Two interacting robots: One robot is used
for treatment delivery and the other robot is used for
ultrasound image guidance.

ID,Time[ms],Threshold[mm]
80731,24281,5.0
76503,11222,5.0
75681,13682,7.5
74528,23749,10.0
67108,2243,10.0
79427,7133,12.5
70571,16927,15.0
77460,4354,15.0
70211,16240,15.0
68851,1488,17.5
59592,7335,17.5
74430,14448,17.5
69894,29738,20.0
77674,1609,20.0
78301,16381,22.5
81561,3116,25.0
61025,17047,27.5
71430,1758,31.0
81038,21519,31.0

Figure 3: Excerpt from a 1D beam list.

In the following section, we provide details of our beam radiation therapy case study. In section 3,
we present the necessary background to our approach. This is followed by sections 4 and 5, in which we
discuss our models and data, respectively. In section 6, we elaborate on the architecture and implemen-
tation of our contribution. The experimental results are covered in section 7. In section 8, we discuss
possible machine learning enhancements to our approach. Finally, we close with a summary in section 9.

2 Ultrasound Guided Motion Compensated Radiation Therapy

In radiation therapy, multiple beams are directed at a target region within the human body, which is
typically referred to as a planning target volume (PTV). The cumulative dose delivered by the beams is
optimized to reach a therapeutically effective level inside the PTV, while being as low as possible outside
and particularly in so-called organs at risk (OAR). During plan optimization the beams are weighted
to realize a clinically acceptable trade-of between these objectives. For our sample scenario we con-
sider robotic beam delivery with the CyberKnife and robotic ultrasound based on the lightweight and
redundant LBR iiwa med robot (KUKA, Germany) as illustrated in Figure 2.

During a treatment session, a patient inhales and exhales and may exhibit varying breathing patterns,
e.g., slower and faster breathing, deep and shallow breathing, abdominal and chest breathing, and a
number of potentially sudden changes, e.g., due to coughing. When considering motion compensation,
the movement of the PTV is off-set by an equivalent motion of the beams, i.e., the beam carrying robot
moves the beams synchronously. Hence, the beams move relative to all static objects, including the
ultrasound transducer and the robot carrying it. However, beams need to be switched off whenever
they would pass through these objects, as the effective dose would be compromised by the additional
attenuation and scattering.

While an effective treatment requires all beams to be delivered, there is typically no requirement to
observe a particular order. In fact, the order is often optimized such that the time to visit all beam starting
positions is minimized, as the motion time adds to overall treatment time. In case of ultrasound guidance
the coordinated motion of both robots can be approached as a GTSP and a time-optimal beam schedule
can be computed[15]. However, as the breathing patterns are not known a priori, it may occur that some
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beams cannot be delivered without interruption. At the same time, other beams may be feasible. Any
beam that satisfies the safety requirements and does not collide with ultrasound transducer or robot is a
viable alternative beam to be delivered. Thus, we consider beam scheduling as the optimization problem
to minimize the time beams are inactive due to collisions.

Consider, for example, a patient exhibiting an increasingly deeper breathing motion during the treat-
ment session. We can compute the minimum distance between beam and ultrasound transducer and
robot at any time in the breathing cycle, which we refer to as threshold. Now, starting the session with
beams with large thresholds and unsuccessfully trying to apply beams with small thresholds later will
potentially be a worse solution than a randomized ordering. Furthermore, the robot requires a substantial
amount of time to change its configuration between beams, particularly when the next beam is far away
from the previous beam.

Therefore, our proposal is a dynamic list of beams that is checked for possible beams within the
next time slot. While it is preferable to continue along the current time-optimal list, especially finishing
a currently running beam, we can substitute waiting times where no beam is applied with other beams
that can be delivered. Afterwards, the new time-optimal list of beams can be computed and treatment
continued. Thus, safety requirements are upheld while the treatment duration can be reduced.

3 Online Model Checking

In online model checking (OMC), properties of a modeled system are verified regularly in an interval[17].
The system processes exhibit uncertainties. Thus, statistical model checking is typically used, which
assesses the probability of its queried property over multiple, simulated runs of its system until it has
established the necessary confidence. This behaviour can be customized through the configuration of the
model checker, but we do not employ this in this paper. Each verification is limited in its temporal scope
to reduce the required verification time to fit within the interval. Thus, the model is only valid for a short
amount of time before the drift from reality gets too large. Still, the temporal scope needs to be large
enough to ensure that in each verification step there is enough time for an emergency stop if verification
fails and the sequence of verification intervals overlaps to cover the progressing system entirely. OMC
has already been used in several different applications[16][11][13], including cyber-physical systems and
medical settings[3][9]. However, it had not been used for beam verification.

For proper verification, a model is regularly modified with new data. In reality, this data may be
supplied by sensors recording live events. In experimental settings, it can be either recorded data or en-
tirely synthetic. The most common modification is to update and reassign model variables that represent
the current state, e.g., the patient’s position. Thus, for a continuing online setting, we receive a line of
models synthesized from the template, each representing one time step in the verification process.

For our setting, we make use of an existing online model checking software that predicts the respira-
tory motion of a patient in its primary movement dimension[12]. It acts as a frontend to the underlying
statistical model checker, UPPAAL-SMC[2][4]: It receives data updates to provide these to the model,
implements reading in model templates and writing out the modified instances every three seconds for a
validity window of six seconds. As it has been used to demonstrate respiratory motion[1], the template
model and required data sampling and transformation have also already been implemented. Thus, adap-
tions to our problem have remained minimal. The OMC software also verifies that its modified model is
an adequate representation according to its input data. It does so by advancing time by one second within
the interval, and assessing the probability that the observed patient position is within a bounding box of
the expected position. For completeness, we provide the queries and corresponding evaluation model in
Appendix B, but regard this in the following as a black box step, as only its verdict is relevant to us.
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FSTerm Summer

TermModifier CoeffModifier Timer

Figure 4: The complete 1D model: UPPAAL automata network template representing the respiratory
motion.[12] Its declarations are given in Appendix A. The continually updated variables are also shown
in Figure 5. Note the time stepping through UPPAAL’s synchronization messages.

4 Modeling

In the following section, we will provide details on the respiratory motion model and how we use the
generated motion models for our beam scheduling problem, so that our new software can assess the
deliverability of potential beams w.r.t. the motion. We approximate respiratory motion as a superposition
of sine curves in space, in each of the three dimensions. We present two modeling designs that simplify
the representation of respiratory motion and explain how oversimplification is prevented. Furthermore,
we describe the verification of the beams.

4.1 1D motion modeling
The first simplification, introduced in [1], concerns the reduction to a 1D motion representation through
modification of the motion model shown in Figure 4. The represented axis is orthogonal to the patient’s
body and is the primary movement direction, while the other two dimensions behave similarly but with
less extreme motion. The idea is that the orthogonal axis is the most important one. In each step, the
OMC software samples new positions, which would be measured by the treatment controller in reality,
as it progresses in time, and updates this base model accordingly.

The model is a simplified breathing motion representation based on the following formula:

x(t) = d · t +
4

∑
k=1

ck · cos(k · f · t)+ sk · sin(k · f · t), with t time, d linear drift, f =
2π

period
.

The position samples are Fourier-transformed to obtain the decomposed s and c terms of a sine and a
cosine wave over time at the samples’ frequency. Four terms are summed and must later be offset by
a base value, which the wave moves around. In Figure 4, we already see all necessary components to
describe this as an UPPAAL model. The Summer automaton just computes a sum s when a new step
is due. This sum is assigned to the model’s global result variable. The sum’s first four components
are computed by four instances of FSTerm, which computes the four combined sine-cosine waves of
the formula, where a and b are the transformed samples, k is the ordinal number of the term, freq the
sample’s frequency, and time is a stepped view into the clock. Those summed together with the base
position, parameterised as offset here, is enough to compute the patient’s position. The Timer automaton
is used to drive this computation in steps at a regular interval of 38 milliseconds, parameterised as dt,
and moves the base according to its expected drift.
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const double period = 5088.0;
const double drift = -0.0;

double base = -3.6508;
double a[4] = { -0.608, 0.205,

0.0744, -0.0764 };
double b[4] = { 2.5745, -0.414,

-0.0149, 0.0096 };

X axis

const double period = 5088.0;
const double drift = 0.0;

double base = 1.698;
double a[4] = { 0.2631, -0.0887,

-0.0322, 0.0331 };
double b[4] = { -1.1144, 0.1792,

0.0065, -0.0041 };

Y axis

const double period = 5088.0;
const double drift = 0.0;

double base = 1.8164;
double a[4] = { 0.0757, -0.0255,

-0.0093, 0.0095 };
double b[4] = { -0.3202, 0.0516,

0.0019, -0.0012 };

Z axis
Figure 5: Declarations of the models of a single timestep of patient DB126-Fx1. As the position and
movement is different, the beam verification queries require different thresholds per dimension.

However in Figure 4, we also see two additional automata. In order to compensate that the real
motion does not adhere to a (simplified) mathematical model based on an exact formula, the model
includes an accuracy parameter that determines how much randomness is applied to the coefficients
and terms. Thus, when setting the accuracy value below 100%, a range of possible motion curves is
considered starting from the latest current data point. This is important, because not only the model itself
is simplifying, but also the validity period of at most six seconds is already quite long considering that
a patient may suddenly start coughing. The accuracy value is set at the start of a session, thus a line of
models created for a single patient will have a fixed value. The TermModifier automaton is instantiated
for all four indices into the a and b arrays. The values are modified at random, based on a rate derived
from the accuracy parameter. Instead of regular time steps, there is simply a minimum and maximum
wait time between modifications. Similarly, the CoeffModifier is instantiated twice to modify both the
base and frequency, represented as c here.

Besides the automaton network, the model declares the variables describing the actual movement.
The continually updated, declared variables of such a model are shown in Figure 5. The period value
describes the period of the regular breathing sine curve. The base value is the origin of this period.
The four cosine and sine terms are composed as arrays a and b. As mentioned, there is a (small) drift
value added to the base for every time step. Among other intermediate variables, the computed value
describing the position of the patient at each step is saved as result. Thus in Section 4.3, we query this
value within the relevant time period with respect to the requested threshold for our verification purposes.
We provide the full declarations of the model in Appendix A.

4.2 3D motion modeling
While the actual respiratory motion is three-dimensional, it often has a clear principle component, i.e.,
along the superior-inferior direction. Still, the motion may be non-linear and a refined model would
consider all three spatial motion components. The second simplifying model design is to represent
3D motion by a network of three 1D models. Because the other two dimensions can be approximated
themselves using the same mathematical formula (see 4.1), we can reuse the 1D model for each instead of
extending it to 3D variables and thusly more complex formulas. This allows us to stick with a relatively
simple model that can be verified fast enough for our purposes.

However, using one model per dimension means that we need three parallel OMC processes that
each generate new, separate models. Since for any online approach we need timestamped, 3-dimensional
position data, this kind of input dataset needs to be retrieved by sensors to be distributed among the
three processes. As a consequence, the process’ results need to be aligned to make sure all models are
instantiated, represent the same time slot and are successfully validated.

The synchronization problem extends further to the beam checks that have to be done on all models
separately with separate threshold data: In Figure 5, we show for a single timestep the variable sets of
the three models it is comprised of. Because the motion along the three axes has different positions each,
each beam has necessarily six threshold values instead of one, i.e., a set of two for each model.
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It is beneficial to coordinate the accuracy parameters for the three movement directions, covering
the respective inaccuracies as with the 1D case, but also to control that the different dimensions are not
moving completely distinctly as the separate models suggest. In the future, we want to merge different
possibilities of 3D beam positions to reduce the number of verification calls.

4.3 Beam verification

The aim of the treatment is to deliver all beams, which requires that at some point during the treatment
all beams have become deliverable, i.e., are not blocked due to the motion. Thus, the core verification
question is whether the motion remains within the threshold that is given per beam. Our software uses the
results of the verification in 4.1 to determine a list of deliverable beams per time slot among a requested
list of beams. Along with the online approach, the requested beams are updated by the treatment software
each time slot and the verification and selection of beams is repeated until the treatment is complete.

The beams themselves are not formally modeled, but represented by a query on the motion model
that we check per beam. In case of 3D, that leads to three queries per beam, i.e., one per dimension.
The query is created directly from the source data: Pr[<= {scope}] ([] result <= {upper} &&
result >= {lower}), where scope is set to three seconds (see 4.1), result is the patient position in one
of the three dimensions (see 4.2), and lower and upper are derived from the beam threshold (see Figure 3
for a symmetric 1D case); [] is the usual “global” operator in CTL. The statistical model checker then
determines the probability with which, within scope, the patient’s position will invariantly be safe.

We use the verification results of the beams to gather a list of deliverable beams that is provided to
the treatment software. Representing a safety requirement, beams may not be considered as deliverable
if the threshold of any movement direction is violated according to the verification result. If the resulting
probability is higher than our cutoff, a beam may be delivered and is added to the list. We present results
in Section 7 with a cutoff of 0.5, whereas further experiments suggest a cutoff of 0.91. In the case of 3D,
the deliverability of a beam then becomes the minimum of each of the results on the three distinct models.
It is possible that a query, or in 3D at least one of three queries of a beam, is not completed within the
timeslot. In these cases, the beam is also not considered to be deliverable. However, we observe these
queries to take only milliseconds to complete. Depending on actual timings, requested lists of 250 beams
often may be completely checked and answered.

5 Data
We evaluate on a small amount of seven sets of real patient motion data (966670 data points) which was
previously published[5] and extend our dataset with synthetic data (4893007 data points) for our machine
learning approach. In this section, we report on our available datasets and the limitations of synthetic data.

The respiratory motion data consists of 3 dimensional data points that are timestamped. Furthermore,
we generated 40 synthetic motion curves approximating idealized respiratory motion with relatively
simple changes and only in 1D along the superior-inferior axis. For each of these patients we provide1

the corresponding line of models generated through the OMC process; for the real patients also in all
three dimensions. A sample of this dataset is visualized in Figure 6. All lines of models come with their
data logs, so that they can be easily visualized and analyzed. Furthermore, we provide beam lists for
both 1D and 3D cases.

Generating patient breathing data, however, is not trivial. It is important to consider that not all
situations can be well covered as synthetic data is much smoother and easier to align to for the OMC
process, and resulting curves are simpler and distinct. Real breathing changes more often, is irregular,

1https://doi.org/10.6084/m9.figshare.25061336

https://doi.org/10.6084/m9.figshare.25061336
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Figure 6: Partial superior-inferior portion of the breathing curve of patient DB126-Fx1 in blue along
time on the x axis. Model variable values of period as red line, base as green line through the middle
of the blue line, with the sum formula values c0, c1, c2, c3 and s0, s1, s2, s3 dotted. Illustrated with an
expectation query of the statistical model checker for the minimal and maximal curve point by the purple
line atop the blue line and the green line along 0 on the y axis.

OMC Server Client
(2)

UPPAAL

(1) / (5)

(3) (4)

Figure 7: Architecture diagram of the software systems that we employ for our experiments. Each
temporal slice consists of: (1) Client sends beam list, (2) Server uses Online Model Checking (OMC) to
receive models predicting respiratory motion, (3) OMC uses UPPAAL for model creation and verification,
(4) Server starts UPPAAL processes to verify beams, (5) Server sends list of beam results.

and has lots of small changes. This can be seen in Figure 6, which is an excerpt of under four minutes.
There, the OMC process is constantly changing its predictions and beams differ in their verification
results. Thus, it is important to use not only synthetic data to make sure observed behavior is realistic.

Compared to breathing data, beam lists are relatively simple to generate, both for real movement
paths and also synthetically. For synthetic beam lists we can use existing beam lists as input to generate
new lists. Each beam is distinct from the next, thus we do not need to consider changing movements
along a curve. Thus, new lists just need to have the same distribution within the threshold and time
values with regards to minimal, maximal, and average values overall and within quantiles.

6 Beam Checking Application
Our system needs to synchronize between the online model checking (OMC) process that generates the
models themselves, the treatment robot, and our own verification of possible beams to apply. The general
architecture is explained in this section and visualized in Figure 7.

The client is externalized as an application that connects over network and sends a current list of
beams that are outstanding. In turn, we send a list of checked beams with their success probabilities
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until the updated beam list is empty. Having the client networked is a proven way for separation of
concerns and allows the—possibly pre-existing—client to implement its own, e.g., safety equipment to
cover cases such as sudden changes by coughing that cannot fully be anticipated by software. However,
this separation induces the need to properly synchronize between these and the state of the session.

The OMC application is run directly by our software and monitored for new model files and its veri-
fication of those. It runs self-contained and does not pose requirements on the application. We currently
use pre-existing lists of breathing motions that would in reality need live data. The self-validation of the
OMC process also means that if verification is not passed for one model, it can recover on one of the
next intervals based on updated sensor data, but until it recovers there is no current model against which
to verify beams. Thus, we cannot make any recommendation within this gap and it follows that the client
would need to pause the treatment, failing on the safe side.

Whenever we receive a new model from the OMC process, we execute a new set of beam verification
queries, which check per beam the probability that it never violates its threshold within the timescope.
We align the OMC time slots with our own verification calls, allowing a three second time slot for our
own tasks and thusly verifing beams regularly, similar to the OMC process itself. However, the results
of this checking process is not a new model but a recommendation for or against those beams. If, e.g.,
a beam failed to verify within the time slot, either by the property itself or by the end of the verification
interval, it is not part of the recommended set of viable beams corresponding to this time slot.

In order to gain as much information as possible within this interval, we execute multiple verification
queries in parallel. Still, it is likely that we may not have enough time to verify all remaining beams, so
we prefer certain beams. First of all, we prioritize the currently running beam if there is one, but also all
beams that have already been started. This reduces overhead of beam changes on the treatment robot and
increases application quality, because the dosages are affected by application times and cannot precisely
be controlled by starts and stops. Second, we select well applicable beams by offering a mixture of
short and long applied beams, but also consider their thresholds. Beams with high thresholds, but shorter
running times are clearly easier to apply even if breathing is not calm, slow, or steady. Thus for future
experiments, we intend to implement a feedback loop that further prioritizes beams according to the
actual current breathing situation rather than static properties.

As introduced, our architecture can be characterized as loosely coupled as we kept three separated
systems in our architecture. Despite the synchronization issues this architecture necessitates, the sepa-
rated concerns helped with the implementation of the software. By using the pre-existing OMC process,
we only needed to introduce minimal changes, i.e., updating the code base to run within a more modern
environment, including adding Java synchronization primitives and exporting the actual model files. Sim-
ilarly, the client is separated from our application. Communication is realized over standard input/output
streams of the process in case of the OMC process or over a TCP socket in case of the client. Instead of
constraining us to a single programming language, we have specified the file formats of the transmitted
data. The OMC application transmits simple log messages and UPPAAL models in their already specified
file format, while the client sends and receives CSV tables with specified attributes.

The server application software is written in Rust. The beam verification queries are executed via
the UPPAAL command line interface with the result parsed from its standard output, compared to the
OMC software using UPPAAL’s in-process library API. The approach via external processes was taken
because it allows us to terminate verification processes according to our timeouts as required, which is
not possible via the library itself. Furthermore, the independent processes do not require synchronized
access to a singular verification server instance that the library allows to access, when evaluating multiple
different queries as with beams.

For the client, we extend our in-house treatment planning Java application. We determine beam col-
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lision with the ultrasound robot by applying a projection based approach using a distance transform[8].
Here, we can also specify a static safety margin which accounts for expected target motion. Note how-
ever, that this safety margin needs to be specified before the treatment and leads to an elimination of ad-
ditional beam directions. Therefore, that treatment plan quality degrades with increasing safety margin.

We extend our approach to calculate beam thresholds by computing a projection for every beam
translation in the discretized motion trace. The treatment simulation starts by computing a beam order
which is time optimal if the target is static, i.e., it minimizes the robot motion. Afterwards, the client
cycles through the following steps: The beam list with corresponding thresholds is sent to the server
for evaluation whether delivery will be feasible. After receiving the response from the server, the first
feasible beam is selected, the robot is moved in position and delivery is started. Before the next evaluation
cycle starts, the time optimal beam order is updated with respect to the current position of the robot.
During beam delivery, it is ensured that the beam is collision free and otherwise beam delivery is halted
and the cycle is started again.

7 Experiments
In our evaluation we first show preliminary results of our approach. We evaluate on 5 patient geometries
for which the target tumor is located in the liver. Since treatment planning typically involves the selection
of a subset of beams from a large set of randomized candidate beams, we repeat each experiment 30
times with different candidate beam sets to obtain statistically meaningful results. We report significance
according to the Student’s t-test with p-values smaller than 0.01.

We use a motion trace of captured target motion on a previous CyberKnife treatment[5], where the
breathing pattern showed a large change over time. While the particular motion pattern is not representa-
tive for every patient, it represents a challenging real-world case for ultrasound guided radiation therapy.

To evaluate the impact of our online model checking approach, we simulate complete treatments. We
compare a delivery of beams where each beam is scheduled either according to the static beam list or
according to our OMC approach. When a scheduled beam cannot be delivered due to the target motion,
we pause the beam delivery until the beam is not blocked. We sum up this idle time to draw conclusions
on the quality of our approach. Additionally, we track how often beam delivery needs to be interrupted.

Additionally, we evaluate whether the pose of the ultrasound robot influences the results, and whether
an additional safety margin could be used to reduce the idle time and the occurrences of beam collisions.
Here, we apply a safety margin of 5 mm to the ultrasound robot during treatment planning and not
consider beams which are too close to the ultrasound robot. Thereby, small motion of the target would
not lead to a collision during treatment. However, this additional margin impacts the treatment plan
quality since fewer beams are available during the treatment planning process[8].

Our results in Figure 8a show that the average idle time decreases from 418.44 s to 304.96 s for
no margin and from 25.93 s to 22.35 s for a margin 5 mm. This represents a reduction in idle time of
37.21 % and 16.02 %, respectively. While the difference is significant for no margin (p < 0.004) it is not
significant when using 5 mm margin (p = 0.22). While the pose of the robot can change the resulting idle
time in some cases, e.g., from 44.66 s to 76.95 s for 5 mm margin and no OMC (p= 0.001), the difference
is otherwise not significant on the average distribution (p > 0.02). When evaluating the number of times
that a beam could not be delivered shown in Figure 8b, we do not observe a significant difference between
our OMC approach and the static beam ordering (p > 0.38).

As Figures 8 show, increasing the margin around the ultrasound robot also decreases the number
of collision events and the resulting idle time. Still, Figure 8a shows that also when introducing the
margin, the idle time is even lower with our OMC approach. Crucially, the target coverage decreases
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Figure 8: Summarized idle time (a) and number of incomplete beam deliveries (b) per simulation for
the different approaches for 5 patients and motion trace DB126_Fx1. Experiments are repeated 30 times
with different beam sets to increase statistical significance.
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Figure 9: Example of resulting target cover-
age for 5 patients. Experiments are repeated
30 times with different beam sets to increase
statistical significance.

Figure 10: Predictions in red, actual data in
blue. Note the difference in transparency: The
blue circles are much more varied than the red.

when introducing a margin as Figure 9 shows. The target coverage refers to the proportion of the target
which receives at least the prescribed dose and is an important clinical goal which influences the clinical
outcome. Therefore, the safety margin is degrading the treatment quality, while OMC does not negatively
influence the delivered dose as per Figure 8b. Note also that extreme outliers exist for certain patients
with substantially worse coverage when applying an increased safety margin.

8 AI Enhancements

We tried to extend the information we can gain from our data using machine learning methods. First,
we tried an experiment on beam verification time learning. Second, we tried an experiment on breathing
pattern classification. Both would allow us to change the prioritization of beams to ensure a more fitting
list of verification results or even a larger list of verification results when we exclude beams that are not
likely to succeed in verification by failing either time requirements or anticipated threshold violation.
Although both experiments failed, we briefly report in this section their respective setting and outcome.
These experiments were implemented in Python to make use of the widely known scikit-learn[10] library
that provides good default implementations of common learning algorithms.
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Figure 11: Attempt at classification. Excerpt from patient DB114-Fx1 represented by the model variables
base and period in red and blue dotted lines, respectively. Classification categories range from 1 to 3.
Predicted category in yellow, truth in purple.

In the first experiment, learning verification time, we first used our synthetic data. Then, we varied
queries and, third, replaced the synthetic data by real data. In all cases we applied a beam list to a single
patient dataset, but we also tried to scale the number of beams from the typical 250 to 2500. Regarding
the queries, we tried to vary between different kinds of queries, e.g., existential and universal, but did
not notice significant differences. The predictions were consistently at the lower end of verification
time with more visible noise in the actual verification times. This can be seen visually in Figure 10.
Thus, this learning approach does not yield any opportunity for priorization. Our explanation is that
the synthetic data together with rather fast queries, that complete within a few hundred milliseconds,
is rather unlearnable noise, because there is no discernable pattern within the parameters for longer
durations. Also, simply increasing the number of queries from about 250 to about 2500 to have more
data to learn may not help when the overall time becomes larger faster than any results are improving.
Based on the experiments with real data, we could not make predictions on verification time that were
significant enough to be of any help.

In the second experiment, we manually labeled a full motion dataset with three categories repre-
senting different levels of breathing periods, from calmer to more irregular. We applied a multi-layer
perceptron classifier and varied the solver configuration with the options that scikit-learn offers. As can
be seen in Figure 11 almost all classifications are wrong, specifically when the period is spiking the
level is classified as lower. Based on the classification of a real breathing sequence, the prediction does
not yield the desired results of differentiating more irregular from calmer breathing periods. Especially
extreme movements are completely removed from the difficulty class. Thus, a better approach for clas-
sification is an algorithm specialised to detect more extreme cases in the movement data. We refrained
from integrating the results of our AI experiments in our beam scheduling application.

9 Summary

Robotic radiation therapy with robotic ultrasound guidance represents an interesting area of application
for OMC. We described and implemented an approach for beam scheduling which verifies feasibility of
beam delivery during the treatment with OMC. Furthermore, we provide data and generated models. Our
preliminary results show that, avoiding beam collision, reductions in the idle time ranging from 16.02 %
to 37.21 % are possible. Comparatively, a naive machine learning approach to predict beam delivery
feasibility does not achieve the same performance as OMC while also being harder to reason about.
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A Model declarations

Global declarations

const double accuracy = 100.0;

const double period = 3469.0;
const double drift = 0.0;

double base = 2.5019;
double a[4] = { -0.1959, 0.0295, -0.0022, -0.0169 };
double b[4] = { -0.4023, 0.0294, 0.033, 0.013 };

double v[4];
double result;

double time;
broadcast chan step;

double frequency = 2 * 3.14159265358979323846 / period;

System declarations

Clock = Timer(38);

const double accrate = (100.0 - accuracy) / 15.0;

CMP = CoeffModifier(frequency, 1.0 * accrate * 0.0001, 10, 1000);
CMB = CoeffModifier(base, 1.0 * accrate * 0.25, 10, 1000);
TM1 = TermModifier(a[0], b[0], 1.0 * accrate * 0.1, 10, 1000);
TM2 = TermModifier(a[1], b[1], 1.0 * accrate * 0.1, 10, 1000);
TM3 = TermModifier(a[2], b[2], 1.0 * accrate * 0.1, 10, 1000);
TM4 = TermModifier(a[3], b[3], 1.0 * accrate * 0.1, 10, 1000);

First = FSTerm(v[0],a[0],b[0],frequency,1);
Second = FSTerm(v[1],a[1],b[1],frequency,2);
Third = FSTerm(v[2],a[2],b[2],frequency,3);
Fourth = FSTerm(v[3],a[3],b[3],frequency,4);

TermSummer = Summer(result,v,base);

system Clock, First, Second, Third, Fourth, TermSummer, CMP, CMB, TM1, TM2, TM3, TM4;

Automaton Parameters

FSTerm double &v, double &a, double &b, double &freq, int k

Summer double &s, double &v[4], double &offset

Timer int rate

TermModifier double &a, double &b, double rate, int minWait, int maxWait

CoeffModifier double &c, double rate, int minWait, int maxWait
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Automaton Declarations

Timer clock dt;

TermModifier meta double m; clock t;

CoeffModifier clock t;

B Evaluation model

The evaluation model is directly used as per its introduction in Figure 7.6 of [12], and shown here
in Figure 12. It is queried by E<> ((A1.T3 || A1.T4) && (A2.T3 || A2.T4) && (A3.T3 ||
A3.T4)) to check if a high enough error tier is reached through repeated condition violation. The
probability p that is referenced is obtained by querying the motion model using the query

Pr[⋄≤to−tm+t+to − t− ≤ tp ≤ to + t+∧ x0 − x− ≤ xp ≤ xo + x+],

where tm is the model’s creation time, to > tm the later observation time with xo the observed values,
t+, t−,x+,x− range parameters defining the bounding box around the observed (to,xo) and predicted
(tp,xp).

Figure 12: The Tier template is instantiated per data series, the Timer template is instantiated once.
For each data series, p is the current validity probability and t p is the corresponding threshold. The
probability is estimated by UPPAAL-SMC that within an observed time period, observed values are
predicted by the original model[12].
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