
A. Petrenko, H. Schlingloff (Eds.): Workshop on
Model-Based Testing 2012 (MBT 2012)
EPTCS 80, 2012, pp. 1–12, doi:10.4204/EPTCS.80.1

c© I. Schieferdecker, J. Grossmann, M. Schneider
This work is licensed under the
Creative Commons Attribution License.

Model-Based Security Testing

Ina Schieferdecker
Fraunhofer FOKUS

Berlin, Germany
Freie Universitaet Berlin

Berlin, Germany
ina.schieferdecker@fokus.fraunhofer.de

Juergen Grossmann
Fraunhofer FOKUS

Berlin, Germany
juergen.grossmann@fokus.fraunhofer.de

Martin Schneider
Fraunhofer FOKUS

Berlin, Germany
martin.schneider@fokus.fraunhofer.de

Security testing aims at validating software system requirements related to security properties like
confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although
security testing techniques are available for many years, there has been little approaches that allow for
specification of test cases at a higher level of abstraction, for enabling guidance on test identification
and specification as well as for automated test generation.

Model-based security testing (MBST) is a relatively new field and especially dedicated to the sys-
tematic and efficient specification and documentation of security test objectives, security test cases
and test suites, as well as to their automated or semi-automated generation. In particular, the com-
bination of security modelling and test generation approaches is still a challenge in research and of
high interest for industrial applications. MBST includes e.g. security functional testing, model-based
fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides
a survey on MBST techniques and the related models as well as samples of new methods and tools
that are under development in the European ITEA2-project DIAMONDS.

1 Introduction

The times of rather static communication in strictly controlled, closed networks for limited purposes
are over, while the adoption of the Internet and other communication technologies in almost all domes-
tic, economic and social sectors with new approaches for rather dynamic and open networked environ-
ments overwhelmingly progresses. Social networks, networked communities, cloud computing, Web
X.0, mashups or business process design are just some of the trends that reflect the tendency towards
permanent connections and permanent data collection. Today’s networked systems face the challenge
of various security threats, which is usually met by various protection systems against attacks from the
direct system users. In an interconnected world, software with vulnerabilities presents a threat not only to
individuals but also to companies and public organizations, and last but not latest to national and interna-
tional cooperation. Compared with functional hazards, which tend to be straightforward and accidental,
security threats are often intentional and more persistent. Here are some facts that highlight the special
nature of security threats:

• Attacks are frequently carried out by well organized groups with a commercial background (spam-
ming, extortion, industrial espionage)

• Multi-stage attacks skilfully combine vulnerabilities on system level and organizational level

http://dx.doi.org/10.4204/EPTCS.80.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Model-Based Security Testing

• information security risk analysis does often not hold for the complete life time of a product (con-
text of product usage may change, new vulnerabilities are detected)

Practical security involves a sufficient understanding of risk in order to properly address it, manage it
and, with care, to eliminate it. National and international standardization committees provide significant
efforts on security evaluation and assessments. It includes classical concepts from security evaluation us-
ing common criteria (CCRA), but also European activities from ETSI addressing risk and threat analysis
(TVRA).

The main aim of information security methods and techniques is the reduction or elimination of
unwanted incidents that may harm the technical infrastructure or, even worth, its environment. The field
of information security has been growing and reaches far further than simply using cryptography. The
purpose of today’s security standards is to specify countermeasures that can protect a system against
certain forms of exploitation. Countermeasures depend on an understanding primarily on finding and
assessing the vulnerabilities that exist within a system. Testing can be seen as an action to proactively
detect such vulnerabilities. The Software Engineering Institute, USA, highlighted in 2009: ”The security
of a software-intensive system is directly related to the quality of its software.” About 90 percent of all
software security incidents are caused by attackers who exploit known vulnerabilities. Moreover most
known vulnerabilities originate from software faults or design flaws. However, not every fault or design
flaw constitutes vulnerability. Still, systematic testing increases the likelihood of identifying faults and
vulnerabilities during the design, development or setup time of systems and enables purposeful fixes.

2 Model-based security testing and security testing

Software testing is an experimental approach of validating and verifying that a software system meets
its functional and extra-functional requirements and works as expected. In this article, testing refers to
active, dynamic testing, where the behavior of a system under test (SUT) is checked by applying intrusive
tests that stimulate the system and observe and evaluate the system reactions. This is done by applying
specification-based and/or code-based test cases that are – based on test hypotheses – directed to find
faults in the SUT and by providing test suites, i.e. specifically selected collections of test cases, which
provide an argument for the absence of faults.

Software security testing is a special kind of testing with the aim in validating and verifying that
a software system meets its security requirements. Two principal approaches can be used: functional
security testing and security vulnerability testing [5]. While security functional testing is used to check
the functionality, efficiency and availability of the designed and developed security functionalities and/or
security systems (e.g. firewalls, authentication and authorization subsystems, access control), security
vulnerability (or penetration) testing directly addresses the identification and discovery of yet unknown
system vulnerabilities that are introduced by security design flaws or by software defects. Security
vulnerability testing uses the simulation of attacks and other kinds of penetration attempts.

The systematic identification and reduction of security-critical software vulnerabilities and of defects
will increase the overall dependability of software-based systems and helps providing adequate security
levels for open systems and environments. Unfortunately security testing, especially security vulnera-
bility testing, lacks systematic approaches, which enable the efficient and goal-oriented identification,
selection and execution of test cases. Risk-based testing [4] is a methodology that makes software risks
the guiding factor to solve decision problems in the design, selection and prioritization of test cases.



I. Schieferdecker, J. Grossmann, M. Schneider 3

2.1 Related work

The basic idea of model-based testing (MBT) is that instead of creating test cases manually, selected
algorithms are generating them automatically from a (set of) model(s) of the system under test or of its
environment. While test automation replaces manual test execution by automated test scripts, model-
based testing replaces manual test designs by automated test generation. Although there are a number of
research papers addressing model-based security (see e.g. [2, 9] and model-based testing (see e.g. [1]),
there is until today little work on model-based security testing (MBST). Relevant publications in the field
of MBST are [3, 10, 11, 16, 21, 23, 12, 19].

Kaksonen et al. [12] from the PROTOS project (1999-2001) discuss and implement an MBST ap-
proach using syntax testing as the starting point, and implement the models using Augmented Backus-
Naur Form (ABNF). The PROTOS approach to model-based testing reads in context-free grammars
(defined by BNF, ASN.1 (Abstract Syntax Notation One),or XML (Extended Markup Language)) for
critical protocol interfaces and generates the tests by systematically walking through the protocol be-
haviour. These two approaches are the only ones commercially available [19].

Jurjens and Wimmel [11, 23] address the problem of generating test sequences from abstract system
specifications in order to detect possible vulnerabilities in security-critical systems. Both papers assume
that the system specification, from which tests are generated, is formally defined in the language Focus
– a mathematical framework for the specification, refinement, and verification of distributed, reactive
systems. The paper [11] focuses on testing of firewalls whereas [23] focuses on transaction systems.
In [10], Jurjens extends [8] by considering system specification written in the language UMLsec – a
security profile for the Unified Modelling Language. In [3], Blackburn et. al. summarizes the results of
applying a model-based approach to automate functional security testing. The approach involves devel-
oping models of security requirements as the basis for automatic test vector and test driver generation. In
particular, security requirements are written in the so-called SCRtool, are transformed into test specifi-
cations which in turn are transformed into test vectors and test drivers. The approach is targeted towards
Java applications and database servers.

Mouelhi et al. [16] propose a model-driven approach to specifying, deploying and testing access-
control policies in Java applications. The approach has four main steps. The first step is to build a
platform-independent access-control model for the application. In the second step, the model is trans-
formed into so-called platform specific policy decisions points (PDPs). In step three, the PDP is inte-
grated into the functional code of the application by aspect oriented programming techniques. Finally, in
step four, the resulting integrated application is tested against tests that are generated from the platform
independent access-control model. Another approach covering specification, deployment, testing and
monitoring of security policies has been proposed in the Politess project (Grenoble INP, IT, Smartesting)
[DFGMR06, MBC08, LR07]. In [21], Wang et. al. presents a threat driven approach to MBST. In this
approach, UML sequence diagrams to specify threat a model, i.e., event sequences that should not occur
during the system execution. The threat model is then used as a basis for code instrumentation. Finally,
the instrumented code is recompiled and executed using randomly generated test cases. If an execution
trace matches a trace described by the threat model, security violations are reported and actions should
be taken to mitigate the threat in the system.

2.2 Models in model-based security testing

In order to test security properties information from different sources are needed and need to be sys-
tematically related to each other to support tracing and proper usage of the information. In addition to



4 Model-Based Security Testing

the functional system specification and to system architecture information, information on known or po-
tential vulnerabilities, potential attacks and their occurrence probabilities can give guidance on what to
test and how to test. In addition, probabilities and estimations on the severity of potential attacks can be
summed up to form a risk analysis that points at the threats that are to be considered. Such a risk analysis
provides guidance for test ordering and test prioritization and supports test management by indicating
the need for test recommended test resources.

Hence, model-based security testing needs to be based on different types of models in order to cover
the different perspectives used in securing a system. In the following we provide three different model
categories that each represent a perspective on its own and may serve as input models for test generation.

2.2.1 Architectural and functional models

Architectural and functional models of the SUT are concerned with system requirements regarding the
general behaviour and setup of a software-based system. The main perspective of these models are the
structure and properties of the system under test. The models exist on different level of abstraction and
in different granularity. Often they show additions that allow to focus on specific system properties
like robustness properties (e.g. failure states) or performance properties (e.g. durations or throughputs).
Regarding security testing, we are principally interested in locating critical system functionality with
respect to the overall software architecture and in identifying security-critical interfaces, which might
be an entry point for an adversary. Related to security-critical interfaces, interaction models or protocol
models (involving data models or behavioural models) are of high interest for security testing. In addition
functional security measures (such as authentication or access control means) can be specified within
functional models and be tested by use of functional testing approaches.

Figure 1: Modelling Artifacts in MBST

2.2.2 Threat, fault and risk models

While architectural and functional models typically describe the expected system configuration and be-
haviour, risk modelling techniques like the CORAS risk modelling approach [13, 7] focus on what can



I. Schieferdecker, J. Grossmann, M. Schneider 5

go wrong. CORAS provides means to mode risks, threats or faults and enables the identification of mul-
tiple risk factors, describe their relationships and relate them to occurrence probabilities and potential
impacts.

Besides CORAS, further approaches for fault and attack modelling exist. Well-known are the fault
tree analysis (FTA [20]) and the cause-consequence analysis (CCA [17]). FTA considers high-level faults
and decomposes them top-down to basic events, which can be identified and tested for in the system.

A variant of fault trees are so called attack trees [14]. Attack trees are directly related to security
risks. They start from a high-level attack scenario and decompose them to concrete basic interactions
with the system.

ETA (event tree analysis [18]) works bottom-up. It starts with the identification of unwanted system
events and analyses the consequences in case of an occurring unwanted event.

A CCA (cause-consequence analysis [6]) – a combination of the FTA and ETA concepts – can be
used as well. That analysis starts with a thread. The causes (top-town) and the consequences (bottom-up)
are analyzed simultaneously.

2.2.3 Weakness and vulnerabilities models

While threat, fault and risk models concentrate on causes and consequences of system failures, weak-
nesses or vulnerabilities, a weakness or vulnerability model describes the weakness or vulnerability by
itself. The information needed to develop such models are normally given by databases like the National
Vulnerability Database (NVD) or the Common Vulnerabilities and Exposures (CVE) database. These
databases collect known vulnerabilities and provide the information to developers, testers and security
experts, so that they can systematically check their products for known vulnerabilities. One of the chal-
lenges yet not sufficiently solved is how these vulnerabilities can be integrated in system models, so that
they can be used for test generation.

One possible solution is based on the idea of mutation testing [22]. Typically, mutation testing is
used to qualify test suites by running tests against a mutation of the system under test. The quality of the
test suite is stated with respect to the number of mutants being detected by the test suite. For security
testing, models of the system under test are mutated in a way that the mutants represent weaknesses or
known vulnerabilities. These weakness or vulnerability models can then be used for test generation by
various MBT approaches. The generated tests are used to check whether the system under test is weak
or vulnerable with respect to the weaknesses and vulnerabilities in the model.

2.3 Activities in model-based security testing

Security testing like any other testing follows a series of activities and uses artifacts that aim to system-
atically plan, design, specify, realize, and execute tests, and to evaluate the test results and, if needed, to
readjust the planning etc.

MBST shows slight differences in these activities, but follows the main sequence of activities. A
main task is to provide system properties under consideration concrete test cases (data and behaviour)
that represent the stimuli to the system under test and the evaluation of the system reactions by test
oracles. The following discusses how to generate security tests with a model-based approach.

• Identify security test objectives and methods: The test objectives define the overall goals of testing
and relate the goals to testing methods that allow to accomplish the objectives. For model-based
testing the modelling techniques and test generation strategies need to be planned. Especially



6 Model-Based Security Testing

threat, fault, and risk models are to be considered to guide or strengthen the test identification with
respect to the identified risks, threats, faults, and their consequences.

• Design a functional test model: The test model reflects either the expected functional scenarios of
the SUT (system perspective) or the scenarios of the SUT usage (system perspective). Standard
modelling languages such as UML can be used to formalize the points of control and observation
of the SUT, the dynamic behaviour when interacting with the system, the entities associated with
the test in various test configurations, and the test data applied to the system. The test models need
to be precise and complete enough to allow automated derivation of executable tests from these
models. However, security testing focuses either on testing the correctness of security functions
or on testing the robustness against a dedicated misuse of the system. Thus, functional test models
used for security testing describe not only the typical environment or usage of a system, but also
adversary environments or atypical usages like attacks and hacking attempts.

• Determine test generation criteria: Usually, there is an infinite number of possible tests that can
be generated from a model, so that test designers choose test generation or selection criteria to
limit the number of (generated) tests to a finite number by e.g. selecting highest-priority tests,
or to ensure specific coverage of system structures, behaviours, or alike. For security testing,
approaches based on structural model coverage, i.e. determining the coverage of model elements
by generated tests, is not sufficient. Hence, fuzz test approaches are used that follow other kind
of coverage criteria and lead to different, but also larger number of generated test data or test
behaviour. However, approved test generation criteria like the coverage of security functional
requirements or the weighting of security functional requirements with risk values are applicable
as well.

• Generate the tests: The test generation is in MBT typically a fully automated process to derive the
test cases from a given test model as determined by the chosen test generation criteria. This is also
true for MBST. The generated test cases are sequences of high-level events or actions to or from
the SUT, with input parameters and expected output parameters and return values for each event
or action. If needed, the generated tests are further refined to a more concrete level or adapted to
the SUT to support their automated execution.

• Assess the test results: During test result evaluation and test assessment, the quality of the SUT
can be rated with respect to the test results as well as the quality of tests can be rated with respect to
their fault and vulnerability revealing capabilities. While for functional MBT, measurements and
metrics for system and test quality exist this is still a research challenge for MBST. Furthermore,
the test results need to be analyzed if changes to the system requirements, the system design, the
risk analysis or to the test process itself are needed. In these cases, required iterations are to be
started.

2.4 Testing Approaches in DIAMONDS

The project DIAMONDS (Development and Industrial Application of Multi-Domain Security Testing
Technologies) develops under the direction of Fraunhofer FOKUS, Berlin, efficient and automated se-
curity test methods for security-critical, networked systems in various industrial domains such as indus-
trial automation, banking and telecommunications. DIAMONDS develops methods to design objective,
transparent, repeatable, and automated security tests that focus on system specifications and related risks.
The project goals include the definition of security fault and vulnerability modelling techniques, the def-
inition of a security test pattern catalogue, the development of MBST techniques, and the definition of



I. Schieferdecker, J. Grossmann, M. Schneider 7

a MBST methodology. DIAMONDS examines vulnerabilities of networked systems in the considered
domains in order to derive common principles, methods and means that enable effective security test-
ing of industrial importance. In reflection of the case studies results, the DIAMONDS security testing
methodology will be evaluated and optimized. The project results are made available to interested parties
and also through contributions to the standardization at ETSI and to other standardization bodies.

A special focus is given in DIAMONDS to (1) risk-based MBST and to (2) model-based fuzz testing.

2.4.1 Risk-based security testing

Risk-based testing can be generally introduced with two different goals in mind. On the one hand side
risk-based testing approaches can help to optimize the overall test process. The results of the risk anal-
ysis, i.e. the results of threat and vulnerability analysis, are used to guide the test identification and
may complement requirements engineering results with systematic information concerning threats and
vulnerabilities of a system. On the other hand side, attack simulation is to find deviations of the SUT
to its specification that leads to vulnerabilities because invalid inputs are not rejected but processed by
the SUT instead. Such deviations may lead to undefined states of the SUT and can be exploited by an
attacker, for example to successfully perform a denial-of-service.

A comprehensive risk assessment additionally introduces the notion of risk values, that is the estima-
tion of probabilities and consequences for certain threat scenarios. These risk values can be additionally
used to weight threat scenarios and thus help identifying which threat scenarios are more relevant and
thus identifying the threat scenarios that are the ones that need to be treated and tested more carefully.

Furthermore, risk-based testing approaches can help to optimize the risk analysis and the risk assess-
ment itself. Risk analysis and risk assessment, similar to other development activities in early project
phases, are mainly based on assumptions on the system itself. Testing is one of the most relevant means
to do real experiments with a system and thus enables to gain empirical evidence on the existence of vul-
nerabilities, the applicability and consequences of threat scenarios and the quality of countermeasures.
Thus, risk-based testing results can be used as a form of evidence for the assumptions that have been
made during the risk evaluation and risk assessment.

In particular, risk-based testing can help in

• providing evidence on the functional correctness of countermeasures,

• providing evidence on the absence of known vulnerabilities, and

• discovering unknown vulnerabilities,

• optimizing risk analysis by identifying new risk factors and reassessing the risk values.

The CORAS language [7] integrates different tree-based approaches for risk modelling. It is a graph-
based modelling approach that emphasizes the modelling of threat scenarios and provides formalisms to
annotate the threat scenarios with probability values and formalisms to reason with these annotations.

Figure 2 shows a simple CORAS risk model that depicts a threat scenario for an unauthorized
database access. The CORAS language allows to relate threat scenarios to adversaries (so called threats,
e.g. ”‘hacker”’ or ”‘script kiddy”’ in Figure 2) and to potential vulnerabilities. A vulnerability is denoted
by the unlocked padlock (see e.g. ”‘SQL injection”’). Last but not least the threat scenario is related to
unwanted incidents, e.g. ”‘Database entries are modified by unauthorized people”’. This modification
harms the asset ”‘database contents”’ (see ”‘brown moneybag”’ in Figure 2) and can therefore negatively
influence the asset ”‘revenue”’ (see ”‘white moneybag”’). The treatment ”‘use of prepared statements”’
instead of strings containing SQL queries is depicted with the green pliers in that figure. Except the



8 Model-Based Security Testing

Figure 2: CORAS treatment diagram

threats, the vulnerability, the assets and the treatment, all elements have annotations that denote the
probability or frequency of the transition or the incidence of for instance a threat scenario.

Such risk models can be used in different ways to support testing. The goal of risk-based test iden-
tification is to improve the test design such that high-risk areas of the SUT are covered and that at the
same time test resources are optimally used by focusing on highest risks first.

In risk-based test identification, for individual risk factors test objectives are developed. We consider
a test objective to be foremost an informal specification that defines which aspect of a certain system,
functionality, or protocol etc. should be tested. Similar to requirements in requirements engineering, test
objectives constitute test requirements that can be refined and decomposed during the test development.
In the following we describe the relationship between test objectives and the elements used in the risk
analysis. Quantifications of the related risks can be used to weight the test objectives.

Test objectives for

• an unwanted incident describe which test methods can be applied to initiate and detect an unwanted
incident and to characterize its consequences.

• threat scenarios describe which test methods can be applied to initiate a threat scenario and to
characterize its consequences.

• vulnerabilities describe which test methods can be applied to elicit a vulnerability.

• treatment scenarios describe which test methods can be applied to characterize the maturity and
effectiveness of a treatment scenario.

Another way of using risk models in testing is risk-based test selection. It is used to find an optimal
set of test cases along certain selection strategy. The selection strategy takes into account available test
resources and optimizes the selected tests with respect to the chosen coverage criteria. In functional
testing coverage is often described by the coverage of requirements or by the coverage of system or test
model elements such as states, transitions, or decisions. In risk-based testing, we aim at the coverage
of system risks. The criteria are designed by taking the risk values from the risk assessment to set
priorities for the test generation or to order the test execution in a test run. The test selection can be
either accomplished on existing test cases to select tests for test run or during test generation to enable
the directed, goal-oriented generation of tests.

Last but not least, security testing supports risk control. Risk control deals with the revision of risk
assessment results by correcting assumptions on probabilities, consequences or the maturity of treatments
scenarios or deals with the completion of risk analysis result by integrating vulnerabilities and thus



I. Schieferdecker, J. Grossmann, M. Schneider 9

potentially threats, threat scenarios and unwanted incidents. The test results can reflect and verify the
assumptions that have been made during risk analysis. The test results can be used to adjust risk analysis
results by introducing new or revised vulnerabilities or revised risk estimations on basis of the defects
being found. Test results, test coverage information and a revised or affirmed risk assessment can provide
solid arguments for the security level of a system as test results relate to the

• risks, which are addressed and covered by related test cases.

• treatment or threat scenarios, which are to be checked by the test cases.

• assets, whose related risks are checked by corresponding test cases.

• vulnerabilities, which have been identified and located related test cases.

2.4.2 Model-Based Fuzzing

While the origin of fuzzing is based on a complete randomized approach [15], block-based and model-
based fuzzers use their knowledge about the message structure to systematically generate messages con-
taining invalid data among valid data [19].

Systematic approaches are often more successful because the message structure is preserved and thus
the likelihood increases that the generated message is accepted by the SUT. Using fuzz testing principles
not only for test data generation but also for test behaviour generation complements the traditional fuzz
testing approaches. Behaviour fuzzing does not only reflect the generation of atypical messages but also
changes the typical appearance and order of messages. For example a valid and approved sequence of
messages can be turned into an atypical and unknown sequence by rearranging messages, repeating and
dropping them or just by changing the type of message.

Behaviour fuzzing aims at finding flaws in design and vulnerabilities in systems that are not simply
revealed by applying invalid input data. It focuses on misuse on a higher level of functionality. For
example, a security requirement defines that a download may only be started after successful authen-
tication. In a vulnerable system the download can be started additionally without any authentication.
Such fault can be detected using typical input data but atypical behaviour, e.g. by simply omitting the
authentication.

DIAMONDS develops model-based fuzzing approaches that use e.g. fuzzing operators on scenario
models which are specified by sequence diagrams. In the following, a simplified example from the
banking domain is used to illustrate how fuzzing operators are applied to sequence diagrams. For ease
of understanding most parameters are omitted.

The sequence diagram in Figure 3 describes how a bank customer can perform a transfer order. The
customers can either order a national or an international transfer (message 1). Afterwards the customer
sends the name of the recipient of the transfer order, the amount to be transferred (message 2) as well as
recipient’s national bank account information (message 3) in case of a national transfer order or recipi-
ent’s international bank account information (message 4) in case of an international transfer order. The
transfer order must be authorized by the customer sending a valid transaction number TAN (message 5).
If the customer accidentally sent an invalid TAN e. g. by mistyping it, he can try to enter a valid TAN up
to two times again (message 7, combined fragment loop).

Applying fuzzing operators to the diagram, messages can be moved, removed, repeated, inserted
or the type of a message can be changed to obtain an invalid sequence. Fuzzing operators perform a
mutation on the diagram resulting in an invalid sequence in comparison with the original. One fuzzing
operators performs only one mutation of a sequence diagram. For instance, a fuzzing operator can move



10 Model-Based Security Testing

Figure 3: Transfer Order Sequence

message 5 after message 2. Another fuzzing operator can generate an invalid sequence of messages by
negating interaction constraints of interaction operands. By negating the interaction constraint of the
loop combined fragment, the sequences generated from the resulting sequence diagram contain at least
two valid transaction numbers sent to the banking server (three if the second given TAN is valid). Figure
4 shows the results of the fuzzing operators from above.

Figure 4: Fuzzed Transfer Order Sequence

Performing the above mentioned fuzzing operators leads to different sequence diagrams that are the
basis for further test case generation. However, the main idea of fuzz testing approaches in general
is the ability to automatically generate a large number of test cases. This is achieved by applying not
only one fuzzing operator to a sequence diagram, but a set of fuzzing operators multiple times, e.g.



I. Schieferdecker, J. Grossmann, M. Schneider 11

by applying a single fuzzing operator to several model elements of a sequence diagram or by applying
several, possibly different fuzzing operators, one after another. The combination of fuzzing operators
permits the generation of a large number of test cases.

3 Summary

Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic
and efficient specification and documentation of security test objectives, security test cases and test suites,
as well as to their automated or semi-automated generation. This paper provides an initial survey on
model-based security testing by analyzing related work, discussing models that can be used for model-
based security testing, and by outlining two main approaches that are being developed in the European
ITEA2 project DIAMONDS by industrial and research partners from 6 countries:

• Risk-based security testing

• Model-based fuzzing

Details of risk-based security testing and model-based fuzzing are given in the DIAMONDS deliver-
ables. While DIAMONDS is an ongoing project that is at the half of the project duration having reached
2 of 4 milestone, the methods are still under development and the analysis of the gains and the pros
and cons of the methods is still to be done. However, initial versions of the methods have already been
applied in selected case studies that demonstrated the potentials of the described approaches.

References

[1] Paul Baker, Zhen Ru Dai, Jens Grabowski, ystein Haugen, Ina Schieferdecker & Clay Williams (2007):
Model-Driven Testing: Using the UML Testing Profile, 1 edition. Springer, Berlin. Available at http:
//dx.doi.org/10.1007/978-3-540-72563-3.

[2] David Basin, Jürgen Doser & Torsten Lodderstedt (2006): Model driven security: From UML models to
access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15, pp. 39–91. Available at http:
//doi.acm.org/10.1145/1125808.1125810.

[3] Mark Blackburn, Robert Busser & Aaron Nauman (2002): Model-based approach to security test automa-
tion. In: International Software Quality Week.

[4] Paul Gerrard & Neil Thompson (2002): Risk Based E-Business Testing. Artech House, Inc., Norwood, MA,
USA.

[5] F. Y. Gu Tian-yang, Shi Yin-sheng & Yuan (2010): Research on Software Security. Testing World Academy
of Science Engineering and Technology 69 2010.

[6] Matthias Güdemann, Frank Ortmeier & Wolfgang Reif (2007): Using Deductive Cause Consequence Anal-
ysis (DCCA) with SCADE. In: Proceedings of SAFECOMP 2007, Springer LNCS 4680.

[7] Ida Hogganvik (2007): A Graphical Approach to Security Risk Analysis. Ph.D. thesis, Oslo : University of
Oslo, Department of Informatics.

[8] Jan Jürjens (2002): UMLsec: Extending UML for Secure Systems Development. In Jean-Marc Jézéquel,
Heinrich Hussmann & Stephen Cook, editors: The Unified Modeling Language, Lecture Notes in Com-
puter Science 2460, Springer Berlin / Heidelberg, pp. 1–9. Available at http://dx.doi.org/10.1007/
3-540-45800-X_32.

[9] Jan Jürjens (2005): Secure Systems Development with UML. Springer. Available at http://dx.doi.org/
10.1007/b137706.

http://dx.doi.org/10.1007/978-3-540-72563-3
http://dx.doi.org/10.1007/978-3-540-72563-3
http://doi.acm.org/10.1145/1125808.1125810
http://doi.acm.org/10.1145/1125808.1125810
http://dx.doi.org/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1007/b137706
http://dx.doi.org/10.1007/b137706


12 Model-Based Security Testing

[10] Jan Jürjens (2008): Model-based Security Testing Using UMLsec. Electron. Notes Theor. Comput. Sci. 220,
pp. 93–104. Available at http://dl.acm.org/citation.cfm?id=1467086.1467133.

[11] Jan Jürjens & Guido Wimmel (2001): Specification-Based Testing of Firewalls. In Dines Bjørner, Manfred
Broy & Alexandre V. Zamulin, editors: Ershov Memorial Conference, Lecture Notes in Computer Science
2244, Springer, pp. 308–316. Available at http://dx.doi.org/10.1007/3-540-45575-2_31.

[12] Rauli Kaksonen (2001): A functional method for assessing protocol implementation security. VTT Publica-
tions 448, VTT Technical Research Center of Finland.

[13] M. S. Lund, B. Solhaug & K. Stlen (2011): Model-Driven Risk Analysis. The CORAS Approach. ISBN:
978-3-642-12322-1, Springer.

[14] Sjouke Mauw & Martijn Oostdijk (2005): Foundations of Attack Trees. In: International Conference on
Information Security and Cryptology ICISC 2005. LNCS 3935, Springer, pp. 186–198.

[15] Barton P. Miller, Lars Fredriksen & Bryan So (1990): An Empirical Study of the Reliability of UNIX Utilities.
In: In Proceedings of the Workshop of Parallel and Distributed Debugging, Academic Medicine, pp. pages
ix–xxi,.

[16] Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry & Yves Le Traon (2008): A Model-Based Framework
for Security Policy Specification, Deployment and Testing. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel
Bruel, Axel Uhl & Markus Völter, editors: MoDELS, Lecture Notes in Computer Science 5301, Springer,
pp. 537–552. Available at http://dx.doi.org/10.1007/978-3-540-87875-9_38.

[17] D.S. Nielsen (1971): The Cause/Consequence Diagram Method as a Basis for Quantitative Accident Analy-
sis. Technical Report RISO-M-1374, Danish Atomic Energy Commission.

[18] K.A. Reay & University of Loughborough (2002): Efficient fault tree analysis using binary decision dia-
grams/. University of Loughborough. Available at http://books.google.de/books?id=_0SFGwAACAAJ.

[19] A. Takanen, J. DeMott & C. Miller (2008): Fuzzing for software security testing and quality assurance.
Artech House information security and privacy series, Artech House. Available at http://books.google.
de/books?id=tMuAc_y9dFYC.

[20] W E Vesely, F F Goldberg, N H Roberts & D F Haasl (1981): Fault Tree Handbook. Office (NUREG-0492),
p. 209. Available at http://www.stormingmedia.us/37/3794/A379453.pdf.

[21] Linzhang Wang, Eric Wong & Dianxiang Xu (2007): A Threat Model Driven Approach for Security Testing.
In: Proceedings of the Third International Workshop on Software Engineering for Secure Systems, SESS
’07, IEEE Computer Society, Washington, DC, USA, pp. 10–. Available at http://dx.doi.org/10.
1109/SESS.2007.2.

[22] Martin Weiglhofer, Bernhard K. Aichernig & Franz Wotawa (2009): Fault-Based Conformance Testing in
Practice. Int. J. Software and Informatics 3(2-3), pp. 375–411. Available at http://www.ijsi.org/IJSI/
ch/reader/view_abstract.aspx?file_no=375{&}flag=1.

[23] Guido Wimmel & Jan Jürjens (2002): Specification-Based Test Generation for Security-Critical Systems
Using Mutations. In: Proceedings of the 4th International Conference on Formal Engineering Methods:
Formal Methods and Software Engineering, ICFEM ’02, Springer-Verlag, London, UK, UK, pp. 471–482.
Available at http://dl.acm.org/citation.cfm?id=646272.685812.

http://dl.acm.org/citation.cfm?id=1467086.1467133
http://dx.doi.org/10.1007/3-540-45575-2_31
http://dx.doi.org/10.1007/978-3-540-87875-9_38
http://books.google.de/books?id=_0SFGwAACAAJ
http://books.google.de/books?id=tMuAc_y9dFYC
http://books.google.de/books?id=tMuAc_y9dFYC
http://www.stormingmedia.us/37/3794/A379453.pdf
http://dx.doi.org/10.1109/SESS.2007.2
http://dx.doi.org/10.1109/SESS.2007.2
http://www.ijsi.org/IJSI/ch/reader/view_abstract.aspx?file_no=375{&}flag=1
http://www.ijsi.org/IJSI/ch/reader/view_abstract.aspx?file_no=375{&}flag=1
http://dl.acm.org/citation.cfm?id=646272.685812

	1 Introduction
	2 Model-based security testing and security testing 
	2.1 Related work
	2.2 Models in model-based security testing
	2.2.1 Architectural and functional models
	2.2.2 Threat, fault and risk models
	2.2.3 Weakness and vulnerabilities models

	2.3 Activities in model-based security testing
	2.4 Testing Approaches in DIAMONDS
	2.4.1 Risk-based security testing
	2.4.2 Model-Based Fuzzing


	3 Summary

