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This paper introduces basic concepts of rule based test generation with mind maps, and reports
experiences learned from industrial application of this technique in the domain of smart card testing
by Giesecke &Devrient GmbH over the last years. It describes the formalization of test selection
criteria used by our test generator, our test generation architecture and test generation framework.

1 Introduction

Testing is very important for smart card development because failure costs can be very high. Smart card
manufacturer Giesecke & Devrient GmbH spends significant effort on implementation of tests and the
development of new testing techniques. This paper presents some of the latest methodological results.

Our test cases should be short and easy to understand. They should execute fast and run indepen-
dently from other test cases, which simplifies debugging in case of test failure. In the past all test cases
were separately specified and implemented by test engineers. For testing of complex systems thousands
of such test cases containing setup, focus, verification and post processing were implemented. Manual
development of redundant code of the test scripts resulted in high costs of maintenance and change. We
studied existing test generation techniques and decided to develop our own approach.

Known test generation techniques often concentrate on only one modeling abstraction. For instance
the classification tree method [3]] provides exploration of test case space based on systematic partitioning
of test input and output data. It uses classification tree as a model of a test space. It does not make use of
SUT models e.g. for automatic data partitioning or selection of relevant data combinations.

There are also classical model based approaches where test cases and test coverage are generated
from the SUT models. This technique is supported by different test generation tools like Conformiq De-
signer [2l], LEIRIOS Test Designer [6] or Smartesting Certifylt [[7]. They do not consider test strategies
to be the responsibility of test engineers. The test strategies are implemented in the tools. To influence
the test generation the SUT model should be changed, other ways to introduce e.g. additional variations
of test data or different preconditions leading to the same model state are not supported. Hence the mod-
els become more complex, they include test specific elements and can not be reused for different kinds
of tests.

Also, models usually need to be complete, i.e. they need to contain all actions which can be used
by test cases. As a consequence, for complex systems where test preconditions need to refer to different
subsystems, the latter must be modeled as well because there is no other way to add the required actions
to the generated test cases. And finally, test case generation using model state exploration techniques
have high requirements on computer power and limitations on model state space.

Usage of different kinds of models allows software engineering principles to be applied to test de-
velopment. Identification of different abstractions makes it possible to use replaceable components for
controlling different aspects of the test generation. An interesting example of separating different as-
pects of test generation in different models is given by Microsoft Spec Explorer [3]]. There are models of
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SUT and also so-called slices, representing test scenarios considered by the generator. However it still
focuses on model state exploration making the SUT model the central element of test generation with
the limitations described above.

Some other tools model test sequences. This technique is represented by e.g. .getmore [8]. Here
a test sequence model is mixed with a SUT model, making it hard to reuse them separately. They also
do not care about the specification of different data inputs within the same test sequence or definition of
model independent test coverage goals.

In our approach there are three kinds of models. The most important one is a test strategy. It models
a test case space and is responsible for the amount and variance of the generated test cases. Test strategies
are placed in the focus of the test development. Test engineers explicitly define them, taking advantage
of their knowledge, intuition and experience. Then there is a model of system under test (SUT) which
simulates SUT data and behavior and, last nut not least, a test goal model which defines the test coverage.
All of these model types operate with different abstractions and need different notations.

This paper explains a formalization of test strategy and test goals used by our test generator. It also
describes test generator architecture and a test generation framework. The framework allows generation
of test suites from modular reusable components. In addition to the three kinds of models listed above
there are components called solvers and writers responsible for the output of the test scripts.

Structure of this paper. This paper describes models and other components used in our test gener-
ator. Section 2 introduces an example SUT used in all following sections to demonstrate the introduced
concepts. Property based test strategies developed as rule sets are explained in section 3. Test goals used
for test selection based on test coverage measurement are introduced in section 4. Section 5 describes
the other test generation components and demonstrates our test generation architecture. Our experiences
from the card development projects using this test generation technique are then reported. The paper
ends with a small conclusion section.

2 Example: calculation of phone call costs

Let us consider the following specification as an example of a system under test. It specifies software for
the calculation of phone call costs. The interface consists of two functions:

e setCheapCallOptionActive(isActive)
e calculateCallPrice(country, phoneNumber, day, callBeginTime, callDuration)

The first function is used to activate or deactivate a special tariff.

Function calculateCallPrice satisfies the following requirements:

If an invalid country or phone number is used, the function returns 0, otherwise the used tariff is
given by a price table: The destination can be obtained from the country as follows:

Destination Standard CheapCall At night, Time unit
Tariff Tariff on the (seconds)
weekend
National 0.10% 0.07% 0.03% 1
International _1 1.00$ 0.50% 0.80% 20
International 2 2.00% 1.20% 1.80% 30

Table 1: Call costs pro time unit dependent on call time and destination.
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e if country is empty or 'National’ the destination is set to National ,
e if country is ’Greenland’, ’Blueland’ or ’Neverland’ the destination is set to International 1,

e if country is *Yellowland’ or ’Redland’ the destination is set to International 2

All other country values are invalid.

Tariff ” At night” applies if the call begins between 8 pm and 6 am.

Tariff ”On the weekend” applies if the call begins on Saturday or on Sunday.

Call duration given in seconds is rounded up to units specified in column “Time unit”.
Maximal call duration is limited to 24 hours.

3 Exploration of test case space with test strategies

Tests are developed as a part of the quality assurance process. They should check that software imple-
mentation satisfies the user requirements. Each tested requirement should be covered by a sufficient set
of test cases checking all relevant aspects. There is an infinite number of possible test cases many of
which should be implemented. Hence test development requires good systematics to choose which ones
to actually implement.

We call a model, describing how test case space is systematically explored, a test strategy. It defines
the number and variance of test cases in a generated test suite. For example, the test strategy could define
which combinations of valid and invalid input data should be used. As we explain later, test strategies
usually not only guide input data coverage, they also describe other test aspects e.g. test intention (e.g. a
good case or a bad case), expected results or a test case name.

The base concept of test strategy definitions is a test case property.

3.1 Test case properties

The test case property is a key-value pair. Each property describes a test case characteristic such as test
name, variations of test actions or their input data, other test case related data like expected results, test
coverage and so on. Test properties can be used to declare what features are tested by a particular test
case or to classify tests in a test suite in some another way. The keys and values can be represented by
objects of arbitrary type. In our implementation the keys are strings and the values are some hierarchical
data structures.

Some of the test case property values e.g. some of the input parameters can be assigned indepen-
dently, but there may also be dependencies between property values. For example, in addition to proper-
ties corresponding to input parameters of the method “calculateCallPrice”, the test strategy could define
classifying properties

o isCallValid with possible values true and false,

e failureReason with possible values invalidCountry and invalidNumber, which makes sense only if

the call is not valid.

e destination with values National, International_Iland International 2.

According to the requirements, if test case property destination is assigned value International_1, param-
eter country can be chosen only from values Greenland, Blueland or Neverland.

A test strategy specifies range and number of the generated test cases by describing combinations
of the test case property values considering their dependencies. The test case space covered by a test
strategy is completely defined by the strategy property space. When all required property values are set,
a script with the test case can be written.
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3.2 Rule-based exploration of property space

Test strategies can be represented by a collection of business rules building an ordered rule set. The rules
specify variations of the test property values and dependencies between them.

Each rule defines values of one property called its target property. Because each test case definition
depends on values of many properties, the test strategy is given by a set of rules. The values can be
defined as expressions referencing other property values and arbitrary function calls. The rule can also
add new rules to the rule set. The added rules have other target properties. They remain in the rule set,
as long as iterations over the values of the target property of the rule where they are defined continue.

There are two kinds or rules: iteration rules and default rules.

The iteration rules define lists of values for their target properties. Their evaluation is triggered by
assignment of a value to another property set by another iteration rule (so-called forward chaining).

The default rules specify values of properties that have not been assigned by the iteration rules. Such
arule can be evaluated when its target property value is requested by another rule or by the test generation
algorithm (so-called backward chaining).

3.2.1 Iteration rules

Each iteration rule contains three parts: the WHEN-part describes when the rule is applied, the optional
IF-part describes an additional condition and the THEN-part describes the action setting the list of
property values and sometimes adding new rules to the set.

The WHEN-part can reference an arbitrary number of properties. If it does not reference any prop-
erty, the rule is applied when test generation starts, otherwise it waits until all referenced properties
become assigned by actions of other iteration rules.

If the rule is executed and its condition is satisfied, then its target property is sequentially assigned
values from the value list set by the rule action. Each assignment triggers evaluation of the dependent
iteration rules. Each test generated by the rule engine can be uniquely identified by the values of the
properties iterating over more than one value.

The iteration value list can be attributed with an option “shuffled” changing the order of the list
elements every time the iteration resumes from the beginning of the list. It produces different random
value combinations of parallel iterated properties. Hence if generation runs with different seeds it creates
different test cases.

If a rule sets an empty list of property values, it means that no value can be found for the already set
values of other properties. In this case rule engine tries to change a value of some property referenced in
its WHEN part.

Some informal examples of the iteration rules.

Let us look at some examples of the iteration rules. They will be repeated in mind map notation in a
later part of this article.

Iteration rule 1: WHEN (empty) IF (empty) THEN property isCallValid is sequentially assigned
values true, false

Iteration rule 2: WHEN property isCallValid is assigned IF it has value true THEN property desti-
nation is sequentially assigned values National, International_1 and International 2

Iteration rule 3: WHEN property isCallValid is assigned IF it has value true THEN property call-
Duration is sequentially assigned values / and 60

Iteration rule 4: WHEN property destination is assigned IF it has value International_I THEN
property country is sequentially assigned values Greenland, Blueland, Neverland
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3.2.2 Default rules

Default rules contain only an optional IF - part with a condition and a THEN - part describing an action.
They are evaluated whenever their target property value is requested from an IF- or THEN-part of another
rule or from any other test generation component but has not been assigned yet. The action assigns some
value to the rule’s target property. Default rules are not designed for producing iterations, they always
assign single values.

Informal example of a default rule

Default rule 1: IF destination = International 2 THEN assign to country value Redland

3.2.3 Rule stack

Iteration rules with the same properties in the WHEN part and the same target property build a so-called
rule stack. They are processed in the opposite order to their definition. If some rule with empty condition
or with satisfied condition was found no other rules from the stack are executed. There are also rule
stacks with default rules.

Rule sets must be self-consistent: if a property has already been assigned, no other iteration rule may
try to reassign it.

Rules added to the stack later can override previously defined rules. This can be used to define
strategy variations overloading some default strategy. For example there can be some common and
product dependent subsets for testing of a product line.

3.2.4 Rule engine

There is a rule engine generating combinations of test case properties corresponding to single test cases.
It starts with a given rule set and executes all iteration rules from rule stacks with an empty WHEN part,
iterates over all values from the property lists and processes chained iteration rules as properties become
assigned. Each combination of property values can become a test case.

The rule engine tracks all dependencies between properties. Property A is called dependent on
property B if there is a rule with target property A which refers to property B from its WHEN, IF or
THEN part. When a property iterates over different values, the next value is assigned only after all
iterations over its dependent properties finishes.

The rule engine run terminates after all iterations specified by iteration rules are finished.

Whenever an unassigned property is requested, the rule engine executes a related default rule if it is
available and applicable according to its [F-part.

3.2.5 Example

Iteration rules 1 to 4 from the above example generate following property combinations:

1:$isCallValid:TRUE/$destination:National/$callDuration:1
2_$isCallValid:TRUE/$destination:International_1/$country:Greenland/$callDuration:60
3:$isCallValid:TRUE/$destination: International_1/$country:Blueland/$callDuration:1
4:$isCallValid:TRUE/$destination: International_1/$country:Neverland/$callDuration:60
5:$isCallValid:TRUE/$destination: International_2/$callDuration:1
6:$isCallValid:FALSE
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The rule engine simultaneously iterates over values of properties country and callDuration. If their
lists had the option shuffled set, mutual combinations of their values would be randomized.

3.2.6 Mind map representation

The rule sets modeling test case space can be implemented in scripts or with mind maps.

In the mind maps relations between properties are represented by relative positions of the mind map
nodes.

All examples given in figures 1,2 and 3 demonstrate how the above set of rules can be implemented
in a mind map.

SisCallvalig ;e file
loops

; ; [P - 1,60
" when _ $istalvaiid  FeallDuration fisCallvalid==true : ——>=

I

!

Rt i i jid == : ‘Hational,
| when _ Sicaivaia  §destination _if _ #isCallvalid == trus | Intemationsl 1!
[ ' 'International 2'
\ Crreenland,
when _ Sdestination Foountry if Fdestination == International _1 . ?J?xfelinlazdld

Figure 1: Exact copy of the above rules in the mind map notation.

3. true, falze
loops _ w{:;a_“Dura“m i SisCallvalid==tue  : L60
\ it SisCallvalid == true i ‘Hational, International 1, 'International 2
\_fdestination "Chreenland
\ Fdestination == 'International_1' : ‘Blueland,

\_ Sountry  if

s 'Heverland

\.

Figure 2: Here the WHEN relation is represented by a property definition outgoing from another property
definition. The IF-parts are specified explicitly.

_ _ ‘Mational
loops  ®IsCalValld . guectination @/ Grreendand,
| I ‘Intermational 1*  $country 1 ‘Blueland,
| | | ' Meverland

| | \_ International 2'

| \_gcallDuration @ 160
\ false

Figure 3: The map structure is used for representing both WHEN and IF parts. IF equality conditions are
specified by property definitions outgoing from value definitions.

Use of mind maps for test strategy implementation simplifies development, reviewing and improve-
ment of the strategy. Mind maps as a representation of generation rules offers good visualization, auto-
matic context dependent node formatting, search and filtering of the rule sets.



Dimitry Polivaev 109

4 'Test coverage controlled by test goals

All possible combinations of input parameters cannot be tested within a reasonable amount of time. If
test strategies generate too many test cases, the test cases contributing to the achievement of desired
coverage criteria must be distinguished from the test cases, which can be discarded without negative
effects on coverage. Therefore test selection and requirement coverage criteria should be defined in
addition to the test strategy rules. Such criteria are called test goals.

Test goals can also be used to check completeness and correctness of test generation. If some goals
are not achieved, it can indicate an error in test generation components or in the specification.

We differentiate between finite and infinite test goals. A finite test goal is basically a check list
which can contain SUT model code coverage, the modified condition/decision coverage or the boundary
condition coverage, values of the test input parameters, model predicted results or model interim data
separately or in a combination. For instance, in our phone call example, a test goal can require that some
calculated call prices are covered by the complete test suite or by its subset, limited to calls to some
particular destination.

The finite goal is defined as a pair of the complete check list given as e.g. set of strings and a function
mapping test case data to the set of values containing the check list values. A test is important for a finite
goal, if the goal function called with the test related data returns some value contained in the check list
for the first time since the generation was started.

Because sometimes calculation of the complete check list is difficult or even impossible as in the case
of model path coverage, there are also so-called infinite goals. These consist only of their goal function
and there is no predefined check list. The test is important for an infinite goal if the function returns a
result not previously returned. The check list is automatically filled with all returned values.

The test goal functions can be defined as expressions using the test case property values. And every
expression defined on test case property values can be used to define a new test case property itself. For
instance the goal functions can use SUT model execution results, its intermediate states, collected code
coverage and state coverage data. A set of all statements contained in the model can be obtained from
the model automatically. It builds a check list for a goal based on the model code coverage. Check lists
for state coverage or result coverage related goals can be separately created by test engineer. This way
coverage of the test suite based on model code and state coverage is ensured.

Given a set of goals, test generation statistics are collected during the test generation. They describe
how often any particular goal value was returned for the generated test cases.

Goals related to combinations of test case properties specified in the strategy rules can be defined
in the mind maps as in our example. The example test goal given in figure 4, requires that all possible
combinations of country and tariff are tested with a valid call.

Sarif ¢ ‘Stancrd, ChespCall, 't night, 'OnTheWeekend
4 ‘Crsenland, 'Bluslnd, Neverlamd, Vellowlmd, Redland, Motherland, ‘reissing

goals _ alltariffs and countries | §countryCode  :
\_ BisCallvalig = tme

Figure 4: Example of property based test goal definition in a mind map
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S Test engineering

For the sake of maintainability and changeability of test suites they should be generated from modular
organized reusable components. The complete test generation architecture is described in this section.

5.1 Test components

Previous sections explained test strategies and test goals used for test variant generation, selection and
test coverage estimation. These, together with a so-called test script writer, call functions from the SUT
related components model and solver which model the behavior of system under test and know, or are
able to calculate how the SUT state can be manipulated or checked.

The writer is a component which creates executable test scripts from the test property values. For
instance it outputs test header, test name, description, commands, comments etc. It is the only module
which depends on the language and libraries used by the generated test scripts. It is called by a framework
for each generated test case separately.

The model calculates expected results and reports data for statement coverage, path coverage, mod-
ified condition / decision coverage, internal states at given statements, given a function name, input
parameters and data state before call. The collected coverage information can be used for test coverage
measurement and for test goal definition. A model code coverage related test goal can be defined as
a pair of the set of all statements contained in the model and a function returning a list of statements
covered by the given test case. Similar goals can be defined for measuring of the modified condition /
decision coverage and of boundary coverage.

The solver decides which SUT functions should be called and which parameter values should be
used in order to bring the SUT into a required state and to check its state. For instance, test commands in
preconditions, post processing or verification can be calculated in this component. In our example there
is a function setCheapCallOptionActive(isActive). To use this function in a precondition the writer can
obtain the complete precondition data from the solver.

The solver can be implemented using tools statically analyzing the model. However direct imple-
mentation is often easier and more efficient. It is particularly the case for complex systems, where test
preconditions require calls to different subsystems not covered by the model.

If a suitable solver is available, the test strategy can directly define iterations over test output data
related or model state related test case properties. It is useful for generating a test suite with test cases
covering wished output data or SUT model states. Implementing such solvers can be difficult. Thus test
strategies more often iterate over different preconditions and test input data. Then the output data, code
and state coverage are controlled by the test goals and not by the strategy. This approach makes complex
solvers superfluous but requires much more test case property combinations to be tried before all goals
are achieved.

5.2 Component reusability

The proposed design simplifies reuse of the same components for different tasks because they can be
replaced independently in order to create different test suites.

o Different strategies can be used for testing of different features of SUT.

e Different models can be used for testing of different products / product variations.



Dimitry Polivaev 111

-
Modelling components
—_____ oufputs,
states,
solutions,
code
- coverage
A input data,
states
input datea, output data,
output data, . states,
slates, |npl::ta::lam. solutions,
code slaes code
COVETBQE coverage
Strategy
as Rule Set
coverage
20 properties prop-erhe& pI'CIiJEI'tIEE properties
test script
statements
mvsraga prnpartlss prnpamas
Y
Tesl Test Casa Test
Coverage Properties Script

Figure 5: Test generation data flow

e Different solvers can be used to prepare an initial state of the test target, to verify its state after
executing the focus or reset it at the end of the test case using different input data and command
sequences.

o Different writers can be used for generating scripts for different script languages.

e Different test goals can be used for variation of test depth, e.g. for smoke tests, regression tests,
exhaustive tests etc.

5.3 Test generation framework

The described ideas have been implemented as a test generation framework. The framework allows mod-
ular development of test suites similar to development of software. The test components are comparable
to software components in a software development. The test generator produces test scripts and test
coverage information like a compiler building executable software applications.

Our framework contains tools and libraries for the development of the test components and for the
generation of executable test scripts in arbitrary textual languages.

For the development of test strategies and test goals as mind maps, the framework uses mind map
editor Freeplane, which is available under GPL. It allows you to specify rules as mind maps, and supports
mind map development through context dependent text formatting, map filtering and search. There is a
converter transforming mind map based sets of rules and goals into the generation scripts.
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Figure 6: Test generation process compared to software development

The framework contains a rule engine evaluating the rules and a goal engine collecting information
about test coverage achieved by generated test cases. Using information from the goal engine, our rule
engine can also effectively reduce the explored property space, and thus the number of the generated
property combinations, skipping iterations over properties not relevant for the achievement of the test
goals. This procedure is similar to the one described in [[]].

The framework contains a compiler for the programming language used for the development of
writer and model components. The compiler generates code for automatic measurement of code, path
and mc/dc coverage and boundary condition coverage needed for the coverage related goals. For the
purpose of creating the test script files it supports test script templates embedded into the generation code.
Such templates can access script variables and functions. The language has support for large integer
arithmetic, complex data structures, it contains closures and statement blocks as method arguments. The
test generator software translates scripts written in this language into java code, which is then compiled
and executed. Java libraries can be called directly from the scripts if it is required.

6 Framework evaluation based on real life experience

The framework is currently used in projects testing the newest MasterCard, VISA smart cards and java
cards. It demonstrated excellent scalability. In big projects it was used to generate tens of thousands
of test cases but it was also efficient for generating small test suites containing a few hundred of test
cases. For example, the test strategy definition of one typical project consists of 1135 iteration rules
and 202 default rules, defined in 4007 nodes contained in 14 mind maps. The model implemented
1467 functional requirements. The test goal definitions were based on the complete code coverage, the
modified condition/decision coverage and boundary coverage of the SUT model. They could be obtained
automatically. The generator reduced the explored property space as described above, generated 90389
property value combinations, selected and created 5312 test cases.
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Our overall positive experience has shown that the described methodology can be effectively used for
test generation for different test targets. Test implementation effort has been reduced by more than 50%
compared to methods not using the test generation. We achieved even greater reduction of test adaptation
efforts on specification updates because they often caused only minor changes of the SUT model and the
test generation could be repeated.

Test development using the proposed methodology fits well in existing processes. It is helpful to start
with the manual implementation of some test cases which can later be used for creating the test templates
embedded in a writer component. After they are available, development of all necessary components can
be started. In a project team, they are implemented by different people at the same time, giving a natural
way to divide the work. All components can be developed incrementally. It is possible to have a small
number of test cases, with a high coverage of the requirements, available quickly. While the first found
bugs are being fixed, the strategies can be extended. And there is no need to implement a full model of
the SUT. Only aspects required to define a strategy and test goals or to calculate expected results should
be considered.

The method achieves better test case systematics compared to manual test development we used be-
fore. It results from the use of formally defined test strategies and the monitoring of test coverage by
test goals. Test case input data determined by the test strategy with random values and mutually random
value combinations for different properties additionally increase test coverage and help to discover fur-
ther bugs. Specification errors can be found earlier with the aid of model code coverage information and
test goals statistics collected during the test generation. Detailed debugging information like the model
code coverage is supplied. This also helps to reduce effort for test object debugging.

7 Conclusion

Our methodology identifies different kinds of test generation related models. It offers different abstrac-
tions and notations for their definition and suggests to implement them in different ways, and just as
detailed as necessary to achieve the test goals.

It sees the test strategy as the driving force of the test generation and explains how to implement
it using a special form of business rules systematically defined in mind maps. The maps look similar
to classification trees known from the classification tree method but they are more powerful. Their
strength is to consider complex dependencies between property values, visually specify their relations
and dynamically change a rule set during the strategy run.

Information obtained from SUT models including model code coverage data and internal states of
the model at arbitrary points of model execution can also be used by the strategy and by the other
components. The test generation framework supplies a compiler for the development of SUT models
and implements the measurement of model coverage, the rule engine and the goal engine.

Use of the framework in different real life projects demonstrated its high efficiency, excellent scal-
ability and good performance resulting in a reduction of testing costs and improved maintainability and
changeability of the created test suites.
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