How to Obtain Computational Completenessin
P Systemswith One Catalyst

Rudolf Freund

Technische Universitat Wien, Institut fir Computersgren
Favoritenstr. 9, A-1040 Wien, Austria

rudi@emcc.at

Gheorghe Paun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucuresti, Romania, and

Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

gpaunQus.es, ghpaun@gmail.com

Whether P systems with only one catalyst can already be ctatipuoally complete, is still an open
problem. Here we establish computational completenesssimg tspecific variants of additional
control mechanisms. At each step using only multiset ravgritules from one set of a finite number
of sets of multiset rewriting rules allows for obtaining coatational completeness with one catalyst
and only one membrane. If the targets are used for choosinmtlitiset of rules to be applied, for
getting computational completeness with only one cataftyse than one membrane is needed. If the
available sets of rules change periodically with time, catapional completeness can be obtained
with one catalyst in one membrane. Moreover, we also impesigting computational completeness
results for P systems with mobile catalysts and for P systeithsmembrane creation.

1 Introduction

P systems with catalytic rules were already considered encttiginating papers for membrane sys-
tems, see [12]. In 4] two catalysts were shown to be sufftdi@ngetting computational completeness
(throughout this paper, with this notion we will indicateattall recursively enumerable sets of (vec-
tors of) non-negative integers can be generated). Sincg itheas become one of the most challenging
open problems in the area of P systems, whether or not ongstatsight already be enough to obtain
computational completeness.

Using additional control mechanisms as, for example, piegror promoters/inhibitors, P systems
with only one catalyst can be shown to be computationally glete, e.g., see Chapter 4 of [13]. On
the other hand, additional features for the catalyst maykert into account; for example, we may use
bi-stable catalysts (catalysts switching between twaedsffit states) or mobile catalysts (catalysts able
to cross membranes). Moreover, additional membrane featmay be used, for example, membrane
creation or controlling the membrane permeability by mesribe operation® andT.

P systems with mobile catalysts were introduced_ in [7], d@ir tcomputational completeness was
proved with using three membranes and targets of the ftvens out, andin;. We here improve this
result by replacing the targeis; with the weaker onén.

P systems with membrane creation were introduced]in [Qwsigpboth their computational com-
pleteness and efficiency (the Hamiltonian path problem ligesiain linear time in a semi-uniform way;

T. Neary and M. Cook (Eds.):
Machines, Computations and Universality (MCU 2013) This work is dedicated to the public domain.
EPTCS 128, 2013, pp. 47961, d0i:10.4204/EPTCS.128.13

http://dx.doi.org/10.4204/EPTCS.128.13
http://creativecommons.org/publicdomain/zero/1.0/

48 How to Obtain Computational Completeness in P Systems wiid Catalyst

this result was improved ir_[6], where a polynomial solutiorthe Subset Sum problem in a uniform
way is provided). For proving computational completen@s9] (Theorem 2) P systems starting with
one membrane, having four membranes at some time duringotheutation, using one catalyst, and
also controlling the membrane permeability by means of fegationsd andt are needed. However, as
already shown in[11], P systems with one catalyst and usie@peration® andt are computationally
complete, hence, the membrane creation facility is notsesng for getting computational completeness
in this framework. Here we improve the result shown(in [9hfrowo points of view: (i) the control of
membrane permeability is not used, and (ii) the maximal remolb membranes used during a computa-
tion is two.

Recenty, several variants of P systems using only one satalgether with control mechanisms for
choosing the rules applicable in a computation step have baesidered: for example, inl[8] the rules
are labeled with elements from an alphabetaind in each step a maximal multiset of rules having the
same label front is applied. In this paper, we will give a short proof for themqautational completeness
of theseP systems with label selectiavith only one catalyst in a single membrane. As a specifiawdyi
for each membrane we can choose the rules according to tietdaand we will prove computational
completeness for thegesystems with target selectianith only one catalyst, but needing more than one
membrane (such systems with only one membrane lead to thepstn problem of catalytic P systems
with one catalyst).

Regular control languages were considered already in f@hfomaximally parallel derivation mode,
whereas in[[ll] computational completeness was proved ®oséguential mode: there even only non-
cooperative rules were needed in one membrane for timengaly systems to obtain computational
completeness (in time-varying systems, the set of availalles varies periodically with time, i.e., the
regular control language is of the very specific fain= (U, ...Up)", allowing to apply rules from a set
U; in the computation stepn+i, n > 0; pis called theperiod), but a bounded number of steps without
applying any rule had to be allowed. We here prove tme-varying P systemssing the maximally
parallel derivation mode in one membrane with only one gatadre computationally complete with a
period of six and the usual halting when no rule can be applied

The new results exhibited in this paper first were presemtdd]i For the newest developments in
the area of P systems we refer the reader to the P systemdevdi&gi

2 Prerequisites

The set of non-negative integers is denoted\oyAn alphabet Vis a finite non-empty set of abstract
symbols GivenV, the free monoid generated byunder the operation of concatenation is denoted by
V*; the elements o¥* are called strings, and trempty strings denoted by ; V*\ {A} is denoted by
V*. Let{as, --,an} be an arbitrary alphabet; the number of occurrences of aalyain a stringx is
denoted byx|, . For afixed sequenc@y, - - ,a,) of the symbols in the alphabésy, - - - ,an}, theParikh
vectorassociated witl with respect to(ay, -+ ,an) is (|X|, .- ,|X|,,); the Parikh imageof a language

L over{ay,---,a,} is the set of all Parikh vectors of stringslinand we denote it bi?s(L). For a family

of languaged-L, the family of Parikh images of languageshih is denoted byPsFL; for families of
languages of a one-letter alphabet, the correspondingpBrts-negative integers are denotedNbiyL.

A (finite) multiset over the (finite) alphab&t, V = {&,--- ,a,}, is a mappingf : V — N and
represented byf (a;),a1)- - (f (an),an) or by any stringx the Parikh vector of which with respect
to (ag,---,an) is (f(a1), -+, f(an)). In the following we will not distinguish between a vector
(my,---,my), its representation by a multisgty, a;) - - - (my, @) or its representation by a strizdhaving

Rudolf Freund and Gheorghe Paun 49

the Parikh vectof|x|, ,---,|X|,) = (my,---,my). For a fixed sequencg,--- ,a,) of the symbols in
the alphabe{ay,--- ,an}, the representation of the multis@ty,as) - - - (M, a,) by the stringa™ - - - aff»
is unigue.

The family of regular and recursively enumerable stringgleages is denoted bBREG and RE,
respectively. For more details of formal language theogyrmader is referred to the monographs and
handbooks in this area as [2] and][14].

A register machines a tupleM = (m,B, lo, I, P), wheremis the number of register®, is the set of
instructions bijectively labeled by elementsRifly € B is the initial label, and;, € B is the final label.
The instructions oM can be of the following forms:

e |1:(ADD(j),l2,13), withl; € B\ {In}, I2,13€B, 1< j<m.
Increase the value of registgby one, and non-deterministically jump to instructigror |3. This
instruction is usually callethcrement

e |1:(SUB(j),lp13), withl; € B\ {In}, 12,13€B, 1< j<m.
If the value of registej is zero then jump to instructioa, otherwise decrease the value of register
j by one and jump to instruction. The two cases of this instruction are usually caltedo-test
anddecrementrespectively.

e |, HALT. Stop the execution of instructions of the register machine

A configurationof a register machine is described by the contents of eacstee@nd by the value
of the current label, which indicates the next instructioé executed. Computations start by executing
the first instruction oP (labeled withlp), and terminate with reaching tlRLT instruction.

Register machines provide a simple computing model whidoisputationally complete (e.g., see
[10]). For generating sets of vectors of non-negative mitegwe start with empty registers, use the
first two registers for the necessary computations and tekeslts the contents of theregisters 3 to
k+ 2 in all possible halting computations; during a computatd M, only the registers 1 and 2 can
be decremented, and moreover, we assume the registers 1tanoe2empty at the end of a halting
computation. In the following, we shall call a specific modéP systemsomputationally completié
and only if for any register machirid we can effectively construct an equivalent P syst&wf that type
simulating each step &l in a bounded number of steps and yielding the same results.

2.1 P Systems

The basic ingredients of a (cell-like) P system are the mamistructure, the objects placed in the
membrane regions, and the evolution rules. Tembrane structures a hierarchical arrangement of
membranes. Each membrane defingsgion/compartmentthe space between the membrane and the
immediately inner membranes; the outermost membraneleddileskin membranghe region outside

is theenvironmentalso indicated by (the label) 0. Each membrane can be hbahel the label (from a
setLab) will identify both the membrane and its region. The membraimucture can be represented by a
rooted tree (with the label of a membrane in each node andkihénsthe root), but also by an expression
of correctly nested labeled parentheses. @bgcts(multisets) are placed in the compartments of the
membrane structure and usually represented by strings tatmultiplicity of a symbol corresponding
to the number of occurrences of that symbol in the striffge evolution rulesre multiset rewriting rules
of the formu — v, whereu is a multiset of objects from a given sétandv = (by,tars)... (b, tary)
with bj € O andtar; € {hereout,in} ortar; € {hereout} U{in; | j € Lab}, 1<i <k. Using such a rule
means “consuming” the objects ofand “producing” the objectby,...,bx of v; the target indications

50 How to Obtain Computational Completeness in P Systems wiid Catalyst

(targetsfor short) here out, andin mean that an object with the tardetreremains in the same region
where the rule is applied, an object with the targat is sent out of the respective membrane (in this
way, objects can also be sent to the environment, when tieeiswdpplied in the skin region), while
an object with the targah is sent to one of the immediately inner membranes, non-uétestically
chosen, wheras witim; this inner membrane can be specified directly. Usually, wi the targethere
With respect to the tree representation of the membranetstauof the P system, the targmit means
moving the object to the region represented by the parerd,raw the targeh means moving the object
to a region represented by one of the children nodes; withatigetin; we can directly specify which of
the children nodes is to be chosen.

Formally, a (cell-like) P system is a construct

M :(Oall7W1a---7Wm7R1a---7Rmaf)

whereO is the alphabet of objectg is the membrane structure (with membranes)yy,...,wy are
multisets of objects present in theregions ofu at the beginning of a computatioly, ..., Ry are finite
sets of evolution rules, associated with the regiong,dndf is the label of the membrane region from
which the outputs are takerfi & 0 indicates that the output is taken from the environment).

If a rule u — v has at least two objects in then it is calledcooperative otherwise it is calledhon-
cooperative In catalytic P systems/e use non-cooperative as well @atalytic ruleswhich are of the
form ca— cv, wherec is a special object — a so-calledtalyst— which never evolves and never passes
through a membrane (both these restrictions can be relawedit just assists object to evolve to the
multisetv. In a purely catalytic P systerwe only allow catalytic rules. In both catalytic and purely
catalytic P systems we replaGeby O,C in order to specify those objects frowhich are the catalysts
in the seC, i.e., we write

n=(0,C,u,wi,...,Wm,Rq,....,Rm,).

The evolution rules are used in then-deterministic maximally parall@lay, i.e., in any computation
step ofl1 we choose a multiset of rules from the sBis.. ., Ry in such a way that no further rule can be
added to it so that the obtained multiset would still be aggtlie to the existing objects in the membrane
regions 1...,m.

The membranes and the objects present in the compartmeatsyatem at a given time form a
configuration starting from a giverinitial configuration and using the rules as explained above, we
gettransitionsamong configurations; a sequence of transitions formsnaputation A computation is
haltingif it reaches a configuration where no rule can be applied angmVith a halting computation we
associate gesult in the form of the number of objects present in membriimethe halting configuration.
The set of non-negative integers and the set of (Parikhox®aif non-negative integers obtained as
results of halting computations I are denoted bi () andPs(I), respectively.

The family of set& (M), Y € {N, Ps}, computed by P systems with at mastmembranes and coop-
erative rules and with non-cooperative rules is denoted O, (coop andY OR;,(ncoo), respectively.
It is well known that for anym> 1, Y REG=Y OR,(ncog € NORy(coop =Y RE seel[12].

The family of setsy (M), Y € {N,Ps}, computed by (purely) catalytic P systems with at mmost
membranes and at madstcatalysts is denoted byOR,(cati) (Y OR,(pcak)); from [4] we know that,
with the results being sent to the environment, we ha@& (cat,) = Y OR (pcag) = YRE

If we allow catalysts to move from one membrane region tolarobne, then we speak Bfsystems
with mobile catalysts The families of setd (I1) and Ps(I) computed by P systems with at mast
membranes anklmobile catalysts are denoted MOR,(mcak) andPsOR,(mcak), respectively.

Rudolf Freund and Gheorghe Paun 51

For all the variants of P systems using rules of some s defined above, we may consider
systems containing only rules of the foum— v whereu € O andv = (by,tar) ... (by,tar) with by € O
andtar € {hereout,in} ortar € {hergout} U{in; | jeH}, 1<i <k, i.e., in each rule there is only
one target for all objectbk;; moreover, with the targah we assume all objects generated by the rules
of the chosen multiset of rules applied to the objects in aifipeegion of the current configuration to
choose the same inner membranecdfalytic rulesare considered, then we request the rules to be of the
form ca— (c,here) (by,here) ... (bg, here), as the catalyst is not allowed to mo systems with target
selectioncontain only these forms of rules; moreover, in each contipmastep, for each membrane
regioni we choose a non-empty multiset (if it exists) of ruRdrom R, having the same targéar — for
different membranes these targets may be different — arig &jm the maximally parallel way, i.e., the
setR cannot be extended by any further rule fr&mwith the targetar so that the obtained multiset of
rules would still be applicable to the existing objects ia thembrane region The family of setdN (1)
andPs(IM) computed by P systems with target selection with at mostembranes and rules of type
is denoted bYNOR;, (X, ts) andPsOR, (X, ts), respectively.

For all the variants of P systems of tyewe may consider to label all the rules inthe SRits .., Ry
in a one-to-one manner by labels from a Beand to take a s&V containing subsets dfi. Then aP
system with label selectida a construct

M :(O7H7W1a---7Wm7R17---aRm7H7W7f)

wherel’ = (O, u,wy,...,Wn,Ry,...,Ry, f) is a P system as defined abotrejs a set of labels for the
rules in the set®y, ..., Ry, andW C 2. In any transition step ifil we first select a set of labels € W
and then apply a non-empty multigedf rules such that all the labels of these ruleRiare inU in the
maximally parallel way, i.e., the s&cannot be extended by any further rule with a label ftdrso that
the obtained multiset of rules would still be applicabletie existing objects in the membrane regions
1,...,m. The family of setdN (M) andPs(M) computed by P systems with label selection with at most
m membranes and rules of typeis denoted byNOR, (X, 1s) andPsOR, (X, Is), respectively.

Another method to control the application of the labele@sus$ to use control languages (s€e [8] and
[1]. A controlled P systens a construct

M :(O7H7Wl>"'7Wm>Rl>"'7Rm7H>L7f)

wherelM’ = (O, U, wy,...,Wn,Ry,...,Ry, f) is a P system as defined abo¥ejs a set of labels for the
rules in the set®y, ..., Ry, andL is a string language ovef'each subset dfl represents an element
of the alphabet foL) from a family FL. Every successful computationlihhas to follow a control word
U:...Up € L: in transition step, only rules with labels itJ; are allowed to be applied (but again in the
maximally parallel way, i.e., we have to apply a multigedf rules with labels irlJ; which cannot be
extended by any rule with a label Wy such that the resulting multiset would still be applicapkd
after then-th transition, the computation halts; we may relax this eaddition, i.e., we may stop after
thei-th transition for anyi < n, and then we speak @ieakly controlled P system#f L = (U;...Up)",

I is called aweakly) time-varying P systenm the computation stepn+i, n > 0, rules from the say;
have to be appliedp is called theperiod The family of set (M), Y € {N,Ps}, computed by (weakly)
controlled P systems and (weakly) time-varying P systentts pariodp, with at mostm membranes and
rules of typeX as well as control languagesHhiL is denoted by OR, (X,C(FL)) (Y OR,(X,wC(FL)))
andY OR, (X, TVp) (YOR, (X, WTV,)), respectively.

In the P systems with membrane creatioonsidered in this paper, besides the catalytic rages>
c(u,tar) and the non-cooperative rules— (u,tar) we also use catalytic membrane creation rules of

52 How to Obtain Computational Completeness in P Systems wiid Catalyst

the formca — c[u]; (in the context ofc, from the objecta a new membrane with labélcontaining

the multisetu is generated) and membrane dissolution rales ud (we assume that no objects can be
sent into a membrane which is going to be dissolved; witholiiisy the membraneby applyingd, all
objects contained inside this membrane are collected iretfien surrounding the dissolved membrane);
in all casesg is a catalysta is an objecty is a multiset, andar is a target of the fornmerg out, andin;.

The family of setsy (M), Y € {N,Ps}, computed by such P systems with membrane creation and using
at mostk catalysts, withm initial membranes and having at mdsinembranes during its computations

is denoted by Ry, (catg, mcre).

3 Computational Completeness of P Systemswith Label Selection

Theorem 1 YOR (caty,ls) =YRE, Ye {N,Ps}.

Proof. ~We only prove the inclusioiPSREC PsOR (caty,ls). Let us consider a register machine
M = (n+2,B,lo,In, 1) with only the first and the second register ever being deanéede and letA =
{a1,...,an12} be the set of objects for representing the contents of thsteeg 1 ton+ 2 of M. We
construct the following P system:

n = (0,{c},[];,cdl,Ri,H,W,0),
O = AuUBU{c,d,#},
H = {LI'[leB\{ln}}U{lin|xe{1,21,2,d#}},
and the rules foR; and the sets of labels W are defined as follows:
A. Letl; : (ADD(r),l;,lx) be an ADD instruction ini. If r > 2, then the (labeled) rules

li :li = 1j (ar,out), I :1i — Ik (ar,out),
are used, and fare {1, 2}, we take the rules
i o 1 —>I,-a;, Ii/:|i — lkar.

In both cases, we defing;, |/} to be the corresponding set of labeldAh The contents of each register
r,r € {1,2}, is represented by the number of objegtpresent in the skin membrane; any objactvith
r > 3 is immediately sent out into the environment.

B. The simulation of a SUB instructiol : (SUB(r),lj,lx), for r € {1,2}, is carried out by the fol-
lowing rules and the corresponding sets of labeM/in
For the case that the register € {1,2}, is not empty we take the (labeled) rules

|iZ|i—>|j, |<r>ZC6f—>C, |<d>ZCd—>C#,

(if no symbola, is present, i.e., if the registeris empty, then the trap symbol # is introduced by the rule
I(d) rcd—).
For the case that the registets empty, we take the (labeled) rules

o=, gy ca — ot

(if at least one symba, is present, i.e., if the registeiis not empty, then the trap symbol # is introduced
by the rulel ;. : ca — c#).

Rudolf Freund and Gheorghe Paun 53

The corresponding sets of labels to be taken Wttare {I;,1/),l.g } and{l{,1;y}, respectively. In
both cases, the simulation of the SUB instruction workseszity |f we have made the right choice.

C. We also add the labeled rulg, : # — # to Ry and the sef{l 4 } to W, hence, the computation
cannot halt once the trap symbol # has been generated.

In sum, we observe that each computation stepliis simulated by exactly one computation step
in I; moreover, such a simulating computationrhalts if and only if the corresponding computation
in M halts (as soon as the laldglappears, no rule can be applied anymorEljras we have not defined
any rule for the HALT instruction oM). If at some moment we make the wrong choice when trying
to simulate a SUB instruction and have to generate the tragbsl#, the computation will never halt.
Hence, we have showPs(M) = Ps(I), which completes the proof. [|

4 Computational Completeness of P Systemswith Target Selection

Theorem 2 YOPR (cat;,ts) = YRE, Ye {N,Ps}.

Proof. ~We only prove the inclusioiPsREC PsOR (cat;,ts). Let us consider a register machine
M = (n+2,B,lo,ln,) with only the first and the second register ever being deonégde and letA =
{a1,...,an12} be the set of objects for representing the contents of thisteeg 1 ton+ 2 of M. The set
of labelsB\ {In} is divided into three disjoint subsets:

B, = {I\I.. (r) I,,Ik I},re{l,Z};
moreover, we define
B. = B_1UB_y,
B = {I'|leB_},
B” = {I"|leB_}, and
B = B,UB_UB UB’.

We construct the following P system:

n = (O>{C}>[[]2[]7]17W17"->W77R17-'-7R770)7
O = AuUB'U{aj,ac,d,#},

with wy = lg, wo = ¢, andw; = A for 3 <i < 7. In order to make argumentation easier, in the following
we refer to the membrane labels 1 to 7 according to the foligwable:

1 213 (4|5 6 7
skin| — [0, | O | —1 | —2 | +

The sets of rules now are constructed as follows:

A. The simulation of any instruction frorh starts in the skin membrane with moving all objects
except the output symbots, 3<r < n+ 2, into an inner membrane; according to the definition, tgkin
the targetin means choosing one of the inner membranes in a non-detstimimiay, but the same

54 How to Obtain Computational Completeness in P Systems wiid Catalyst

membrane for all objects to be moved in. The output symbgl8 <r < n+ 2, are sent out into the
environment by, — (&, out), thus yielding the result of a halting computation as the benof symbols

a- sent out into the environment during this computation. lsecgome copies of the output symbals

3 <r <n+2, are present in the skin membrane, at any time we may e#fectshe targedut to send

all these objects out into the environment or else seleditigetin in order to start the simulation of the
next instruction. Choosing the targatt or in always is done in a hon-deterministic way. Hence, in sum
we get

Ri = {x—(xin)|xeBLUB_U{aya,a,a,#}U{x— (xd,in)|xeB_}
U {a — (a,out) | 3<r <n+2}.

B. For the simulation of an ADD instructioh : (ADD(r),lj,lx) € I all non-terminal symbols (all
symbols excepé,, r > 3) are expected to have been sent to memb#ane

R, = {Ii—>(Ija;,out),li—>(lkar,out)|Ii.(ADD , J,|k |}
U {l— (#out)|l eB\B;}
U

{x— (x,out) | x € {ag,a,#}}.

If the symbols arrive in membrange with a labell € B'\ B, then the trap symbol # is generated and the
computation will never halt.

C. The simulation of a SUB instructidn: (SUB(r),lj,lx) is carried out in two steps for the zero test,
i.e., when the registar is empty, using (the rules in) membranedhd in five steps for decrementing
the number of symbola,, first using membrane, to mark the corresponding symbagsinto & and
then using the catalystin membrane- to erase one of these primed objects; the marking procedure i
necessary to guarantee that the catalyst erases the riglt.oBorr € {1,2}, we define the following

sets of rules:
R = {li— (I,out),a — (#out) |li: (SUB(r),lj,lk) €1}
U {l— (#out)|l eB\B_}
U {x— (x,out) | xe€ {ag_r,#}}.

If the number of objects, is not zero, i.e., if the registaris not empty, the introduction of the trap
symbol # causes the computation to never halt. On the othmel, ilawe want to decrement the register,
we have to guarantee that exactly one synaha$ erased:

R_

r

= {li— (I{,out) |l e B_,}U{a — (a;,out)}
U {l— (#out)|l eB\B_}
U {x— (x,out) | xe€ {ag_r,#}}.

The whole multiset of objects via the skin membrane now hanter membrane-; here the dummy
symbold guarantees that the catalyst cannot do nothing if no prirgetbel &, has arrived; again the
generation of # causes the computation to not halt anymore:

R

{11708 I > #1" = (1j,000) |12 (SUB(r), I, lk) €
U {cd—c#,d— (A,out)}U{a; — (a,out) |r € {1,2}},

U {l— (#out) |l eB'\B"}

U {x— (x,out) | xe€ {ag_r,#}}.

The end of the simulation of the SUB instructin (SUB(r),l;,lx) in membrane— takes two steps:
firstwe applyli — I{ andcg — c, thus erasing exactly one symla| which corresponds to decrement

Rudolf Freund and Gheorghe Paun 55

registerr; in the second step, we send out the ldbély usingl” — (I}, out) together with the remaining
symbolsa, by usinga, — (a;,out) and all symbolsas_; by usingas_; — (az_r,out). The additional
symbold generated in the first step in the skin membrane is eliminagexpplying the rulel — (A, out).
These two steps cannot be interchanged, as with using thet taut first we would have to use the rule
I — (#,0ut), thus introducing the trap symbol #.

If in any of the membraneB,,, R_,, r € {1,2}, andR_ the symbols arrive with the wrong label
| € B/, then the trap symbol # is generated and the computatiomextr halt.

We finally observe that a computation lihhalts if and only if the final label, appears (and then
stays in the skin membrane) and no trap symbol # is presemtehe/e conclud®s(M) =Ps(). W

To eventually reduce the number of inner membranes remairschallenging task for future re-
search.

5 Computational Completeness of Time-Varying P Systems

Theorem 3 YOR (cat;,aTVs) =YRE, 0 € {A,w}, Y € {N,Ps}.

Proof. We only prove the inclusiofPSREC PsOR (cat;, TVs). Let us consider a register machine
M = (n+2,B,lo,ln,l) with only the first and the second register ever being deanégde Again, we
defineA={ay,..., a2} and divide the set of labeB\ {I,} into three disjoint subsets:

B = {lili:(aDD(r),lj,lk) €1},
B, = {li|li:(SUB(r),lj,lk)el}, ref{1,2};

moreover, we definB_ = B_1UB_ as well as

= {1 eB\{In}}u{l=,1%17,1%1eB_}.

The main challenge in the construction for the time-vanfgystent is that the catalyst has to fulfill its
task to erase an objeat, r € {1,2}, for both objects in the same membrane where all other caatipos
are carried out, too; hence, at a specific momentin the cyglerad six, parts of simulations of different
instructions have to be coordinated in parallel. The basioponents of the time-varying P systéin
are defined as follows (we here do not distinguish betweeteaand its label):

n = (O,{C},[]1,C|0,R1U-'-URe,RlU-'-URf;,(Rl...Re)*,O),
O = Au{aj,a}uBuU{ch,ly#} .

We now list the rules in the sets of rulBsto be applied in computation steps-6i,n>0, 1<i <6:

R1: in this first step of the cycle, especially all the ADD ingttions are simulated, i.e., for each
li - (ADD(r), 1}, lk) € 1 we take

cli —calj, cli — calyforr e {1,2} as well azl; — c(ay, out)l,, cli — c(a, out)lk for3<r<n+2
(in order to obtain the output in the environment, far 3 we have to takéa,, out) instead of); only in
the sixth step of the cycle, froim andiy the corresponding unmarked labglsndly will be generated;

cl — cl—, cl — cl initiate the simulation of a SUB instruction for registerabéled byl € B_;,
i.e., we make a non-deterministic guess whether regisigempty (with introducing®) or not (with
introducingl 7);

56 How to Obtain Computational Completeness in P Systems wiid Catalyst

cl — ¢l marks a label € B_, (the simulation of such a SUB instruction for register 2 githrt in
step 4 of the cycle);

— # keeps the trap symbol # alive guaranteeing an infinite lome & has been generated;

h — A eliminates the auxiliary objedt which eventually has been generated two steps befoie (
needed for simulating the decrement case of SUB instrugition

R,: in the second and the third step, the SUB instructions orstexgl are simulated, i.e., for all
| € B_; we start with

ca — cd, (if present, exactly one copy @f can be primed, but only if a labét for somel from
B_, is present) and_

|~ —=17h, 19— 1%forall | €B_g;

all other labeld for | € B block the catalyst from erasing a copy od; by forcing the application
of the corresponding ruled — ¢l for c in order to avoid the introduction of the trap symbol # by the
enforced application of a rule— #,1.e., we take

o -, —#foralll €B, and

o —=d, [—s#forall €B_y;

— # keeps the computation alive once the trap symbol has b&exdirced.

Rs: foralll; : (SUB(1),1j,lk) € | we take

cliO — cly, a; — #, Ii0 — # (zero test; if a primed copy & is present, then the trap symbol # is
generated);

- — I~J cd, — ¢, ch— c# (decrement; the auxiliary symbblis needed to keep the catalysbusy
with generating the trap symbol # if we have taken the wrorgsgwhen assuming the register 1 to be
non-empty);

o —cf, [— #for alll € B (with these labels, we just pass through this step);

o —d, [—>#foralll eB_, (these labels pass through this step to become active irettiestep);

#—#.

R4: in the fourth step, the simulation of SUB instructions ogister 2 is initiated by using

o —cl~, c —cloforall| €B_j, i.e., we make a non-deterministic guess whether regissegmpty
(with introducingl®) or not (with introducing ~):

o —df, [— #foralll € B (with all other labels, we only pass through this step);

#— #, _

h— A (if h has been introduced By — |~hin the second step for sorhe B_;, we now erase it).

Rs: in the fifth and the sixth step, the SUB instructions on reegi are simulated, i.e., for dle B_,
we start with

ca — cd, (if present, exactly one copy @b can be primed) and

I~ —17h,1° = [Oforall | € B_y;

il =i, —#foralll €B;

#— #.

Re: the simulation of SUB instructionis: (SUB(2),1;,lx) € | on register 2 is finished by

df — cly, & — #, 12 — # (zero test; if a primed copy @k is present, then the trap symbol # is
generated),

I~ —1j, c&, — ¢, ch— c# (decrement; the auxiliary symbblis needed to keep the catalysbusy
with generating the trap symbol # if we have taken the wrorgsgwhen assuming the register 2 to be
non-empty; if it is not used, it can be erased in the next syepsingh — A in Ry);

d—cl, i —#foralll €B;

Rudolf Freund and Gheorghe Paun 57

H—#.

Without loss of generality, we may assume that the final Igbiel M is only reached by using a zero
test on register 2; then, at the beginning of a new cycler aftorrect simulation of a computation from
M in the time-varying P systeri no rule will be applicable ifR; (another possibility would be to take
cl? — cinstead ofc!? — clp in Re).

At the end of the cycle, in case all guesses have been cothectequested instruction ® has
been simulated and the label of the next instruction to beulsited is present in the skin membrane.
Only in the case thd¥l has reached the final labigl the computation i1 halts, too, but only if during
the simulation of the computation & in I no trap symbol # has been generated; hence, we conclude
Ps(M) = Ps(M). [|

6 Computational Completeness of P Systemswith Membrane Creation

Theorem 4 YOR ,(cat, mcre) =Y RE, Ye {N,Ps}.

Proof. We only prove the inclusioPSREC PsOR ,(cat, mcre). Let us consider a register machine
M = (n+2,B,lp,ln, 1) with only the first and the second register ever being deanéede Again we
defineA={a;,...,a,.2} as the set of objects for representing the contents of thsteeg 1 ton+ 2 of

M. We construct the following P system:

n = (O,{C},[]17Cd|07R17R27R370)7
0 = AU{LII"|leBlulcdd,d"},

and the sets of rules are constructed as follows.

A. For each ADD instructio : (ADD(r),l,lx) in I, the rules

stepl: li—I,d—d,
step2: I = alj, I = aly, d —d,

are taken intdr; and obviously simulate an ADD instruction in two steps. Wsoadd the ruleg, —
(a,out) for 3<r < n+2toRy; thus, in any moment, every copy af, 3<r < n+2, present in the skin
membrane is sent out to the environment.

B. For each SUB instructiof : (SUB(r),lj,lx) in I, the following rules inR; andR; 1, r € {1,2},
are used:

Step | R ‘ Rri1
1 C|i—>C[|i]r+l,d—>d/ -
2 ca — c(ar,in41), d — (d,ing 1) =1
3 - a— A0, Il =1, d—d
4 cl" —clj, d" —d I/ — g, d” — do

A SUB instructionl; : (SUB(r),l;,l) (with r € {1,2}) is simulated according to the four steps suggested
in the table given above:

In the first step, we create a membrane with the label, wherel; is sent to, and simultaneoustly
becomed'. In the next step, if ang, exists, i.e., if register is not empty, then one copy af should
enter the membrane+ 1 just having been created in the preceding step. Note teatdlection of the

58 How to Obtain Computational Completeness in P Systems wiid Catalyst

right membrane (the use of;, 1 instead ofin) is important:a, has to go to the membrane created in the
previous step, when+ 1 has been specified by the lathel At the same timeg’ enters the membrane

r +1, andl; becomed/ in this membrane. If the registeris empty, then the catalyst is doing nothing in
this second step.

In the third step, in membramet- 1,1/ becomes” andd’ becomes!”. If & is not present in membrane
r + 1, nothing else happens there in this stepy ifs present, it dissolves the membrane and disappears.
Observe that in both cases, — c(a,in;11) will not be applicable (anymore) iR;. Thus, we either
havecld” in the skin membrane (when the register has been non-engpty)e have onlyc in the skin
membrane ang{’d” in the inner membrane+ 1. In the first case, in the fourth step we use the rules
cli” — clj andd” — d from Ry, which is the correct continuation of the simulation of théBSinstruction;
in the latter case, we usg — Iy andd” — dd in Rr;1. The inner membrane is dissolved, and in the skin
membrane we get the objeatizd. In both cases, the simulation of the SUB instruction isetrand we
return to a configuration as that we started with, hence,ithelation of another instruction can start.

There is one interference between the ruled simulating the ADD and the SUB instructions Mf
If in the second step of simulating a SUB instruction, indtedd’ — (d’,in,, 1) we used’ — d, then the
case when registaris non-empty continues correctly, as the simulation lasts $teps, and in the end
d is present in the skin membrane (the dissolution of memhrankis done bya,). If the register has
been emptyl” will becomely in membrane + 1 and it will remain there untidl’ enters the membrane,
changes tad”, and then dissolves it (as long dsd’ switch to each other in the skin membrane, the
computation cannot halt). Thus, also in this case we havettwmn to the correct submultisetid in the
skin membrane.

Consequently, exactly the halting computationgvbfire simulated by the halting computations in
M; hencePs(M) = Ps(M). The observation that the maximal number of membranes icamputation
of N is two completes the proof. |

It remains as an open problem whether it is possible to usetbetin only instead of then;.

7 Computational Completeness of P Systemswith Mobile Catalysts

If the membrane creation rules are of the faran— [cb];, then this implicitly means that the catalyst is
moving from one region to another one. However, for mobikalgats, the computational completeness
of such systems with only one catalyst has already been ghio&], using three membranes and targets
of the formshere out, andin;. In this paper, we improve this result from the last point ief making
only use of the targetserg out, andin. In fact, if in the proof of Theorerl 2 we let the catalgstnove
with all the other objects, then we immediately obtain a pfooNOF, (mcat) = NREwhere even only
the targetut andin are used (but instead of three we need seven membranes).

Theorem 5 YOR (mcat) = YRE, Ye {N,Ps}.

Proof. We only prove the inclusiofPsREC PsOR (mcat). Let us consider a register machikk=
(n+2,B,lo,In, 1) with only the first and the second register ever being deanéede Again we define
A={a,...,an:2} as the set of objects for representing the contents of thsteeg 1 ton+ 2 of M. We
construct the following P system:

Rudolf Freund and Gheorghe Paun 59

n = (O,{C},[[]2[]3]1’C|0’R1’R2’R3’0)’

O = AU{LII"I"1eB}U{cH},
R = {li—1j(a,in), i = l(a,in) |1 : (ADD(r), 1},) € 1,r € {1,2}}
U {li—=1j(ar,out), li = I (aout) | i : (ADD(r),lj,lk) €1,3<r <n+2}
U {cli — (c,in) (Ii,in) [: (SUB(r),lj,lk) € I,r € {1,2} }
U {CI,’”—>CIJ,II’“—>#,#—>#|Ii:(SUB(r),Ij,Ik)el,re{l,Z}},
R, = {ap—# #—# caq — (cout)}
U {li—=#[1i: (sUB(r),lj,l) €l,r € {1,2}}
U {cl —cl, I =17, el = (c,out) (I, out), I — (1", out) | i : (SUB(1),1j,lk) €1},

Ry = {ag—# #—# cap— (cout)}
U {li—#[1i: (sUB(r),lj,lk) € l,r € {1,2}}
U {cl —cl, I =17, cl’ = (c,out) (I, out), I — (1", out) | I; : (SUB(2),1,lk) € 1}.
The rules in the sets of rulé, Ry, andRz are used as follows:

A. Letl;: (ADD(r),lj,lx) be an ADD instruction irl. If r > 3, then the rule — I (a;,out), |j —
Ik (ar,out) are used iRy; if r € {1,2}, in R; we take the rule§ — [; (a,in) andl; — ¢ (a,,in) as well as
the rulesa; — # and #- #inRy_j, j € {1,2}. The contents of each register € {1,2}, is represented
by the number of objects present in membranet 1; any objeci,, r > 3, is immediately sent out into
the environment. I&; is introduced in membrane-4j, j € {1,2}, then the trap object # is produced and
the computation never halts.

B. The simulation of a SUB instructiol : (SUB(r),lj,lx) is carried out by the following rules (the
simulation again has four steps, as in the proof of Thediem 4)

For the first step, we take the ruté — (c,in) (l;,in) in Ry and the ruld; — # in both R, and R
(if c andl; are not moved together into an inner membrane, then the bjgota? is produced and the
computation never halts). In the second st@p.; has to use the rulel; — cli. This checks whether
¢ andl; have been moved together into the right membrnael; if this is not the case, then the rule
cli — cl! is not available and the rule— # must be used, which causes the computation to never halt.

Thus, after the second step, we know whether leathdl; (I/) are in the right membrane+ 1. The
rulesca, — (c,out) andl/ — 1" in Ry;1 are used in order to perform the third step of the simulatlbn.
there is any copy o, in membrane + 1 (i.e., if registerr is not empty), then the catalyst exits, while
also removing a copy &,. Simultaneouslyl/ becomed’. Hence, if the register has been non-empty,
we now havec in the skin membrane an¢l in membrane + 1; if registerr has been empty, we have
both ¢ andl in membrane + 1. We then use the ruled” — (c,out) (It,out) andl]” — (I/”,out) in
R11 as well as the rulesl!” — cl; andl” — # in Ry. If cis inside membrane+ 1, we getcly in the
skin membrane, which is the correct continuation for theeaglsen the register is empty. dfis not in
membrane + 1, thenl{ exits alone thereby becominff, and, together witke, which waits in the skin
membrane, introducdg, which is a correct continuation, too. If the rife— (1", out) is used althougl
is inside membrane+ 1, then in the skin membrane we have to use thelftiles # and the computation
never halts (as we have the rule## in Ry).

In all cases, the simulation of the SUB instruction worksecily, and we return to a configuration
with the catalyst and a label froi in the skin region.

In sum, we have the equaliys(M) = Ps(I), which completes the proof. [|

60 How to Obtain Computational Completeness in P Systems wiid Catalyst

8 Final Remarks

Although we have exhibited several new computational ceiepless results for P systems using only
one catalyst together with some additional control medmanihe original problem of characterizing
the sets of (vectors of) non-negative integers generatd®ldystems with only one catalyst still remains
open. A similar challenging problem is to consigemrely catalyticP systems with only two catalysts:
with only one catalyst, we obtain the regular sets; as showd]j three catalysts are enough to obtain
computational completeness. With two catalysts and somii@aal control mechanism, computational
completeness can be obtained, too, sée [3].

Acknowledgements. The work of Gheorghe Paun has been supported by Proyectecdéelficia con In-
vestigador de Reconocida Valia, de la Junta de Andalgcaat PO8 — TIC 04200. The authors gratefully
acknowledge the suggestions of the referees.

References

[1] A. Alhazov, R. Freund, H. Heikenwalder, M. Oswald, Ywodbzhin & S. Verlan (2013)Sequential P systems
with regular control In E. Csuhaj-Varju, M. Gheorghe, G. Rozenberg, A. Salo&day. Vaszil, editors:
Membrane Computing - 13th International Conference, CMC228udapest, Hungary, August 28-31, 2012,
Revised Selected PapekNCS 7762, Springer, pp. 112-127, doi:10.1007/978-3-642-36¥S.

[2] J. Dassow & Gh. Paun (1989Regulated Rewriting in Formal Language TheofyATCS Monographs in
Theoretical Computer Scien@&, Springer, dci:10.1007/978-3-642-74932-2.

[3] R. Freund (2013)Purely catalytic P systems: two catalysts can be sufficentémputational complete-
ness In A. Alhazov, S. Cojocaru, M. Gheorghe & Yu. Rogozhin, edsit CMC14 Proceedings — The 14th
International Conference on Membrane Computing, Chigiiugust 20-23, 201 stitute of Mathematics
and Computer Science, Academy of Sciences of Moldova, f-1166.

[4] R. Freund, L. Kari, M. Oswald & P. Sosik (2005Fomputationally universal P systems without priorities:
two catalysts are sufficienTheoretical Computer Scien880, pp. 251-266, doi:10.1016/j.tcs.2004.06.029.

[5] R. Freund & Gh. Paun (2013Wniversal P systems: one catalyst can be sufficiemL. Valencia-Cabrera,
M. Garcia-Quismondo, L.F. Macas-Ramos, M.A. MartineAimor, Gh. Paun & A. Riscos-NUfiez, editors:
Proceedings 11th Brainstorming Week on Membrane Comp&ieglla, 4-8 February 201Benix Editora,
Sevilla, pp. 81-96.

[6] M.A. Gutiérrez-Naranjo & M.J. Pérez-Jiménez (201B) systems with membrane creation and rule input
To appear.

[7] S.N. Krishna & A. Paun (2004Results on catalytic and evolution-communication P systé&few Genera-
tion Computing22, pp. 377-394, d0i:10.1007/BF03037288.

[8] K. Krithivasan, Gh. Paun & A. Ramanujan (2013Pn controlled P systemsIn L. Valencia-Cabrera,
M. Garcia-Quismondo, L.F. Macas-Ramos, M.A. Martinet-Aimor, Gh. Paun & A. Riscos-Nifez, edi-
tors: Proceedings 11th Brainstorming Week on Membrane CompuS8sgilla, 4-8 February 201 &enix
Editora, Sevilla, pp. 137-151.

[9] K. Krithivasan M. Mutyam (2001):P systems with membrane creation: universality and effigierin
M. Margenstern & Yu. Rogozhin, editorsProceedings MCU 20Q1.ecture Notes in Computer Science
2055, Springer, pp. 276-287, d0i:10.1007/3-540-45132-3

[10] M.L. Minsky (1967): Computation: Finite and Infinite MachinesPrentice Hall, Englewood Cliffs, New
Jersey.

[11] Gh. Paun (2000)omputing with membranes - a variamtbternational Journal of Foundations of Computer
Sciencell(1), pp. 167-182, d0i:10.1142/S0129054100000090.

http://dx.doi.org/10.1007/978-3-642-36751-9{_}9
http://dx.doi.org/10.1007/978-3-642-74932-2
http://dx.doi.org/10.1016/j.tcs.2004.06.029
http://dx.doi.org/10.1007/BF03037288
http://dx.doi.org/10.1007/3-540-45132-3{_}19
http://dx.doi.org/10.1142/S0129054100000090

Rudolf Freund and Gheorghe Paun 61

[12] Gh. Paun (2003)Computing with membranegdournal of Computer and System Scienggspp. 108—143,
doii10.1006/jcss.1999.1693.

[13] Gh. Paun, G. Rozenberg & A. Salomaa, editors (20Tje Oxford Handbook of Membrane Computing
Oxford University Press.

[14] G. Rozenberg & A. Salomaa, editors (199Mandbook of Formal Languages, 3 volum&gpringer.
[15] The P Systems Website: Availabletattp: //ppage . psystems. eu.

http://dx.doi.org/10.1006/jcss.1999.1693
http://ppage.psystems.eu

	1 Introduction
	2 Prerequisites
	2.1 P Systems

	3 Computational Completeness of P Systems with Label Selection
	4 Computational Completeness of P Systems with Target Selection
	5 Computational Completeness of Time-Varying P Systems
	6 Computational Completeness of P Systems with Membrane Creation
	7 Computational Completeness of P Systems with Mobile Catalysts
	8 Final Remarks

