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Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania, and
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Whether P systems with only one catalyst can already be computationally complete, is still an open
problem. Here we establish computational completeness by using specific variants of additional
control mechanisms. At each step using only multiset rewriting rules from one set of a finite number
of sets of multiset rewriting rules allows for obtaining computational completeness with one catalyst
and only one membrane. If the targets are used for choosing the multiset of rules to be applied, for
getting computational completeness with only one catalystmore than one membrane is needed. If the
available sets of rules change periodically with time, computational completeness can be obtained
with one catalyst in one membrane. Moreover, we also improveexisting computational completeness
results for P systems with mobile catalysts and for P systemswith membrane creation.

1 Introduction

P systems with catalytic rules were already considered in the originating papers for membrane sys-
tems, see [12]. In [4] two catalysts were shown to be sufficient for getting computational completeness
(throughout this paper, with this notion we will indicate that all recursively enumerable sets of (vec-
tors of) non-negative integers can be generated). Since then, it has become one of the most challenging
open problems in the area of P systems, whether or not one catalyst might already be enough to obtain
computational completeness.

Using additional control mechanisms as, for example, priorities or promoters/inhibitors, P systems
with only one catalyst can be shown to be computationally complete, e.g., see Chapter 4 of [13]. On
the other hand, additional features for the catalyst may be taken into account; for example, we may use
bi-stable catalysts (catalysts switching between two different states) or mobile catalysts (catalysts able
to cross membranes). Moreover, additional membrane features may be used, for example, membrane
creation or controlling the membrane permeability by meansof the operationsδ andτ.

P systems with mobile catalysts were introduced in [7], and their computational completeness was
proved with using three membranes and targets of the formshere, out, and in j . We here improve this
result by replacing the targetsin j with the weaker onein.

P systems with membrane creation were introduced in [9], showing both their computational com-
pleteness and efficiency (the Hamiltonian path problem is solved in linear time in a semi-uniform way;
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this result was improved in [6], where a polynomial solutionto the Subset Sum problem in a uniform
way is provided). For proving computational completeness,in [9] (Theorem 2) P systems starting with
one membrane, having four membranes at some time during the computation, using one catalyst, and
also controlling the membrane permeability by means of the operationsδ andτ are needed. However, as
already shown in [11], P systems with one catalyst and using the operationsδ andτ are computationally
complete, hence, the membrane creation facility is not necessary for getting computational completeness
in this framework. Here we improve the result shown in [9] from two points of view: (i) the control of
membrane permeability is not used, and (ii) the maximal number of membranes used during a computa-
tion is two.

Recenty, several variants of P systems using only one catalyst together with control mechanisms for
choosing the rules applicable in a computation step have been considered: for example, in [8] the rules
are labeled with elements from an alphabetH and in each step a maximal multiset of rules having the
same label fromH is applied. In this paper, we will give a short proof for the computational completeness
of theseP systems with label selectionwith only one catalyst in a single membrane. As a specific variant,
for each membrane we can choose the rules according to the targets, and we will prove computational
completeness for theseP systems with target selectionwith only one catalyst, but needing more than one
membrane (such systems with only one membrane lead to the still open problem of catalytic P systems
with one catalyst).

Regular control languages were considered already in [8] for the maximally parallel derivation mode,
whereas in [1] computational completeness was proved for the sequential mode: there even only non-
cooperative rules were needed in one membrane for time-varying P systems to obtain computational
completeness (in time-varying systems, the set of available rules varies periodically with time, i.e., the
regular control language is of the very specific formW = (U1 . . .Up)

∗, allowing to apply rules from a set
Ui in the computation steppn+ i, n≥ 0; p is called theperiod), but a bounded number of steps without
applying any rule had to be allowed. We here prove thattime-varying P systemsusing the maximally
parallel derivation mode in one membrane with only one catalyst are computationally complete with a
period of six and the usual halting when no rule can be applied.

The new results exhibited in this paper first were presented in [5]. For the newest developments in
the area of P systems we refer the reader to the P systems website [15].

2 Prerequisites

The set of non-negative integers is denoted byN. An alphabet Vis a finite non-empty set of abstract
symbols. GivenV, the free monoid generated byV under the operation of concatenation is denoted by
V∗; the elements ofV∗ are called strings, and theempty stringis denoted byλ ; V∗ \{λ} is denoted by
V+. Let {a1, · · · ,an} be an arbitrary alphabet; the number of occurrences of a symbol ai in a stringx is
denoted by|x|ai

. For a fixed sequence〈a1, · · · ,an〉 of the symbols in the alphabet{a1, · · · ,an}, theParikh
vectorassociated withx with respect to〈a1, · · · ,an〉 is

(

|x|a1
, · · · , |x|an

)

; theParikh imageof a language
L over{a1, · · · ,an} is the set of all Parikh vectors of strings inL, and we denote it byPs(L). For a family
of languagesFL, the family of Parikh images of languages inFL is denoted byPsFL; for families of
languages of a one-letter alphabet, the corresponding setsof non-negative integers are denoted byNFL.

A (finite) multiset over the (finite) alphabetV, V = {a1, · · · ,an}, is a mappingf : V −→ N and
represented by〈 f (a1) ,a1〉 · · · 〈 f (an) ,an〉 or by any stringx the Parikh vector of which with respect
to 〈a1, · · · ,an〉 is ( f (a1) , · · · , f (an)). In the following we will not distinguish between a vector
(m1, · · · ,mn) , its representation by a multiset〈m1,a1〉 · · · 〈mn,an〉 or its representation by a stringx having
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the Parikh vector
(

|x|a1
, · · · , |x|an

)

= (m1, · · · ,mn). For a fixed sequence〈a1, · · · ,an〉 of the symbols in
the alphabet{a1, · · · ,an}, the representation of the multiset〈m1,a1〉 · · · 〈mn,an〉 by the stringam1

1 · · ·amn
n

is unique.
The family of regular and recursively enumerable string languages is denoted byREG and RE,

respectively. For more details of formal language theory the reader is referred to the monographs and
handbooks in this area as [2] and [14].

A register machineis a tupleM = (m,B, l0, lh,P), wherem is the number of registers,P is the set of
instructions bijectively labeled by elements ofB, l0 ∈ B is the initial label, andlh ∈ B is the final label.
The instructions ofM can be of the following forms:

• l1 : (ADD( j) , l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1≤ j ≤ m.
Increase the value of registerj by one, and non-deterministically jump to instructionl2 or l3. This
instruction is usually calledincrement.

• l1 : (SUB( j) , l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1≤ j ≤ m.
If the value of registerj is zero then jump to instructionl3, otherwise decrease the value of register
j by one and jump to instructionl2. The two cases of this instruction are usually calledzero-test
anddecrement, respectively.

• lh : HALT. Stop the execution of instructions of the register machine.

A configurationof a register machine is described by the contents of each register and by the value
of the current label, which indicates the next instruction to be executed. Computations start by executing
the first instruction ofP (labeled withl0), and terminate with reaching theHALT instruction.

Register machines provide a simple computing model which iscomputationally complete (e.g., see
[10]). For generating sets of vectors of non-negative integers, we start with empty registers, use the
first two registers for the necessary computations and take as results the contents of thek registers 3 to
k+ 2 in all possible halting computations; during a computation of M, only the registers 1 and 2 can
be decremented, and moreover, we assume the registers 1 and 2to be empty at the end of a halting
computation. In the following, we shall call a specific modelof P systemscomputationally completeif
and only if for any register machineM we can effectively construct an equivalent P systemΠ of that type
simulating each step ofM in a bounded number of steps and yielding the same results.

2.1 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the objects placed in the
membrane regions, and the evolution rules. Themembrane structureis a hierarchical arrangement of
membranes. Each membrane defines aregion/compartment, the space between the membrane and the
immediately inner membranes; the outermost membrane is called theskin membrane, the region outside
is theenvironment, also indicated by (the label) 0. Each membrane can be labeled, and the label (from a
setLab) will identify both the membrane and its region. The membrane structure can be represented by a
rooted tree (with the label of a membrane in each node and the skin in the root), but also by an expression
of correctly nested labeled parentheses. Theobjects(multisets) are placed in the compartments of the
membrane structure and usually represented by strings, with the multiplicity of a symbol corresponding
to the number of occurrences of that symbol in the string.The evolution rulesare multiset rewriting rules
of the formu → v, whereu is a multiset of objects from a given setO andv = (b1, tar1) . . . (bk, tark)
with bi ∈ O andtari ∈ {here,out, in} or tari ∈ {here,out}∪

{

in j | j ∈ Lab
}

, 1≤ i ≤ k. Using such a rule
means “consuming” the objects ofu and “producing” the objectsb1, . . . ,bk of v; the target indications
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(targetsfor short)here, out, andin mean that an object with the targethereremains in the same region
where the rule is applied, an object with the targetout is sent out of the respective membrane (in this
way, objects can also be sent to the environment, when the rule is applied in the skin region), while
an object with the targetin is sent to one of the immediately inner membranes, non-deterministically
chosen, wheras within j this inner membrane can be specified directly. Usually, we omit the targethere.
With respect to the tree representation of the membrane structure of the P system, the targetout means
moving the object to the region represented by the parent node, and the targetin means moving the object
to a region represented by one of the children nodes; with thetargetin j we can directly specify which of
the children nodes is to be chosen.

Formally, a (cell-like) P system is a construct

Π = (O,µ ,w1, . . . ,wm,R1, . . . ,Rm, f )

whereO is the alphabet of objects,µ is the membrane structure (withm membranes),w1, . . . ,wm are
multisets of objects present in them regions ofµ at the beginning of a computation ,R1, . . . ,Rm are finite
sets of evolution rules, associated with the regions ofµ , and f is the label of the membrane region from
which the outputs are taken (f = 0 indicates that the output is taken from the environment).

If a rule u→ v has at least two objects inu, then it is calledcooperative, otherwise it is callednon-
cooperative. In catalytic P systemswe use non-cooperative as well ascatalytic ruleswhich are of the
form ca→ cv, wherec is a special object – a so-calledcatalyst– which never evolves and never passes
through a membrane (both these restrictions can be relaxed), but it just assists objecta to evolve to the
multiset v. In a purely catalytic P systemwe only allow catalytic rules. In both catalytic and purely
catalytic P systems we replaceO by O,C in order to specify those objects fromO which are the catalysts
in the setC, i.e., we write

Π = (O,C,µ ,w1, . . . ,wm,R1, . . . ,Rm, f ).

The evolution rules are used in thenon-deterministic maximally parallelway, i.e., in any computation
step ofΠ we choose a multiset of rules from the setsR1, . . . ,Rm in such a way that no further rule can be
added to it so that the obtained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m.

The membranes and the objects present in the compartments ofa system at a given time form a
configuration; starting from a giveninitial configuration and using the rules as explained above, we
get transitionsamong configurations; a sequence of transitions forms acomputation. A computation is
halting if it reaches a configuration where no rule can be applied anymore. With a halting computation we
associate aresult, in the form of the number of objects present in membranef in the halting configuration.
The set of non-negative integers and the set of (Parikh) vectors of non-negative integers obtained as
results of halting computations inΠ are denoted byN(Π) andPs(Π), respectively.

The family of setsY (Π), Y ∈ {N,Ps}, computed by P systems with at mostmmembranes and coop-
erative rules and with non-cooperative rules is denoted byYOPm(coop) andYOPm(ncoo), respectively.
It is well known that for anym≥ 1,YREG=YOPm(ncoo) ⊂ NOPm(coop) =YRE, see [12].

The family of setsY (Π), Y ∈ {N,Ps}, computed by (purely) catalytic P systems with at mostm
membranes and at mostk catalysts is denoted byYOPm(catk) (YOPm(pcatk)); from [4] we know that,
with the results being sent to the environment, we haveYOP1(cat2) =YOP1(pcat3) =YRE.

If we allow catalysts to move from one membrane region to another one, then we speak ofP systems
with mobile catalysts. The families of setsN (Π) andPs(Π) computed by P systems with at mostm
membranes andk mobile catalysts are denoted byNOPm(mcatk) andPsOPm(mcatk), respectively.
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For all the variants of P systems using rules of some typeX as defined above, we may consider
systems containing only rules of the formu→ v whereu∈ O andv= (b1, tar) . . . (bk, tar) with bi ∈ O
and tar ∈ {here,out, in} or tar ∈ {here,out} ∪

{

in j | j ∈ H
}

, 1≤ i ≤ k, i.e., in each rule there is only
one target for all objectsbi ; moreover, with the targetin we assume all objects generated by the rules
of the chosen multiset of rules applied to the objects in a specific region of the current configuration to
choose the same inner membrane. Ifcatalytic rulesare considered, then we request the rules to be of the
form ca→ (c,here) (b1,here) . . . (bk,here), as the catalyst is not allowed to move.P systems with target
selectioncontain only these forms of rules; moreover, in each computation step, for each membrane
regioni we choose a non-empty multiset (if it exists) of rulesR′

i from Ri having the same targettar – for
different membranes these targets may be different – and apply R′

i in the maximally parallel way, i.e., the
setR′

i cannot be extended by any further rule fromRi with the targettar so that the obtained multiset of
rules would still be applicable to the existing objects in the membrane regioni. The family of setsN(Π)
andPs(Π) computed by P systems with target selection with at mostm membranes and rules of typeX
is denoted byNOPm(X, ts) andPsOPm(X, ts), respectively.

For all the variants of P systems of typeX, we may consider to label all the rules in the setsR1, . . . ,Rm

in a one-to-one manner by labels from a setH and to take a setW containing subsets ofH. Then aP
system with label selectionis a construct

Π = (O,µ ,w1, . . . ,wm,R1, . . . ,Rm,H,W, f )

whereΠ′ = (O,µ ,w1, . . . ,wm,R1, . . . ,Rm, f ) is a P system as defined above,H is a set of labels for the
rules in the setsR1, . . . ,Rm, andW ⊆ 2H . In any transition step inΠ we first select a set of labelsU ∈W
and then apply a non-empty multisetR of rules such that all the labels of these rules inR are inU in the
maximally parallel way, i.e., the setRcannot be extended by any further rule with a label fromU so that
the obtained multiset of rules would still be applicable to the existing objects in the membrane regions
1, . . . ,m. The family of setsN(Π) andPs(Π) computed by P systems with label selection with at most
m membranes and rules of typeX is denoted byNOPm(X, ls) andPsOPm(X, ls), respectively.

Another method to control the application of the labeled rules is to use control languages (see [8] and
[1]). A controlled P systemis a construct

Π = (O,µ ,w1, . . . ,wm,R1, . . . ,Rm,H,L, f )

whereΠ′ = (O,µ ,w1, . . . ,wm,R1, . . . ,Rm, f ) is a P system as defined above,H is a set of labels for the
rules in the setsR1, . . . ,Rm, andL is a string language over 2H (each subset ofH represents an element
of the alphabet forL) from a familyFL. Every successful computation inΠ has to follow a control word
U1 . . .Un ∈ L: in transition stepi, only rules with labels inUi are allowed to be applied (but again in the
maximally parallel way, i.e., we have to apply a multisetR of rules with labels inUi which cannot be
extended by any rule with a label inUi such that the resulting multiset would still be applicable), and
after then-th transition, the computation halts; we may relax this endcondition, i.e., we may stop after
the i-th transition for anyi ≤ n, and then we speak ofweakly controlled P systems. If L = (U1 . . .Up)

∗,
Π is called a(weakly) time-varying P system: in the computation steppn+ i, n≥ 0, rules from the setUi

have to be applied;p is called theperiod. The family of setsY (Π), Y ∈ {N,Ps}, computed by (weakly)
controlled P systems and (weakly) time-varying P systems with periodp, with at mostmmembranes and
rules of typeX as well as control languages inFL is denoted byYOPm(X,C(FL)) (YOPm(X,wC(FL)))
andYOPm(X,TVp) (YOPm(X,wTVp)), respectively.

In theP systems with membrane creationconsidered in this paper, besides the catalytic rulesca→
c(u, tar) and the non-cooperative rulesa → (u, tar) we also use catalytic membrane creation rules of
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the formca→ c[ u ] i (in the context ofc, from the objecta a new membrane with labeli containing
the multisetu is generated) and membrane dissolution rulesa→ uδ (we assume that no objects can be
sent into a membrane which is going to be dissolved; with dissolving the membranei by applyingδ , all
objects contained inside this membrane are collected in theregion surrounding the dissolved membrane);
in all cases,c is a catalyst,a is an object,u is a multiset, andtar is a target of the formhere, out, andin j .
The family of setsY (Π), Y ∈ {N,Ps}, computed by such P systems with membrane creation and using
at mostk catalysts, withm initial membranes and having at mosth membranes during its computations
is denoted byYPm,h(catk,mcre).

3 Computational Completeness of P Systems with Label Selection

Theorem 1 YOP1(cat1, ls) =YRE, Y∈ {N,Ps}.

Proof. We only prove the inclusionPsRE⊆ PsOP1(cat1, ls). Let us consider a register machine
M = (n+2,B, l0, lh, I) with only the first and the second register ever being decremented, and letA =
{a1, . . . ,an+2} be the set of objects for representing the contents of the registers 1 ton+ 2 of M. We
construct the following P system:

Π = (O,{c} , [ ]1,cdl0,R1,H,W,0),

O = A∪B∪{c,d,#} ,

H =
{

l , l ′ | l ∈ B\{lh}
}

∪
{

l〈x〉 | x∈
{

1,2,1′,2′,d,#
}}

,

and the rules forR1 and the sets of labels inW are defined as follows:

A. Let l i : (ADD(r) , l j , lk) be an ADD instruction inI . If r > 2, then the (labeled) rules

l i : l i → l j (ar ,out) , l ′i : l i → lk (ar ,out) ,

are used, and forr ∈ {1,2}, we take the rules

l i : l i → l jar , l ′i : l i → lkar .

In both cases, we define{l i , l ′i} to be the corresponding set of labels inW. The contents of each register
r, r ∈ {1,2}, is represented by the number of objectsar present in the skin membrane; any objectar with
r ≥ 3 is immediately sent out into the environment.

B. The simulation of a SUB instructionl i : (SUB(r) , l j , lk), for r ∈ {1,2}, is carried out by the fol-
lowing rules and the corresponding sets of labels inW:

For the case that the registerr, r ∈ {1,2}, is not empty we take the (labeled) rules

l i : l i → l j , l〈r〉 : car → c, l〈d〉 : cd→ c#,

(if no symbolar is present, i.e., if the registerr is empty, then the trap symbol # is introduced by the rule
l〈d〉 : cd→ c#).

For the case that the registerr is empty, we take the (labeled) rules

l ′i : l i → lk, l〈r ′〉 : car → c#

(if at least one symbolar is present, i.e., if the registerr is not empty, then the trap symbol # is introduced
by the rulel〈r ′〉 : car → c#).
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The corresponding sets of labels to be taken intoW are
{

l i , l〈r〉, l〈d〉
}

and
{

l ′i , l〈r ′〉
}

, respectively. In
both cases, the simulation of the SUB instruction works correctly if we have made the right choice.

C. We also add the labeled rulel〈#〉 : # → # to R1 and the set
{

l〈#〉
}

to W, hence, the computation
cannot halt once the trap symbol # has been generated.

In sum, we observe that each computation step inM is simulated by exactly one computation step
in Π; moreover, such a simulating computation inΠ halts if and only if the corresponding computation
in M halts (as soon as the labellh appears, no rule can be applied anymore inΠ, as we have not defined
any rule for the HALT instruction ofM). If at some moment we make the wrong choice when trying
to simulate a SUB instruction and have to generate the trap symbol #, the computation will never halt.
Hence, we have shownPs(M) = Ps(Π), which completes the proof.

4 Computational Completeness of P Systems with Target Selection

Theorem 2 YOP7(cat1, ts) =YRE, Y∈ {N,Ps}.

Proof. We only prove the inclusionPsRE⊆ PsOP7(cat1, ts). Let us consider a register machine
M = (n+2,B, l0, lh, I) with only the first and the second register ever being decremented, and letA =
{a1, . . . ,an+2} be the set of objects for representing the contents of the registers 1 ton+2 of M. The set
of labelsB\{lh} is divided into three disjoint subsets:

B+ =
{

l | l i : (ADD(r) , l j , lk) ∈ I
}

,

B−r =
{

l | l i : (SUB(r) , l j , lk) ∈ I
}

, r ∈ {1,2} ;

moreover, we define

B− = B−1∪B−2,

B′
− =

{

l ′ | l ∈ B−

}

,

B′′
− =

{

l ′′ | l ∈ B−

}

, and

B′ = B+∪B−∪B′
−∪B′′

−.

We construct the following P system:

Π = (O,{c} , [ [ ]2 . . . [ ]7 ]1,w1, . . . ,w7,R1, . . . ,R7,0),

O = A∪B′∪
{

a′1,a
′
2,c,d,#

}

,

with w1 = l0, w2 = c, andwi = λ for 3≤ i ≤ 7. In order to make argumentation easier, in the following
we refer to the membrane labels 1 to 7 according to the following table:

1 2 3 4 5 6 7
skin − 01 02 −1 −2 +

The sets of rules now are constructed as follows:

A. The simulation of any instruction fromI starts in the skin membrane with moving all objects
except the output symbolsar , 3≤ r ≤ n+2, into an inner membrane; according to the definition, taking
the targetin means choosing one of the inner membranes in a non-deterministic way, but the same
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membrane for all objects to be moved in. The output symbolsar , 3≤ r ≤ n+ 2, are sent out into the
environment byar → (ar ,out), thus yielding the result of a halting computation as the number of symbols
ar sent out into the environment during this computation. In case some copies of the output symbolsar ,
3≤ r ≤ n+2, are present in the skin membrane, at any time we may either select the targetout to send
all these objects out into the environment or else select thetargetin in order to start the simulation of the
next instruction. Choosing the targetout or in always is done in a non-deterministic way. Hence, in sum
we get

R1 = {x→ (x, in) | x∈ B+∪B−∪{a1,a2,a′1,a
′
2,#}}∪

{

x→ (xd, in) | x∈ B′
−

}

∪ {ar → (ar ,out) | 3≤ r ≤ n+2} .

B. For the simulation of an ADD instructionl i : (ADD(r) , l j , lk) ∈ I all non-terminal symbols (all
symbols exceptar , r ≥ 3) are expected to have been sent to membrane+:

R+ =
{

l i → (l jar ,out) , l i → (lkar ,out) | l i : (ADD(r) , l j , lk) ∈ I
}

∪ {l → (#,out) | l ∈ B′ \B+}
∪ {x→ (x,out) | x∈ {a1,a2,#}} .

If the symbols arrive in membrane+ with a labell ∈ B′ \B+, then the trap symbol # is generated and the
computation will never halt.

C. The simulation of a SUB instructionl i : (SUB(r) , l j , lk) is carried out in two steps for the zero test,
i.e., when the registerr is empty, using (the rules in) membrane 0r and in five steps for decrementing
the number of symbolsar , first using membrane−r to mark the corresponding symbolsar into a′r and
then using the catalystc in membrane− to erase one of these primed objects; the marking procedure is
necessary to guarantee that the catalyst erases the right object. Forr ∈ {1,2}, we define the following
sets of rules:

R0r =
{

l i → (lk,out) ,ar → (#,out) | l i : (SUB(r) , l j , lk) ∈ I
}

∪ {l → (#,out) | l ∈ B′ \B−r}
∪ {x→ (x,out) | x∈ {a3−r ,#}} .

If the number of objectsar is not zero, i.e., if the registerr is not empty, the introduction of the trap
symbol # causes the computation to never halt. On the other hand, if we want to decrement the register,
we have to guarantee that exactly one symbolar is erased:

R−r = {l i → (l ′i ,out) | l i ∈ B−r}∪{ar → (a′r ,out)}
∪ {l → (#,out) | l ∈ B′ \B−r}
∪ {x→ (x,out) | x∈ {a3−r ,#}} .

The whole multiset of objects via the skin membrane now has toenter membrane−; here the dummy
symbold guarantees that the catalyst cannot do nothing if no primed symbol a′r has arrived; again the
generation of # causes the computation to not halt anymore:

R− =
{

l ′i → l ′′j ,ca′r → c, l ′′i → #, l ′′i → (l j ,out) | l i : (SUB(r) , l j , lk) ∈ I
}

∪ {cd→ c#,d → (λ ,out)}∪{a′r → (ar ,out) | r ∈ {1,2}} ,
∪

{

l → (#,out) | l ∈ B′ \B′′
−

}

∪ {x→ (x,out) | x∈ {a3−r ,#}} .

The end of the simulation of the SUB instructionl i : (SUB(r) , l j , lk) in membrane− takes two steps:
first,we applyl ′i → l ′′j andca′r → c, thus erasing exactly one symbola′r , which corresponds to decrement
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registerr; in the second step, we send out the labell j by usingl ′′i → (l j ,out) together with the remaining
symbolsar by usinga′r → (ar ,out) and all symbolsa3−r by usinga3−r → (a3−r ,out). The additional
symbold generated in the first step in the skin membrane is eliminatedby applying the ruled→ (λ ,out).
These two steps cannot be interchanged, as with using the targetout first we would have to use the rule
l ′i → (#,out), thus introducing the trap symbol #.

If in any of the membranesR0r , R−r , r ∈ {1,2}, andR− the symbols arrive with the wrong label
l ∈ B′, then the trap symbol # is generated and the computation willnever halt.

We finally observe that a computation inΠ halts if and only if the final labellh appears (and then
stays in the skin membrane) and no trap symbol # is present, hence, we concludePs(M) = Ps(Π).

To eventually reduce the number of inner membranes remains as a challenging task for future re-
search.

5 Computational Completeness of Time-Varying P Systems

Theorem 3 YOP1(cat1,αTV6) =YRE,α ∈ {λ ,w}, Y ∈ {N,Ps}.

Proof. We only prove the inclusionPsRE⊆ PsOP1(cat1,TV6). Let us consider a register machine
M = (n+2,B, l0, lh, I) with only the first and the second register ever being decremented. Again, we
defineA= {a1, . . . ,an+2} and divide the set of labelsB\{lh} into three disjoint subsets:

B+ =
{

l i | l i : (ADD(r) , l j , lk) ∈ I
}

,

B−r =
{

l i | l i : (SUB(r) , l j , lk) ∈ I
}

, r ∈ {1,2} ;

moreover, we defineB− = B−1∪B−2 as well as

B′ =
{

l , l̃ , l̂ | l ∈ B\{lh}
}

∪
{

l−, l0
, l̄−, l̄0

, | l ∈ B−

}

.

The main challenge in the construction for the time-varyingP systemΠ is that the catalyst has to fulfill its
task to erase an objectar , r ∈ {1,2}, for both objects in the same membrane where all other computations
are carried out, too; hence, at a specific moment in the cycle of period six, parts of simulations of different
instructions have to be coordinated in parallel. The basic components of the time-varying P systemΠ
are defined as follows (we here do not distinguish between a rule and its label):

Π = (O,{c} , [ ]1,cl0,R1∪ ·· ·∪R6,R1∪ ·· ·∪R6,(R1 . . .R6)
∗
,0),

O = A∪
{

a′1,a
′
2

}

∪B′∪{c,h, lh,#} .

We now list the rules in the sets of rulesRi to be applied in computation steps 6n+ i, n≥ 0, 1≤ i ≤ 6:

R1: in this first step of the cycle, especially all the ADD instructions are simulated, i.e., for each
l i : (ADD(r) , l j , lk) ∈ I we take

cli → car l̃ j , cli → car l̃k for r ∈ {1,2} as well ascli → c(ar ,out)l̃ j , cli → c(ar ,out)l̃k for 3≤ r ≤ n+2
(in order to obtain the output in the environment, forr ≥ 3 we have to take(ar ,out) instead ofar ); only in
the sixth step of the cycle, from̃l j and l̃k the corresponding unmarked labelsl j andlk will be generated;

cl → cl−, cl → cl0 initiate the simulation of a SUB instruction for register 1 labeled byl ∈ B−1,
i.e., we make a non-deterministic guess whether registerr is empty (with introducingl0) or not (with
introducingl−);
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cl → cl̂ marks a labell ∈ B−2 (the simulation of such a SUB instruction for register 2 willstart in
step 4 of the cycle);

#→ # keeps the trap symbol # alive guaranteeing an infinite loop once # has been generated;
h→ λ eliminates the auxiliary objecth which eventually has been generated two steps before (h is

needed for simulating the decrement case of SUB instructions).

R2: in the second and the third step, the SUB instructions on register 1 are simulated, i.e., for all
l ∈ B−1 we start with

ca1 → ca′1 (if present, exactly one copy ofa1 can be primed, but only if a labell− for somel from
B−1 is present) and

l− → l̄−h, l0 → l̄0 for all l ∈ B−1;
all other labels̃l for l ∈ B block the catalystc from erasing a copy ofa1 by forcing the application

of the corresponding rulescl̃ → cl̃ for c in order to avoid the introduction of the trap symbol # by the
enforced application of a rulẽl → #, i.e., we take

cl̃ → cl̃ , l̃ → # for all l ∈ B, and
cl̂ → cl̂ , l̂ → # for all l ∈ B−2;
#→ # keeps the computation alive once the trap symbol has been introduced.

R3: for all l i : (SUB(1) , l j , lk) ∈ I we take
cl̄0

i → cl̃k, a′1 → #, l̄0
i → # (zero test; if a primed copy ofa1 is present, then the trap symbol # is

generated);
l̄−i → l̃ j , ca′1 → c, ch→ c# (decrement; the auxiliary symbolh is needed to keep the catalystc busy

with generating the trap symbol # if we have taken the wrong guess when assuming the register 1 to be
non-empty);

cl̃ → cl̃ , l̃ → # for all l ∈ B (with these labels, we just pass through this step);
cl̂ → cl̂ , l̂ → # for all l ∈ B−2 (these labels pass through this step to become active in the next step);
#→ #.

R4: in the fourth step, the simulation of SUB instructions on register 2 is initiated by using
cl̂ → cl−, cl̂ → cl0 for all l ∈B−2, i.e., we make a non-deterministic guess whether registerr is empty

(with introducingl0) or not (with introducingl−);
cl̃ → cl̃ , l̃ → # for all l ∈ B (with all other labels, we only pass through this step);
#→ #,
h→ λ (if h has been introduced byl− → l̄−h in the second step for somel ∈ B−1, we now erase it).

R5: in the fifth and the sixth step, the SUB instructions on register 2 are simulated, i.e., for alll ∈B−2

we start with
ca2 → ca′2 (if present, exactly one copy ofa2 can be primed) and
l− → l̄−h, l0 → l̄0 for all l ∈ B−2;
c1l̃ → c1l̃ , l̃ → # for all l ∈ B;
#→ #.

R6: the simulation of SUB instructionsl i : (SUB(2) , l j , lk) ∈ I on register 2 is finished by
cl̄0

i → clk, a′2 → #, l̄0
i → # (zero test; if a primed copy ofa2 is present, then the trap symbol # is

generated);
l̄−i → l j , ca′2 → c, ch→ c# (decrement; the auxiliary symbolh is needed to keep the catalystc busy

with generating the trap symbol # if we have taken the wrong guess when assuming the register 2 to be
non-empty; if it is not used, it can be erased in the next step by usingh→ λ in R1);

cl̃ → cl, l̃ → # for all l ∈ B;
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#→ # .

Without loss of generality, we may assume that the final labellh in M is only reached by using a zero
test on register 2; then, at the beginning of a new cycle, after a correct simulation of a computation from
M in the time-varying P systemΠ no rule will be applicable inR1 (another possibility would be to take
cl̄0

i → c instead ofcl̄0
i → clh in R6).

At the end of the cycle, in case all guesses have been correct,the requested instruction ofM has
been simulated and the label of the next instruction to be simulated is present in the skin membrane.
Only in the case thatM has reached the final labellh, the computation inΠ halts, too, but only if during
the simulation of the computation ofM in Π no trap symbol # has been generated; hence, we conclude
Ps(M) = Ps(Π).

6 Computational Completeness of P Systems with Membrane Creation

Theorem 4 YOP1,2(cat1,mcre) =YRE, Y∈ {N,Ps}.

Proof. We only prove the inclusionPsRE⊆ PsOP1,2(cat1,mcre). Let us consider a register machine
M = (n+2,B, l0, lh, I) with only the first and the second register ever being decremented. Again we
defineA= {a1, . . . ,an+2} as the set of objects for representing the contents of the registers 1 ton+2 of
M. We construct the following P system:

Π =
(

O,{c} , [ ]1,cdl0,R1,R2,R3,0
)

,

O = A∪
{

l , l ′, l ′′ | l ∈ B
}

∪
{

c,d,d′
,d′′

}

,

and the sets of rules are constructed as follows.

A. For each ADD instructionl i : (ADD(r) , l j , lk) in I , the rules

step 1: l i → l ′i , d → d′
,

step 2: l ′i → ar l j , l ′i → ar lk, d′ → d,

are taken intoR1 and obviously simulate an ADD instruction in two steps. We also add the rulesar →
(ar ,out) for 3≤ r ≤ n+2 toR1; thus, in any moment, every copy ofar , 3≤ r ≤ n+2, present in the skin
membrane is sent out to the environment.

B. For each SUB instructionl i : (SUB(r) , l j , lk) in I , the following rules inR1 andRr+1, r ∈ {1,2},
are used:

Step R1 Rr+1

1 cli → c[ l i ] r+1, d → d′ –
2 car → c(ar , inr+1) , d′ → (d′, inr+1) l i → l ′i
3 – ar → λδ , l ′i → l ′′i , d′ → d′′

4 cl′′i → cl j , d′′ → d l ′′i → lk, d′′ → dδ

A SUB instructionl i : (SUB(r) , l j , lk) (with r ∈ {1,2}) is simulated according to the four steps suggested
in the table given above:

In the first step, we create a membrane with the labelr +1, wherel i is sent to, and simultaneouslyd
becomesd′. In the next step, if anyar exists, i.e., if registerr is not empty, then one copy ofar should
enter the membraner +1 just having been created in the preceding step. Note that the selection of the
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right membrane (the use ofinr+1 instead ofin) is important:ar has to go to the membrane created in the
previous step, whenr +1 has been specified by the labell i. At the same time,d′ enters the membrane
r +1, andl i becomesl ′i in this membrane. If the registerr is empty, then the catalyst is doing nothing in
this second step.

In the third step, in membraner+1, l ′i becomesl ′′i andd′ becomesd′′. If ar is not present in membrane
r +1, nothing else happens there in this step; ifar is present, it dissolves the membrane and disappears.
Observe that in both casescar → c(ar , inr+1) will not be applicable (anymore) inR1. Thus, we either
havecl′′i d′′ in the skin membrane (when the register has been non-empty),or we have onlyc in the skin
membrane andl ′′i d′′ in the inner membraner + 1. In the first case, in the fourth step we use the rules
cl′′i → cl j andd′′ → d from R1, which is the correct continuation of the simulation of the SUB instruction;
in the latter case, we usel ′′i → lk andd′′ → dδ in Rr+1. The inner membrane is dissolved, and in the skin
membrane we get the objectsclkd. In both cases, the simulation of the SUB instruction is correct and we
return to a configuration as that we started with, hence, the simulation of another instruction can start.

There is one interference between the rules ofΠ simulating the ADD and the SUB instructions ofM.
If in the second step of simulating a SUB instruction, instead of d′ → (d′, inr+1) we used′ → d, then the
case when registerr is non-empty continues correctly, as the simulation lasts four steps, and in the end
d is present in the skin membrane (the dissolution of membraner +1 is done byar ). If the registerr has
been empty,l ′′i will becomelk in membraner +1 and it will remain there untild′ enters the membrane,
changes tod′′, and then dissolves it (as long asd,d′ switch to each other in the skin membrane, the
computation cannot halt). Thus, also in this case we have to return to the correct submultisetclkd in the
skin membrane.

Consequently, exactly the halting computations ofM are simulated by the halting computations in
Π; hence,Ps(M) =Ps(Π). The observation that the maximal number of membranes in anycomputation
of Π is two completes the proof.

It remains as an open problem whether it is possible to use thetargetin only instead of thein j .

7 Computational Completeness of P Systems with Mobile Catalysts

If the membrane creation rules are of the formca→ [ cb ] i , then this implicitly means that the catalyst is
moving from one region to another one. However, for mobile catalysts, the computational completeness
of such systems with only one catalyst has already been proved in [7], using three membranes and targets
of the formshere, out, andin j . In this paper, we improve this result from the last point of view, making
only use of the targetshere, out, andin. In fact, if in the proof of Theorem 2 we let the catalystc move
with all the other objects, then we immediately obtain a proof for NOP7(mcat1) = NREwhere even only
the targetsout andin are used (but instead of three we need seven membranes).

Theorem 5 YOP3(mcat1) =YRE, Y∈ {N,Ps}.

Proof. We only prove the inclusionPsRE⊆ PsOP3(mcat1). Let us consider a register machineM =
(n+2,B, l0, lh, I) with only the first and the second register ever being decremented. Again we define
A= {a1, . . . ,an+2} as the set of objects for representing the contents of the registers 1 ton+2 of M. We
construct the following P system:
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Π = (O,{c} , [ [ ]2[ ]3 ]1,cl0,R1,R2,R3,0),

O = A∪
{

l , l ′, l ′′, l ′′′ | l ∈ B
}

∪{c,#} ,

R1 =
{

l i → l j (ar , in) , l i → lk (ar , in) | l i : (ADD(r) , l j , lk) ∈ I , r ∈ {1,2}
}

∪
{

l i → l j (ar ,out) , l i → lk (ar ,out) | l i : (ADD(r) , l j , lk) ∈ I ,3≤ r ≤ n+2
}

∪
{

cli → (c, in) (l i , in) | l i : (SUB(r) , l j , lk) ∈ I , r ∈ {1,2}
}

∪
{

cl′′′i → cl j , l ′′′i → #, #→ # | l i : (SUB(r) , l j , lk) ∈ I , r ∈ {1,2}
}

,

R2 = {a2 → #, #→ #, ca1 → (c,out)}

∪
{

l i → # | l i : (SUB(r) , l j , lk) ∈ I , r ∈ {1,2}
}

∪
{

cli → cl′i , l ′i → l ′′i , cl′′i → (c,out) (lk,out) , l ′′i →
(

l ′′′i ,out
)

| l i : (SUB(1) , l j , lk) ∈ I
}

,

R3 = {a1 → #, #→ #, ca2 → (c,out)}

∪
{

l i → # | l i : (SUB(r) , l j , lk) ∈ I , r ∈ {1,2}
}

∪
{

cli → cl′i , l ′i → l ′′i , cl′′i → (c,out) (lk,out) , l ′′i →
(

l ′′′i ,out
)

| l i : (SUB(2) , l j , lk) ∈ I
}

.

The rules in the sets of rulesR1, R2, andR3 are used as follows:

A. Let l i : (ADD(r) , l j , lk) be an ADD instruction inI . If r ≥ 3, then the rulesl i → l j (ar ,out) , l i →
lk (ar ,out) are used inR1; if r ∈ {1,2}, in R1 we take the rulesl i → l j (ar , in) andl i → lk (ar , in) as well as
the rulesa j → # and #→ # in R4− j , j ∈ {1,2}. The contents of each registerr, r ∈ {1,2}, is represented
by the number of objectsar present in membraner +1; any objectar , r ≥ 3, is immediately sent out into
the environment. Ifa j is introduced in membrane 4− j, j ∈ {1,2}, then the trap object # is produced and
the computation never halts.

B. The simulation of a SUB instructionl i : (SUB(r) , l j , lk) is carried out by the following rules (the
simulation again has four steps, as in the proof of Theorem 4):

For the first step, we take the rulecli → (c, in) (l i , in) in R1 and the rulel i → # in bothR2 andR3

(if c and l i are not moved together into an inner membrane, then the trap object # is produced and the
computation never halts). In the second step,Rr+1 has to use the rulecli → cl′i . This checks whether
c and l i have been moved together into the right membraner + 1; if this is not the case, then the rule
cli → cl′i is not available and the rulel i → # must be used, which causes the computation to never halt.

Thus, after the second step, we know whether bothc andl i (l ′i ) are in the right membraner +1. The
rulescar → (c,out) and l ′i → l ′′i in Rr+1 are used in order to perform the third step of the simulation.If
there is any copy ofar in membraner +1 (i.e., if registerr is not empty), then the catalyst exits, while
also removing a copy ofar . Simultaneously,l ′i becomesl ′′i . Hence, if the registerr has been non-empty,
we now havec in the skin membrane andl ′′i in membraner +1; if registerr has been empty, we have
both c and l ′′i in membraner + 1. We then use the rulescl′′i → (c,out) (lk,out) and l ′′i → (l ′′′i ,out) in
Rr+1 as well as the rulescl′′′i → cl j and l ′′′i → # in R1. If c is inside membraner +1, we getclk in the
skin membrane, which is the correct continuation for the case when the register is empty. Ifc is not in
membraner +1, thenl ′′i exits alone thereby becomingl ′′′i , and, together withc, which waits in the skin
membrane, introducesl j , which is a correct continuation, too. If the rulel ′′i → (l ′′′i ,out) is used althoughc
is inside membraner +1, then in the skin membrane we have to use the rulel ′′′i → # and the computation
never halts (as we have the rule #→ # in R1).

In all cases, the simulation of the SUB instruction works correctly, and we return to a configuration
with the catalyst and a label fromH in the skin region.

In sum, we have the equalityPs(M) = Ps(Π), which completes the proof.
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8 Final Remarks

Although we have exhibited several new computational completeness results for P systems using only
one catalyst together with some additional control mechanism, the original problem of characterizing
the sets of (vectors of) non-negative integers generated byP systems with only one catalyst still remains
open. A similar challenging problem is to considerpurely catalyticP systems with only two catalysts:
with only one catalyst, we obtain the regular sets; as shown in [4], three catalysts are enough to obtain
computational completeness. With two catalysts and some additional control mechanism, computational
completeness can be obtained, too, see [3].
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