Satisfiability of cross product terms is complete for real
nondeterministic polytime Blum-Shub-Smale machines
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Nondeterministic polynomial-time Blum-Shub-Smale Mawds over the reals give rise to a discrete
complexity class betweddP andPSPACE Several problems, mostly from real algebraic geometry
/ polynomial systems, have been shown complete (under raaayeduction by polynomial-time
Turing machines) for this class. We exhibit a new one basedquastions about expressions built
from cross products only.

1 Motivation

The Millennium Question P vs. NP” asks whether polynomial-time algorithms that may guess, a
then verify, bits can be turned into deterministic onesrdsa from theCook—Levin—Theorem asserting
Boolean Satisfiability to be complete f&iP; which initiated the identification of more and more other
natural problems also complete [GaJo79].

The Millennium Question is posed [Smal98] also for models &b guess objects more general than
bits. More precisely a Blum-Shub-Smale (BSS) machine ovarggR may operate on elements frdfh
within unit time. It induces the nondeterministic polyn@iiime complexity clas®Pg; for which the
following problemFEASR has been shown complete [BS$894M THEOREM]:

Givertll a system of multivariate polynomials over R,
does it admit a joint root from R ?

See also[[Cuck93, AEOREM 3.1] or [BCSS98§5.4]. More preciselyFEASgr C R* is NPr—complete
with respect to many-one (aka Karp) reducibility by polynaktime BSS-machinewith the capability

to peruse finitely many fixed constants frégnBSS Machines witbut constants on the other hand give,
restricted tdbinary inputs, rise to the discrete complexity cIeBB(NPg) [MeMi97, DEFINITION 3.2];

for which the following problenFEAS% C {0,1}* is complete under many-one reduction by polynomial-
time Turing machines:

Given a system of multivariate polynomials widéhand+1s as coefficients,
does it admit a joint root from R ?

BSS machines oveR coincide with the real-RAM model from@omputational Geometry [BKOS97]
and underlie algorithms ifiemialgebraic Geometry [Gius91[LeceQ(, BiSc09]. They give rise to a par-
ticularly rich structural complexity theory resemblingtblassical Turing Machine-based one — but often
(unavoidably) with surprisingly different proofs [Burg0BaMe13]. It is known thalNP C BP(NPE%) C
PSPACE holds [Grig88| Cann88, HRS90, Rene9FEASr and FEAS]% are sometimes referred to as
existential theory over the reals. However even in this highly important caBe= R, and in striking
contrast ta\P, relatively few other natural problems have yet been idiedtias complete:
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Several questions about systems of polynomials [CuRo9298]

Stretchability of pseudoline arrangements [Shor91]

Realizability of oriented matroids [Rich99]

Loading neural networks with real weights [Zhah92]

Several geometric properties of graphs [Schal0]
o Satisfiability in Quantum LogiQSAT, starting from dimension 3 [HeZil11].

The present work extends this list: We study questions abxptessions built using variables and the
cross (aka vector) productx” only, and we establish some of them complete ity or BP(NPH%).
These problems are in a sense ‘simplest’ as they involve @mdybinary operation symbol (as opposed
to +,- for FEASH% or v,— for QSAT); in fact so simple that their (trarf$P) hardness may appear as
surprising.

Remark 1. Another decision problem related EEASg and FEAS% is the question of whether a given
multivariate polynomial p is identically zero or not. In denrepresentation (list of monomials and coef-
ficients) this can easily be solved (over ringsof characteristic 0) by checking whether all coefficients
vanish or not. However when p is given as a expression, expguiat based on the distributive law
may result in an exponential blow-up of description lendgthe followingPolynomial Identity Testing
problem is thus not known to be polytime decidable:

Given a multivariate ring term @y, ..., Xy) with constant® and +1,
does it admit an assignment,X. ., X, such that fxs,...,X,) #0

It can be solved, though, in randomized polytime with odegierror (classRP C NP) based on the
Schwartz-Zippel Lemma, cmp.[MR95, §1.5 and Hwm 7.2].

2 Cross Product and Induced Problems

The cross product i3 is well-known due to its many applications in physics suctoague or electro-
magnetism. Mathematically it constitutes the mapping

x T R3XR3 2 ((Vo,V1,V2), (Wo, Wi, Wo)) = (ViW2 — VaWg, VoW — VgWa, VoW1 — VaWp) € R3 . (1)

Itis bilinear (thus justifying the name “product”) but acbmmutative’ x W= —V x Wand non-associative
and fails the cancellation law. The following is easily Vied:

Fact2. a) For any independent,w, the cross produdi = V x W is uniquely determined by the fol-
lowing: ULV, ULw (where “L” denotes orthogonality), the triple@ w, T is right-handed, and
lengths satisfy{d|| = ||V|| - |W|| cosZ(V,W). In particular, parallelV,w are mapped t®.

b) Cross products commute with simultaneous orientatiGsgnving orthogonal transformations:
For O € R332 with O-O" = id anddet{O) = 1 it holds (O- V) x (O-W) = O- (V x W), where G
denotes the transposed matrix.

Definition 3. Fix a fieldF C R.

a) Atermt(Vy,...,Vy) (over “x”, in variables \4,...,V}) is either one of the variables @sx t) for
terms st (in variables \{, ..., Vy).

b) Forvy,...,V, € F3thevaluet(vs,...,Vy) is defined inductively via Etﬂ).
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c) Atermwith affine constantsis a term {(Vi,...,Vn; Wi, ..., W) where variables W. .., Wy, have
been pre-assigned certain valuss, . .., Wn, € R3.

d) Recall thatP?(F) := { Fv: 0+ V € F3} denotes the real projective plane, whéé= {AvV: A e F}.
For distinctFv, Fw € P?(IF) (well-)define(FV) x (FW) := F(V x W); FV x FV is undefined.

e) ForatermtVy,...,V,) andFvy,...,FV, € P?(F), the value t(FVy,...,FV,) is defined inductively
via d), provided all sub-terms are defined.

f) Atermwith projective constantsis a term {(Vy,...,Vn;Wi, ... .Wy) where variables W. .., Wy,
have been pre-assigned certain vall®g, ..., RWy, € P2(R).

Note that every term admits an affine assignment making ltat@to0. Some terms in fact always
evaluate td); equivalently: are projectively undefined everywhere.

Example 4. Consider the term(¥/,W) := ((V x (V xW)) ><V> x (V xW). Observe tha¥, vV x W, and
V x (Vx W) together form an orthogonal system for any non-paraflev. Moreover(v X (Vx W)) X Vis
parallel toV x W. Therefore V,w) = 0 holds for every choice of W € R3.

We are interested in the computational complexity of thifaihg discrete decision problems:
Definition 5. @) XNONTRIV s == {(t(V1,....Va)) |[n€N, Ty,...,Vh € F3:t(Vy,..., V) # O}.

b) XNONTRIV 225y = {{t(V,...,Vn)) N €N, FFVy,..., FVy] € P2(F) : t(FVy, ..., V) defined.

) XUVECRs == {{t(V1,...,Vo)) |[NEN, T0n,... .V e F3:t(V,..., V) =& = (0,0,1)}.

d) XNONEQUIV By i= {(S(Va,. ., Vo), t(Va,... V) |

neN, JFVy,...,FV, € PA(F) : S(FV,...,FVy) # t(FVy,...,FV,), both sides defingd

e) XSATD; := {(ts(Va,...,Va)) [nEN, TVy,... .V € F3:t(Vn,..., V) = Vy # 0}.

f) XSAT%ZGF) = {({ta(V1,..., Vi) \ nc N, IFVy,...,FV, € P2(F) : t(FVy,...,FV,) = Fv;}.
Realvariants of problems a) to f) withut superscriptO are defined similarly for input termaith con-
stants; .gXSATgs == {(ta(V1,...,VaiWi,..., W) | nK € N, Wy, ..., W € R3

W, Vn € R3O t(Vy, .. Vo Wy, ..., W) =V #£ 0} C R*.
Our main result is
Theorem 6. a) Among the above discrete decision probleBIONTRIV $;, XNONTRIV%Z(R),

XUVEC %3, and XNONEQUIV]?,,Z(M are polytime equivalent to polynomial identity testingdan
in particular belong toRP).

b) For any fixed fieldf C R, the discrete decision problen&SATY; and XSAT]?DZ(E are BP(NPQ)-
complete.

C) XSATgs and XSATpz ) are NPr—complete.

This establishes a normal form for cross product equatiatits awariable on the right-hand side — in
spite of the lack of a cancellation law.

3 Proofs

XNONTRIV £, ;- is equal toXNONTRIV ps as a set; and it holdSNONTRIV B, ) = XUVEC Rs: Sup-

poset(Vy,...,Vp) = W # 0. Sincet is homogeneous in each coordinate, by suitably scaling soqe
mentv; we may w.l.0.g. suppo@é\m = 1. Now take an orientation preserving orthogonal transétion

*This requires taking square roots
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Owith O-W==8&;: Eb) yieldst(O-Vy,...,0-V,) =&. Concerning the reduction froxNONEQUIV %Z(F)

toXNONTRIV % observe that, fovy, . .., Vi, € F3\ {0}, Fs(Vy, ..., V) #Ft(Vy, ..., V,) impliess(Vy, .. ., V) x
t(Vy,...,Vnh) # 0 and vice versa. Conversely an instancﬁNﬂNTRlV% is either a variable (trivial case)
or of the forms x t; in which case nontriviality is equivalent to projectivenaguivalence o$,t.

We now reduce\XNONTRIV]‘l’§3 to polynomial identity testing, observing thétx V is a triple of
bilinear polynomials in the 6 variablas,,uy,u,,Vx,Vy,V; with coefficients 0+1. Thus,t(Vy,...,Vy)
amounts to a triple of termg,, py, p, in 3n variables with coefficients,@&1. Now by construction a real
assignmenty, ..., V, makest evaluate to nonzero iff the three termg py, p, do not simultaneously
evaluate to zero. This yields the reductiors pZ + pg + pZ.

ConcerningXSAT s, a nondeterministic real BSS machine can, given a tévi. ..,V Wy, ..., Wk)
with constantsw; ¢ RR3, in time polynomial in the length df guess an assignme#t, ...V, € R® and
apply Eq. lﬂL) to evaluate and verify the result to be nonzero. Similarly a nondeteistin BSS ma-
chine overF can, given a ternt(Va,...,V,) without constants, in polytime guess and evaluate it on an
assignmenvy, . ...V, € FS.

XSAT]?DZ(R) reduces toXSATY; in polytime as follows: For any non-parallel tdf, ¥ := (T x W) x

((fx W) x t) is a multiple oft; see Fig[lLa). Note that scaling affectst’ quadratically. Similarly,
(Wx (Tx W)) x Tis a multiple off x W, and replacing it in the first subterm definitigand renaming, ¥

t0 §,§) shows that := ((Wx (3xW)) x §) x (8x (8x W)) is a multiple ofs; one scaling cubically with

W. SoR being closed under cubic roo&V;,...,V,) = Vi is satisfiable oveP?(R) iff s(Vi,...,Vy) =
A%V is satisfiable oveR® for someA € R iff §(Vi,...,Vh,W) =V, is satisfiable oveiR3, where

s = ((W x (sxW)) x s) x (sx (sxW)). The reduction for the caseith constants, that is from
XSATpz(g) t0 XSATgs, works similarly.

3.1 Hardness
It remains to reduce (in polynomial time)
) FEASR to XSATp2 (k) and

ii) FEASS to XSAT, 5 and

F)
iii) polynomial identity testing t@(NONTRlng(R).

These can be regarded as quantitative refinements_of [HASV®8 first recall some elementary, but
useful facts about the cross product in the projectiverggtti

Fact 7. Consider UV,W,T ¢ P?(F). By ‘plane’ we mea-dimensional linear subspace.
1) U=V xW iff the plane orthogonal to U is spanned byW. In particular, VxW =W x V.

2) IfV xW and Ux T are defined theV x W) x (U x T) is the intersection of the plane spanned
by V,W with the plane spanned by, U; undefined if this intersection is degenerate.

3) Vx (W xV) is the orthogonal projection of W into the plane orthogorV/t, undefined iff W=V,
i.e. in case the projection is degenerate.

The following considerations are heavily inspired by thekgoof John von Neumann but for the sake
of self-containment here boiled down explicitly.
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Lemma 8. Fix a subfieldF of R. LetV,,V»,V3 denote an orthgonal basis ofF3. Then V=TV
satisfies Y x Vo = V3, Vo x V3 =V, and \4 x V; = V,. Moreover abbreviating M := F(V; — V) and
Vo3 = F(VQ — V3) and iz = IE‘(Vl — V3), we have for,rs e F:

a) F(Vy —rsVy) = Va x [F(V3— V) x F(Vy — SV3)]

b) F(V1—sV3) = Vo X [Vaz x F(Vy — V)]

c) F(Vza—rvp) = Vi x [Vizx F(Vy—rib)]

d) F(Vi— (r —s)Vo) = V3 x [([Vag x F(V1 — V)] X [Vo x F(Vy — sV)]) x V3]
e) Vi3 = Vo x (V12 x Va3).

f) For W € P?(FF), the expression(W) := (W x V3) x (((W x V3) x V3) X Vz) is defined precisely
when W=TF(V; —rv, 4 sV3) for some & F and a unique Kk F; and in this case(W) = F(Vy —rv,).
Moreover, if W= F(V; — ri) then (W) =W.

Note that theV; here do not denote variables but element®&{F). Concerning the proof of Lemma
LemmsBB, e.g. for a) observe thgt— rsv, = V; — sV — (V3 — i) is orthogonal td/3 and contained in
the plane spanned kg — rvs. In d) one applies 3) of Fakl 7 with subtek evaluating tdF(vy — (r —
S)Vp — SV3) in view of 2). For f) observe that, W lies in theV,-Vs—plane, its projectiofW x V3) x V3
according to 3) coincides witth (corresponding to slope= +) and renders the entire term undefined;
whereas foWV not in theV,-Vs—plane,((W x Vi) x V3) x V» coincides withvs.

Let us abbreviaty/ := (V1,V2,V3,Vi2,Vo3) derived from an orthogonal basis, V,,V; as above. In
terms ofvon Staudt’s encoding of elements € F as projective point©y(r) := F(Vy —rvp) L FVs,
LemmaBSa+d) demonstrate how to express the ring operatising only the crossproduct; note that
r+s=r—(0—s) where Oc IF is encoded a¥;. LemmaBBa) involves two other encodings such as
F(V1 — svz), but LemmaE]8b+c) exhibit how to express these using the grozsuct andoy only as
well asVo3 andVis. Vi3 can even be disposed off by means of_Lenﬂna 8e). Plugging +gyato
a) and d), we conclude that there exist cross product te¥(isS,V) and®(R,SV) in variablesR, S
with constants/ = (V1 = ©y(0),V2,Va,Vi2 = ©y(1),Va3) as above such that for everys € F it holds
Oy (rs) = ®(0y(r),87(s);V) andOy(r —s) = 5(0y(r),0y(s);V)

Now any polynomialp € F[Xy, ..., X,] is composed, using the two ring operations, from variables
and coefficients froni*. More precisely, according to Lemrtla 8, the above encodibgnes to a map-
ping ©y assigning, to any ring terrp(Xy, ..., Xn) with constant € IF, some cross product tertp in
variablesX, ..., X, with constantsdy(c) € P2(F) and constant¥s, Vs, V3, Vi, Vs € P2(F); moreover
©y ‘commutes’ with the magp — t, in the sense that

tp(O7(%1),-..,0¢(%)) = Oy (P(X1,....%)) - (2)

Sincety, is defined by structural induction overusing the constant-size terms from Lenltha 8, it can be
evaluated by a BSS machine in time polynomial in the desorigength of the ring ternp.
Moreover by Lemmil 8f) precisely thg(W) are images undé,;. Thus, every satisfying assignment
to the cross product equation
th = (1K), 10) = Va) ©)
comes from aroofry, ..., rn) of p; namely the unique; such thai; = F(V;, +r;V,> 4 s;V3). Conversely,
given a root(rq,...,r,) of p, Xj := ©y(r;) yields a a satisfying assignment for the equaiti@p& Vi.
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Similarly, (the partial map given bqu x Vy is nontrivial iff pis not identically zero. We have thus
proved Claim i).

In order to establish also the remaining Claims ii) and ii@ turn everyd-variate ring termp with
coefficients 0+1 into an ‘equivalent’ cross product tem{ﬁwithout constants and in particular avoiding
explicit reference to the fixed, Vs, V3, V12, Vo3 from Lemmeﬂs based on the following

Observation 9. Fix a subfieldF of R. To AB,C < P(F) consider
Vi . =B W = (AX B) XA Vo3 . =CxA V| . =VoxVoz3 V3 .= (V23>< (BXVz)) x B (4)

a) These may be undefined in cases such-aBAwhence ¥= 1) or when AC, A x B are collinear
(thus b3 =V, and \{ = L) or when AB,C are collinear (where ¥ =Ax B and \4 = L) or when
AlB (where B=V, and\5 = 1).

b) On the other hand for example:A Fvy, B:=F(V, —V;) and C:= F(V, + V3), defined in terms of
an orthogonal basis, recoverW,,V3,V12,Vo3 from Lemmﬁ&

c) Conversely when all quantities in E(E,) are defined, then\= A and there exists a right-handed
orthogonal basisi;, V», V3 of F2 such that Y =FV; and i = F(V; — V) and Vb3 = F (Vo — V).
We may thus replace the tuple of projective constaﬁ_ﬁts the above reductiop — t, mapping a ring
termp(Xy,..., %) to across product tertg(Xy, . .., Xn; V) with the subterm¥; (A, B,C), ..., Va3(A,B,C)
(consideringA, B,C as variables) according to Observatibn 9 to obtain a conBmcross product term
tg(xl,...,Xn;A, B,C) such that the map — t’p’ commutes with©y for any projective assignment on
whicht’p’ is defined and/ (A, B,C) given by the values of the subterivsV;.

Now leti(X) denote the constant free term from Lenha 89) in variaKlgs B, C (with subterms/
as above). Then, from each satisfying assignmeiyf te- t;; (1(X1),...,1(X); A, B,C) = A one obtains
as previously again a rodt;,...,ry) of p: Observatior Oc) justifies reusing the reasoning given én th
case with constants. Conversely, given a (@gt...,rp) of p, evaluateA, B,C according to Observation
@Bb) andX; := Gy (r;) to obtain a satisfying assignment for the equaﬂgin: A. Since the translation
p— tg can be carried out by structural induction in time polyndrmahe description length op, this

establishes Claim ii). To deal with iii), consid%f x A O
AxB, BxV
Axcw , (wx(txw))xt 2\ /
V. =(V_x(BxV.))xB V;:=Cx4
3 23 2
7
Z AN V,=(AxB)xA4
(txw)xt C

w g B=1V

12

] — =
t N\ —
m\> A4, V=V XV,

Figure 1: lllustrating the geometry of the terms considexkid the reduction fronXSAng(R) to XSAT]%3
and b)in Observatio 9c.

Proof of Observatiohl 9¢)By construction, affine lined andA x B andV, are pairwise orthogonal; see
Fig.ﬁb). MoreovelA # B becauseA x B a subterm oW, is defined by hypothesis. Since bath and
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V,3 = C x Aare orthogonal té\, their projective cross produet must coincide wittA whenever defined
and in particulai, # V»3; moreovelV, andV,3 andA x B lie in a common planeB x V, as subterm o¥;
being defined requires # B; yet these two and =V, are orthogonal té x B and thus lie in a common
plane. In particulaB x V, = A x B. Finally, Vo3 andB x V, = A x B both being orthogonal té, their
defined cross product as subtermvigfrequiresvas = B x Vo, andVz = B x V, = A x B. To summarize:
V1,V,, V3 are pairwise orthogonal; ang,Vi,, V. are pairwise distinct yet all orthogonal g; similarly
V>, Vo3,V3 are pairwise distinct yet all orthogonal ¥9. Now choose G4 vy, € V; arbitrary andv, € V,
such thaw;, = F(V; — W,); finally choosev; € V3 such that,s = F(V, — V). If these pairwise orthogonal
vectorsvy, Vb, V3 happen to form a left-handed system, simply flip all theinsig O

4 Conclusion

We have identified a new problem complete (i.e. universalnhfimdeterministic polynomial-time BSS
machines, namely from exterior algebra: the satisfiabditya single equation built only by iterating
cross products. This enriches algebraic complexity thaoyemphasizes the importance of the Turing
() complexity classBP(NPY).

Moreover our proof yields a cross product equatigh ,(Y,A,B,C) = A solvable oveiP?(R) but
not overP?(Q), the rational projective plane. In fact the decidabilityXSAT]%z(Q) is equivalent to a
long-standing open questian [Poon09].

We wonder about the computational complexity of equatiores the 7-dimensional cross product.
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