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Nondeterministic polynomial-time Blum-Shub-Smale Machines over the reals give rise to a discrete
complexity class betweenNP andPSPACE. Several problems, mostly from real algebraic geometry
/ polynomial systems, have been shown complete (under many-one reduction by polynomial-time
Turing machines) for this class. We exhibit a new one based onquestions about expressions built
from cross products only.

1 Motivation

The Millennium Question “P vs. NP” asks whether polynomial-time algorithms that may guess, and
then verify, bits can be turned into deterministic ones. It arose from theCook–Levin–Theorem asserting
Boolean Satisfiability to be complete forNP; which initiated the identification of more and more other
natural problems also complete [GaJo79].

The Millennium Question is posed [Smal98] also for models able to guess objects more general than
bits. More precisely a Blum-Shub-Smale (BSS) machine over aring R may operate on elements fromR
within unit time. It induces the nondeterministic polynomial-time complexity classNPR; for which the
following problemFEASR has been shown complete [BSS89, MAIN THEOREM]:

Given† a system of multivariate polynomials over R,
does it admit a joint root from R ?

See also [Cuck93, THEOREM 3.1] or [BCSS98,§5.4]. More preciselyFEASR ⊆ R∗ is NPR–complete
with respect to many-one (aka Karp) reducibility by polynomial-time BSS-machineswith the capability
to peruse finitely many fixed constants fromR. BSS Machines without constants on the other hand give,
restricted tobinary inputs, rise to the discrete complexity classBP(NP0

R) [MeMi97, DEFINITION 3.2];
for which the following problemFEAS0

R⊆{0,1}∗ is complete under many-one reduction by polynomial-
time Turing machines:

Given a system of multivariate polynomials with0s and±1s as coefficients,
does it admit a joint root from R ?

BSS machines overR coincide with the real-RAM model fromComputational Geometry [BKOS97]
and underlie algorithms inSemialgebraic Geometry [Gius91, Lece00, BüSc09]. They give rise to a par-
ticularly rich structural complexity theory resembling the classical Turing Machine-based one – but often
(unavoidably) with surprisingly different proofs [Bürg00, BaMe13]. It is known thatNP⊆ BP(NP0

R)⊆
PSPACEholds [Grig88, Cann88, HRS90, Rene92].FEASR andFEAS0

R are sometimes referred to as
existential theory over the reals. However even in this highly important caseR= R, and in striking
contrast toNP, relatively few other natural problems have yet been identified as complete:
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• Several questions about systems of polynomials [CuRo92, Koir99]

• Stretchability of pseudoline arrangements [Shor91]

• Realizability of oriented matroids [Rich99]

• Loading neural networks with real weights [Zhan92]

• Several geometric properties of graphs [Scha10]

• Satisfiability in Quantum LogicQSAT, starting from dimension 3 [HeZi11].

The present work extends this list: We study questions aboutexpressions built using variables and the
cross (aka vector) product “×” only, and we establish some of them complete forNPR or BP(NP0

R).
These problems are in a sense ‘simplest’ as they involve onlyone binary operation symbol (as opposed
to +, · for FEAS0

R or ∨,¬ for QSAT); in fact so simple that their (trans-NP) hardness may appear as
surprising.

Remark 1. Another decision problem related toFEASR andFEAS0
R is the question of whether a given

multivariate polynomial p is identically zero or not. In dense representation (list of monomials and coef-
ficients) this can easily be solved (over ringsR of characteristic 0) by checking whether all coefficients
vanish or not. However when p is given as a expression, expanding that based on the distributive law
may result in an exponential blow-up of description length.The followingPolynomial Identity Testing

problem is thus not known to be polytime decidable:

Given a multivariate ring term p(X1, . . . ,Xn) with constants0 and±1,
does it admit an assignment x1, . . . ,xn such that p(x1, . . . ,xn) 6= 0

It can be solved, though, in randomized polytime with one-sided error (classRP ⊆ NP) based on the
Schwartz-Zippel Lemma, cmp.[MR95, §1.5 and THM 7.2].

2 Cross Product and Induced Problems

The cross product inR3 is well-known due to its many applications in physics such astorque or electro-
magnetism. Mathematically it constitutes the mapping

× : R3×R3 ∋
(

(v0,v1,v2),(w0,w1,w2)
)

7→ (v1w2−v2w1,v2w0−v0w2,v0w1−v1w0) ∈ R3 . (1)

It is bilinear (thus justifying the name “product”) but anti-commutative~v×~w=−~v×~wand non-associative
and fails the cancellation law. The following is easily verified:

Fact 2. a) For any independent~v,~w, the cross product~u=~v×~w is uniquely determined by the fol-
lowing: ~u⊥~v, ~u⊥~w (where “⊥” denotes orthogonality), the triplet~v,~w,~u is right-handed, and
lengths satisfy‖~u‖= ‖~v‖ · ‖~w‖cos∠(~v,~w). In particular, parallel~v,~w are mapped to~0.

b) Cross products commute with simultaneous orientation preserving orthogonal transformations:
For O∈ R3×3 with O·O† = id anddet(O) = 1 it holds (O ·~v)× (O · ~w) = O · (~v×~w), where O†

denotes the transposed matrix.

Definition 3. Fix a fieldF⊆R.

a) A term t(V1, . . . ,Vn) (over “×”, in variables V1, . . . ,Vn) is either one of the variables or(s× t) for
terms s, t (in variables V1, . . . ,Vn).

b) For~v1, . . . ,~vn ∈ F3 thevalue t(v1, . . . ,vn) is defined inductively via Eq.(1).
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c) A termwith affine constants is a term t(V1, . . . ,Vn;W1, . . . ,Wm) where variables W1, . . . ,Wm have
been pre-assigned certain values~w1, . . . ,~wm ∈ R3.

d) Recall thatP2(F) := { F~v :~0 6=~v∈F3} denotes the real projective plane, whereF~v= {λ~v : λ ∈F}.
For distinctF~v,F~w∈ P2(F) (well-)define(F~v)× (F~w) := F(~v×~w); F~v×F~v is undefined.

e) For a term t(V1, . . . ,Vn) andF~v1, . . . ,F~vn ∈ P2(F), thevalue t(F~v1, . . . ,F~vn) is defined inductively
via d), provided all sub-terms are defined.

f) A termwith projective constants is a term t(V1, . . . ,Vn;W1, . . . ,Wm) where variables W1, . . . ,Wm

have been pre-assigned certain valuesR~w1, . . . ,R~wm ∈ P2(R).

Note that every term admits an affine assignment making it evaluate to~0. Some terms in fact always
evaluate to~0; equivalently: are projectively undefined everywhere.

Example 4. Consider the term t(V,W) :=
(

(

V × (V ×W)
)

×V
)

× (V ×W). Observe that~v,~v×~w, and

~v× (~v×~w) together form an orthogonal system for any non-parallel~v,~w. Moreover
(

~v× (~v×~w)
)

×~v is

parallel to~v×~w. Therefore t(~v,~w) =~0 holds for every choice of~v,~w∈ R3.

We are interested in the computational complexity of the following discrete decision problems:

Definition 5. a) XNONTRIV 0
F3 :=

{

〈t(V1, . . . ,Vn)〉
∣

∣ n∈ N, ∃~v1, . . . ,~vn ∈ F3 : t(~v1, . . . ,~vn) 6=~0
}

.

b) XNONTRIV 0
P2(F) :=

{

〈t(V1, . . . ,Vn)〉
∣

∣ n∈N, ∃F~v1, . . . ,F~vn] ∈ P2(F) : t(F~v1, . . . ,F~vn) defined
}

.

c) XUVEC 0
F3 :=

{

〈t(V1, . . . ,Vn)〉
∣

∣ n∈ N, ∃~v1, . . . ,~vn ∈ F3 : t(~v1, . . . ,~vn) =~e3 := (0,0,1)
}

.

d) XNONEQUIV 0
P2(F) :=

{

〈s(V1, . . . ,Vn), t(V1, . . . ,Vn)〉
∣

∣

n∈N, ∃F~v1, . . . ,F~vn ∈ P2(F) : s(F~v1, . . . ,F~vn) 6= t(F~v1, . . . ,F~vn), both sides defined
}

.

e) XSAT0
F3 :=

{

〈t1(V1, . . . ,Vn)〉
∣

∣ n∈ N, ∃~v1, . . . ,~vn ∈ F3 : t(~v1, . . . ,~vn) =~v1 6=~0
}

.

f) XSAT0
P2(F) :=

{

〈t1(V1, . . . ,Vn)〉
∣

∣ n∈ N, ∃F~v1, . . . ,F~vn ∈ P2(F) : t(F~v1, . . . ,F~vn) = F~v1
}

.
Realvariants of problems a) to f) without superscript0 are defined similarly for input termswith con-
stants; e.g.XSATR3 :=

{

〈t1(V1, . . . ,Vn;~w1, . . . ,~wk)〉
∣

∣ n,k∈ N, ~w1, . . . ,~wk ∈ R3

∃~v1, . . . ,~vn ∈ R3 : t(~v1, . . . ,~vn;~w1, . . . ,~wk) =~v1 6=~0
}

⊆ R∗.

Our main result is

Theorem 6. a) Among the above discrete decision problems,XNONTRIV 0
R3, XNONTRIV 0

P2(R),

XUVEC 0
R3, andXNONEQUIV 0

P2(R) are polytime equivalent to polynomial identity testing (and
in particular belong toRP).

b) For any fixed fieldF ⊆ R, the discrete decision problemsXSAT0
F3 andXSAT0

P2(F) are BP(NP0
F)–

complete.

c) XSATR3 andXSATP2(R) areNPR–complete.

This establishes a normal form for cross product equations with a variable on the right-hand side — in
spite of the lack of a cancellation law.

3 Proofs

XNONTRIV 0
P2(F) is equal toXNONTRIV 0

F3 as a set; and it holdsXNONTRIV 0
P2(R) = XUVEC 0

R3: Sup-

poset(~v1, . . . ,~vn) =: ~w 6=~0. Sincet is homogeneous in each coordinate, by suitably scaling someargu-
ment~v j we may w.l.o.g. suppose‡ |~w|= 1. Now take an orientation preserving orthogonal transformation

‡This requires taking square roots
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O with O·~w=~e3: 2b) yieldst(O·~v1, . . . ,O·~vn) =~e3. Concerning the reduction fromXNONEQUIV 0
P2(F)

toXNONTRIV 0
F observe that, for~v1, . . . ,~vn ∈F3\{~0},Fs(~v1, . . . ,~vn) 6=Ft(~v1, . . . ,~vn) impliess(~v1, . . . ,~vn)×

t(~v1, . . . ,~vn) 6= 0 and vice versa. Conversely an instance toXNONTRIV 0
F is either a variable (trivial case)

or of the forms× t; in which case nontriviality is equivalent to projective nonequivalence ofs, t.

We now reduceXNONTRIV 0
R3 to polynomial identity testing, observing that~u×~v is a triple of

bilinear polynomials in the 6 variablesux,uy,uz,vx,vy,vz with coefficients 0,±1. Thus, t(~v1, . . . ,~vn)
amounts to a triple of termspx, py, pz in 3n variables with coefficients 0,±1. Now by construction a real
assignment~v1, . . . ,~vn makest evaluate to nonzero iff the three termspx, py, pz do not simultaneously
evaluate to zero. This yields the reductiont 7→ p2

x + p2
y + p2

z.

ConcerningXSATR3, a nondeterministic real BSS machine can, given a termt(V1, . . . ,Vn;~w1, . . . ,~wk)
with constants~w j ∈ R3, in time polynomial in the length oft guess an assignment~v1, . . . ,~vn ∈ R3 and
apply Eq. (1) to evaluatet and verify the result to be nonzero. Similarly a nondeterministic BSS ma-
chine overF can, given a termt(V1, . . . ,Vn) without constants, in polytime guess and evaluate it on an
assignment~v1, . . . ,~vn ∈ F3.

XSAT0
P2(R) reduces toXSAT0

R3 in polytime as follows: For any~w non-parallel to~t,~t ′ := (~t ×~w)×
(

(~t × ~w)× t
)

is a multiple of~t; see Fig. 1a). Note that scaling~w affects~t ′ quadratically. Similarly,
(

~w× (~t ×~w)
)

×~t is a multiple of~t×~w; and replacing it in the first subterm defining~t ′ (and renaming~t,~t ′

to~s,~s′) shows that~s′ :=
(

(

~w× (~s×~w)
)

×~s
)

×
(

~s× (~s×~w)
)

is a multiple of~s; one scaling cubically with

~w. SoR being closed under cubic roots,s(V1, . . . ,Vn) =V1 is satisfiable overP2(R) iff s(V1, . . . ,Vn) =
λ 3V1 is satisfiable overR3 for someλ ∈ R iff s′(V1, . . . ,Vn,W) = V1 is satisfiable overR3, where

s′ :=
(

(

W × (s×W)
)

× s
)

×
(

s× (s×W)
)

. The reduction for the casewith constants, that is from

XSATP2(R) to XSATR3, works similarly.

3.1 Hardness

It remains to reduce (in polynomial time)

i) FEASR toXSATP2(R) and

ii) FEAS0
F to XSAT0

P2(F) and

iii) polynomial identity testing toXNONTRIV 0
P2(R).

These can be regarded as quantitative refinements of [HaSv96]. We first recall some elementary, but
useful facts about the cross product in the projective setting.

Fact 7. Consider U,V,W,T ∈ P2(F). By ‘plane’ we mean2-dimensional linear subspace.

1) U =V ×W iff the plane orthogonal to U is spanned by V,W. In particular, V×W =W×V.

2) If V ×W and U×T are defined then(V ×W)× (U ×T) is the intersection of the plane spanned
by V,W with the plane spanned by U,T ; undefined if this intersection is degenerate.

3) V×(W×V) is the orthogonal projection of W into the plane orthogonal to V ; undefined iff W=V,
i.e. in case the projection is degenerate.

The following considerations are heavily inspired by the works of John von Neumann but for the sake
of self-containment here boiled down explicitly.
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Lemma 8. Fix a subfieldF of R. Let~v1,~v2,~v3 denote an orthogonal basis ofF3. Then Vj := F~v j

satisfies V1 ×V2 = V3, V2 ×V3 = V1, and V3 ×V1 = V2. Moreover abbreviating V12 := F(~v1 −~v2) and
V23 := F(~v2−~v3) and V13 := F(~v1−~v3), we have for r,s∈ F:

a) F(~v1− rs~v2) = V3×
[

F(~v3− r~v2)×F(~v1−s~v3)
]

b) F(~v1−s~v3) = V2×
[

V23×F(~v1−s~v2)
]

c) F(~v3− r~v2) = V1×
[

V13×F(~v1− r~v2)
]

d) F
(

~v1− (r −s)~v2
)

= V3×
[(

[V23×F(~v1− r~v2)]× [V2×F(~v1−s~v3)]
)

×V3
]

e) V13 = V2× (V12×V23).

f) For W ∈ P2(F), the expression ı(W) := (W×V3)×
(

(

(W×V3)×V3
)

×V2

)

is defined precisely

when W=F(~v1−r~v2+s~v3) for some s∈F and a unique r∈F; and in this case ı(W)=F(~v1−r~v2).
Moreover, if W= F(~v1− r~v2) then ı(W) =W.

Note that theVj here do not denote variables but elements ofP2(F). Concerning the proof of Lemma
Lemma 8, e.g. for a) observe that~v1− rs~v2 =~v1−s~v3−s(~v3− r~v2) is orthogonal toV3 and contained in
the plane spanned by~v3− r~v2. In d) one applies 3) of Fact 7 with subtermW evaluating toF(~v1− (r −
s)~v2− s~v3) in view of 2). For f) observe that, ifW lies in theV2–V3–plane, its projection(W×V3)×V3

according to 3) coincides withV2 (corresponding to sloper =±∞) and renders the entire term undefined;
whereas forW not in theV2–V3–plane,

(

(W×V3)×V3
)

×V2 coincides withV3.

Let us abbreviatēV := (V1,V2,V3,V12,V23) derived from an orthogonal basis~v1,~v2,~v3 as above. In
terms ofvon Staudt’s encoding of elementsr ∈ F as projective pointsΘV̄(r) := F(~v1 − r~v2) ⊥ F~v3,
Lemma 8a+d) demonstrate how to express the ring operations using only the crossproduct; note that
r + s= r − (0− s) where 0∈ F is encoded asV1. Lemma 8a) involves two other encodings such as
F(~v1 − s~v3), but Lemma 8b+c) exhibit how to express these using the crossproduct andΘV̄ only as
well asV23 andV13. V13 can even be disposed off by means of Lemma 8e). Plugging b)+c)+e) into
a) and d), we conclude that there exist cross product terms⊖(R,S;V̄) and⊗(R,S;V̄) in variablesR,S
with constantsV̄ =

(

V1 = ΘV̄(0),V2,V3,V12 = ΘV̄(1),V23
)

as above such that for everyr,s∈ F it holds
ΘV̄(rs) =⊗

(

ΘV̄(r),ΘV̄ (s);V̄
)

andΘV̄(r −s) =⊖
(

ΘV̄(r),ΘV̄ (s);V̄
)

Now any polynomialp ∈ F[X1, . . . ,Xn] is composed, using the two ring operations, from variables
and coefficients fromF. More precisely, according to Lemma 8, the above encoding extends to a map-
ping ΘV̄ assigning, to any ring termp(X1, . . . ,Xn) with constantsc∈ F, some cross product termtp in
variablesX1, . . . ,Xn with constantsΘV̄(c) ∈ P2(F) and constantsV1,V2,V3,V12,V23 ∈ P2(F); moreover
ΘV̄ ‘commutes’ with the mapp 7→ tp in the sense that

tp
(

ΘV̄(x1), . . . ,ΘV̄(xn)
)

= ΘV̄

(

p(x1, . . . ,xn)
)

. (2)

Sincetp is defined by structural induction overp using the constant-size terms from Lemma 8, it can be
evaluated by a BSS machine in time polynomial in the description length of the ring termp.

Moreover by Lemma 8f) precisely theıV̄(W) are images underΘV̄ . Thus, every satisfying assignment
to the cross product equation

t ′p :=
(

tp
(

ı(X1), . . . , ı(Xn)
)

= V1

)

(3)

comes from a root(r1, . . . , rn) of p; namely the uniquer j such thatXj = F(~v1+ r j~v2+sj~v3). Conversely,
given a root(r1, . . . , rn) of p, Xj := ΘV̄(r j) yields a a satisfying assignment for the equationt ′p = V1.
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Similarly, (the partial map given by)t ′p×V1 is nontrivial iff p is not identically zero. We have thus
proved Claim i).

In order to establish also the remaining Claims ii) and iii) we turn everyd-variate ring termp with
coefficients 0,±1 into an ‘equivalent’ cross product termt ′′p without constants and in particular avoiding
explicit reference to the fixedV1,V2,V3,V12,V23 from Lemma 8 based on the following

Observation 9. Fix a subfieldF of R. To A,B,C∈ P2(F) consider

V12 := B V2 := (A×B)×A V23 := C×A V1 := V2×V23 V3 :=
(

V23× (B×V2)
)

×B (4)

a) These may be undefined in cases such as A= B (whence V2 =⊥) or when A,C,A×B are collinear
(thus V23 =V2 and V1 =⊥) or when A,B,C are collinear (where V23 = A×B and V3 =⊥) or when
A⊥B (where B=V2 and V3 =⊥).

b) On the other hand for example A:= F~v1, B := F(~v2−~v1) and C:= F(~v2+~v3), defined in terms of
an orthogonal basis, recover V1,V2,V3,V12,V23 from Lemma 8.

c) Conversely when all quantities in Eq.(4) are defined, then V1 = A and there exists a right-handed
orthogonal basis~v1,~v2,~v3 of F3 such that Vj = F~v j and V12 = F(~v1−~v2) and V23 = F(~v2−~v3).

We may thus replace the tuple of projective constantsV̄ in the above reductionp 7→ tp mapping a ring
termp(X1, . . . ,Xn) to a cross product termtp(X1, . . . ,Xn;V̄) with the subtermsV1(A,B,C), . . . ,V23(A,B,C)
(consideringA,B,C as variables) according to Observation 9 to obtain a constant free cross product term
t ′′p(X1, . . . ,Xn;A,B,C) such that the mapp 7→ t ′′p commutes withΘV̄ for any projective assignment on
which t ′′p is defined and̄V(A,B,C) given by the values of the subtermsVi ,Vi j .

Now let ı(X) denote the constant free term from Lemma 8g) in variablesX,A,B,C (with subtermsVi

as above). Then, from each satisfying assignment tot ′′′p := t ′′p
(

ı(X1), . . . , ı(Xn);A,B,C
)

= A one obtains
as previously again a root(r1, . . . , rn) of p: Observation 9c) justifies reusing the reasoning given in the
case with constants. Conversely, given a root(r1, . . . , rn) of p , evaluateA,B,C according to Observation
9b) andXj := ΘV̄(r j) to obtain a satisfying assignment for the equationt ′′′p = A. Since the translation
p 7→ t ′′p can be carried out by structural induction in time polynomial in the description length ofp, this
establishes Claim ii). To deal with iii), considert ′′′p ×A.

Figure 1: Illustrating the geometry of the terms considereda) in the reduction fromXSAT0
P2(R) toXSAT0

R3

and b) in Observation 9c.

Proof of Observation 9c).By construction, affine linesA andA×B andV2 are pairwise orthogonal; see
Fig. 1b). MoreoverA 6= B becauseA×B a subterm ofV2 is defined by hypothesis. Since bothV2 and



C. Herrmann, J. Sokoli, M. Ziegler 91

V23=C×A are orthogonal toA, their projective cross productV1 must coincide withA whenever defined
and in particularV2 6=V23; moreoverV2 andV23 andA×B lie in a common plane.B×V2 as subterm ofV3

being defined requiresV2 6=B; yet these two andA=V1 are orthogonal toA×B and thus lie in a common
plane. In particularB×V2 = A×B. Finally, V23 andB×V2 = A×B both being orthogonal toA, their
defined cross product as subterm ofV3 requiresV23 6= B×V2 andV3 = B×V2 = A×B. To summarize:
V1,V2,V3 are pairwise orthogonal; andV1,V12,V2 are pairwise distinct yet all orthogonal toV3; similarly
V2,V23,V3 are pairwise distinct yet all orthogonal toV1. Now choose 06=~v1 ∈V1 arbitrary and~v2 ∈V2

such thatV12= F(~v1−~v2); finally choose~v3 ∈V3 such thatV23= F(~v2−~v3). If these pairwise orthogonal
vectors~v1,~v2,~v3 happen to form a left-handed system, simply flip all their signs.

4 Conclusion

We have identified a new problem complete (i.e. universal) for nondeterministic polynomial-time BSS
machines, namely from exterior algebra: the satisfiabilityof a single equation built only by iterating
cross products. This enriches algebraic complexity theoryand emphasizes the importance of the Turing
(!) complexity classBP(NP0

R).
Moreover our proof yields a cross product equationt ′′′X2−2(Y,A,B,C) = A solvable overP2(R) but

not overP2(Q), the rational projective plane. In fact the decidability ofXSAT0
P2(Q) is equivalent to a

long-standing open question [Poon09].
We wonder about the computational complexity of equations over the 7-dimensional cross product.
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