Satisfiability of cross product terms is complete for real nondeterministic polytime Blum-Shub-Smale machines*

Christian Herrmann Johanna Sokoli Martin Ziegler
Dept. of Mathematics, TU Darmstadt, GERMANY

Abstract

Nondeterministic polynomial-time Blum-Shub-Smale Machines over the reals give rise to a discrete complexity class between NP and PSPACE. Several problems, mostly from real algebraic geometry / polynomial systems, have been shown complete (under many-one reduction by polynomial-time Turing machines) for this class. We exhibit a new one based on questions about expressions built from cross products only.

1 Motivation

The Millennium Question "P vs. NP" asks whether polynomial-time algorithms that may guess, and then verify, bits can be turned into deterministic ones. It arose from the Cook-Levin-Theorem asserting Boolean Satisfiability to be complete for NP; which initiated the identification of more and more other natural problems also complete [GaJo79].

The Millennium Question is posed [Smal98] also for models able to guess objects more general than bits. More precisely a Blum-Shub-Smale (BSS) machine over a ring R may operate on elements from R within unit time. It induces the nondeterministic polynomial-time complexity class $\mathbf{N P}_{R}$; for which the following problem FEAS ${ }_{R}$ has been shown complete [BSS89, MAIN THEOREM]:

Given a system of multivariate polynomials over R,
does it admit a joint root from R ?
does it admit a joint root from R ?
See also [Cuck93] Theorem 3.1] or [BCSS98, §5.4]. More precisely $\mathrm{FEAS}_{R} \subseteq R^{*}$ is $\mathbf{N P}_{R}$-complete with respect to many-one (aka Karp) reducibility by polynomial-time BSS-machines with the capability to peruse finitely many fixed constants from R. BSS Machines without constants on the other hand give, restricted to binary inputs, rise to the discrete complexity class $\mathbf{B P}\left(\mathbf{N P}_{R}^{0}\right)$ [MeMi97, Definition 3.2]; for which the following problem $\operatorname{FEAS}_{R}^{0} \subseteq\{0,1\}^{*}$ is complete under many-one reduction by polynomialtime Turing machines:

Given a system of multivariate polynomials with 0 s and ± 1 s as coefficients, does it admit a joint root from R ?
BSS machines over \mathbb{R} coincide with the real-RAM model from Computational Geometry [BKOS97] and underlie algorithms in Semialgebraic Geometry [Gius91, Lece00, BüSc09]. They give rise to a particularly rich structural complexity theory resembling the classical Turing Machine-based one - but often (unavoidably) with surprisingly different proofs [Bürg00, BaMe13]. It is known that $\mathbf{N P} \subseteq \mathbf{B P}\left(\mathbf{N P}_{\mathbb{R}}^{0}\right) \subseteq$ PSPACE holds [Grig88, Cann88, HRS90, Rene92]. FEAS $\mathbb{R}_{\mathbb{R}}$ and $F E A S_{\mathbb{R}}^{0}$ are sometimes referred to as existential theory over the reals. However even in this highly important case $R=\mathbb{R}$, and in striking contrast to $\mathbf{N P}$, relatively few other natural problems have yet been identified as complete:

[^0]- Several questions about systems of polynomials [CuRo92, Koir99]
- Stretchability of pseudoline arrangements [Shor91]
- Realizability of oriented matroids Rich99]
- Loading neural networks with real weights [Zhan92]
- Several geometric properties of graphs [Scha10]
- Satisfiability in Quantum Logic QSAT, starting from dimension 3 [HeZi11].

The present work extends this list: We study questions about expressions built using variables and the cross (aka vector) product " \times " only, and we establish some of them complete for $\mathbf{N P}_{\mathbb{R}}$ or $\mathbf{B P}\left(\mathbf{N P}_{\mathbb{R}}^{0}\right)$. These problems are in a sense 'simplest' as they involve only one binary operation symbol (as opposed to,$+ \cdot$ for $\mathrm{FEAS}_{\mathbb{R}}^{0}$ or \vee, \neg for QSAT); in fact so simple that their (trans-NP) hardness may appear as surprising.
Remark 1. Another decision problem related to FEAS_{R} and FEAS_{R}^{0} is the question of whether a given multivariate polynomial p is identically zero or not. In dense representation (list of monomials and coefficients) this can easily be solved (over rings \mathscr{R} of characteristic 0) by checking whether all coefficients vanish or not. However when p is given as a expression, expanding that based on the distributive law may result in an exponential blow-up of description length. The following Polynomial Identity Testing problem is thus not known to be polytime decidable:

Given a multivariate ring term $p\left(X_{1}, \ldots, X_{n}\right)$ with constants 0 and ± 1,
does it admit an assignment x_{1}, \ldots, x_{n} such that $p\left(x_{1}, \ldots, x_{n}\right) \neq 0$
It can be solved, though, in randomized polytime with one-sided error (class $\mathbf{R P} \subseteq \mathbf{N P}$) based on the Schwartz-Zippel Lemma, cmp. [MR95, §1.5 and Thm 7.2].

2 Cross Product and Induced Problems

The cross product in \mathbb{R}^{3} is well-known due to its many applications in physics such as torque or electromagnetism. Mathematically it constitutes the mapping

$$
\begin{equation*}
\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \ni\left(\left(v_{0}, v_{1}, v_{2}\right),\left(w_{0}, w_{1}, w_{2}\right)\right) \mapsto\left(v_{1} w_{2}-v_{2} w_{1}, v_{2} w_{0}-v_{0} w_{2}, v_{0} w_{1}-v_{1} w_{0}\right) \in \mathbb{R}^{3} . \tag{1}
\end{equation*}
$$

It is bilinear (thus justifying the name "product") but anti-commutative $\vec{v} \times \vec{w}=-\vec{v} \times \vec{w}$ and non-associative and fails the cancellation law. The following is easily verified:
Fact 2. a) For any independent \vec{v}, \vec{w}, the cross product $\vec{u}=\vec{v} \times \vec{w}$ is uniquely determined by the following: $\vec{u} \perp \vec{v}, \vec{u} \perp \vec{w}$ (where " \perp " denotes orthogonality), the triplet $\vec{v}, \vec{w}, \vec{u}$ is right-handed, and lengths satisfy $\|\vec{u}\|=\|\vec{v}\| \cdot\|\vec{w}\| \cos \angle(\vec{v}, \vec{w})$. In particular, parallel \vec{v}, \vec{w} are mapped to $\overrightarrow{0}$.
b) Cross products commute with simultaneous orientation preserving orthogonal transformations: For $O \in \mathbb{R}^{3 \times 3}$ with $O \cdot O^{\dagger}=$ id and $\operatorname{det}(O)=1$ it holds $(O \cdot \vec{v}) \times(O \cdot \vec{w})=O \cdot(\vec{v} \times \vec{w})$, where O^{\dagger} denotes the transposed matrix.
Definition 3. Fix a field $\mathbb{F} \subseteq \mathbb{R}$.
a) A term $t\left(V_{1}, \ldots, V_{n}\right)$ (over " \times ", in variables V_{1}, \ldots, V_{n}) is either one of the variables or $(s \times t)$ for terms s,t (in variables V_{1}, \ldots, V_{n}).
b) For $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{F}^{3}$ the value $t\left(v_{1}, \ldots, v_{n}\right)$ is defined inductively via Eq. (1).
c) A term with affine constants is a term $t\left(V_{1}, \ldots, V_{n} ; W_{1}, \ldots, W_{m}\right)$ where variables W_{1}, \ldots, W_{m} have been pre-assigned certain values $\vec{w}_{1}, \ldots, \vec{w}_{m} \in \mathbb{R}^{3}$.
d) Recall that $\mathbb{P}^{2}(\mathbb{F}):=\left\{\mathbb{F} \vec{v}: \overrightarrow{0} \neq \vec{v} \in \mathbb{F}^{3}\right\}$ denotes the real projective plane, where $\mathbb{F} \vec{v}=\{\lambda \vec{v}: \lambda \in \mathbb{F}\}$. For distinct $\mathbb{F} \vec{v}, \mathbb{F} \vec{w} \in \mathbb{P}^{2}(\mathbb{F})($ well-)define $(\mathbb{F} \vec{v}) \times(\mathbb{F} \vec{w}):=\mathbb{F}(\vec{v} \times \vec{w}) ; \mathbb{F} \vec{v} \times \mathbb{F} \vec{v}$ is undefined.
e) For a term $t\left(V_{1}, \ldots, V_{n}\right)$ and $\mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n} \in \mathbb{P}^{2}(\mathbb{F})$, the value $t\left(\mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n}\right)$ is defined inductively via d), provided all sub-terms are defined.
f) A term with projective constants is a term $t\left(V_{1}, \ldots, V_{n} ; W_{1}, \ldots, W_{m}\right)$ where variables W_{1}, \ldots, W_{m} have been pre-assigned certain values $\mathbb{R} \vec{w}_{1}, \ldots, \mathbb{R} \vec{w}_{m} \in \mathbb{P}^{2}(\mathbb{R})$.
Note that every term admits an affine assignment making it evaluate to $\overrightarrow{0}$. Some terms in fact always evaluate to $\overrightarrow{0}$; equivalently: are projectively undefined everywhere.
Example 4. Consider the term $t(V, W):=((V \times(V \times W)) \times V) \times(V \times W)$. Observe that $\vec{v}, \vec{v} \times \vec{w}$, and $\vec{v} \times(\vec{v} \times \vec{w})$ together form an orthogonal system for any non-parallel \vec{v}, \vec{w}. Moreover $(\vec{v} \times(\vec{v} \times \vec{w})) \times \vec{v}$ is parallel to $\vec{v} \times \vec{w}$. Therefore $t(\vec{v}, \vec{w})=\overrightarrow{0}$ holds for every choice of $\vec{v}, \vec{w} \in \mathbb{R}^{3}$.
We are interested in the computational complexity of the following discrete decision problems:
Definition 5. a) XNONTRIV $\mathbb{F}^{3}:=\left\{\left\langle t\left(V_{1}, \ldots, V_{n}\right)\right\rangle \mid n \in \mathbb{N}, \exists \vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{F}^{3}: t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right) \neq \overrightarrow{0}\right\}$.
b) $\operatorname{XNONTRIV} \mathbb{P}^{2}(\mathbb{F}):=\left\{\left\langle t\left(V_{1}, \ldots, V_{n}\right)\right\rangle \mid n \in \mathbb{N}, \exists \mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n}\right] \in \mathbb{P}^{2}(\mathbb{F}): t\left(\mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n}\right)$ defined $\}$.
c) $\operatorname{XUVEC}_{\mathbb{F}^{3}}^{0}:=\left\{\left\langle t\left(V_{1}, \ldots, V_{n}\right)\right\rangle \mid n \in \mathbb{N}, \exists \vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{F}^{3}: t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)=\vec{e}_{3}:=(0,0,1)\right\}$.
d) XNONEQUIV $\mathbb{P}_{\mathbb{P}^{2}(\mathbb{F})}^{0}:=\left\{\left\langle s\left(V_{1}, \ldots, V_{n}\right), t\left(V_{1}, \ldots, V_{n}\right)\right\rangle \mid\right.$

$$
\left.n \in \mathbb{N}, \exists \mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n} \in \mathbb{P}^{2}(\mathbb{F}): s\left(\mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n}\right) \neq t\left(\mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n}\right), \text { both sides defined }\right\} .
$$

e) $\operatorname{XSAT}_{\mathbb{F}^{3}}^{0}:=\left\{\left\langle t_{1}\left(V_{1}, \ldots, V_{n}\right)\right\rangle \mid n \in \mathbb{N}, \exists \vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{F}^{3}: t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)=\vec{v}_{1} \neq \overrightarrow{0}\right\}$.
f) $\operatorname{XSAT}_{\mathbb{P}^{2}(\mathbb{F})}^{0}:=\left\{\left\langle t_{1}\left(V_{1}, \ldots, V_{n}\right)\right\rangle \mid n \in \mathbb{N}, \exists \mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n} \in \mathbb{P}^{2}(\mathbb{F}): t\left(\mathbb{F} \vec{v}_{1}, \ldots, \mathbb{F} \vec{v}_{n}\right)=\mathbb{F} \vec{v}_{1}\right\}$.

Real variants of problems a) to f) without superscript 0 are defined similarly for input terms with constants; e.g. $\mathrm{XSAT}_{\mathbb{R}^{3}}:=\left\{\left\langle t_{1}\left(V_{1}, \ldots, V_{n} ; \vec{w}_{1}, \ldots, \vec{w}_{k}\right)\right\rangle \mid n, k \in \mathbb{N}, \vec{w}_{1}, \ldots, \vec{w}_{k} \in \mathbb{R}^{3}\right.$

$$
\left.\exists \vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{3}: t\left(\vec{v}_{1}, \ldots, \vec{v}_{n} ; \vec{w}_{1}, \ldots, \vec{w}_{k}\right)=\vec{v}_{1} \neq \overrightarrow{0}\right\} \subseteq \mathbb{R}^{*}
$$

Our main result is
Theorem 6. a) Among the above discrete decision problems, $\mathrm{XNONTRIV}_{\mathbb{R}^{3}}^{0}, \operatorname{XNONTRIV}_{\mathbb{P}^{2}(\mathbb{R})}^{0}$, $\mathrm{XUVEC} \mathbb{R}^{0}$, and $\mathrm{XNONEQUIV} \mathbb{P}_{\mathbb{P}^{2}(\mathbb{R})}^{0}$ are polytime equivalent to polynomial identity testing (and in particular belong to $\mathbf{R P}$).
b) For any fixed field $\mathbb{F} \subseteq \mathbb{R}$, the discrete decision problems $\mathrm{XSAT}_{\mathbb{F}^{3}}^{0}$ and $\mathrm{XSAT}_{\mathbb{P}^{2}(\mathbb{F})}^{0}$ are $\mathbf{B P}\left(\mathbf{N P}_{\mathbb{F}}^{0}\right)$ complete.
c) $\mathrm{XSAT}_{\mathbb{R}^{3}}$ and $\mathrm{XSAT}_{\mathbb{P}^{2}(\mathbb{R})}$ are $\mathbf{N P}_{\mathbb{R}^{-} \text {-complete. }}$

This establishes a normal form for cross product equations with a variable on the right-hand side - in spite of the lack of a cancellation law.

3 Proofs

XNONTRIV ${\underset{\mathbb{P}}{ }}_{0}^{(\mathbb{F})}$ is equal to XNONTRIV $_{\mathbb{F}^{3}}^{0}$ as a set; and it holds XNONTRIV $_{\mathbb{P}^{2}(\mathbb{R})}^{0}=$ XUVEC $_{\mathbb{R}^{3}}^{0}$: Suppose $t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)=: \vec{w} \neq \overrightarrow{0}$. Since t is homogeneous in each coordinate, by suitably scaling some argument \vec{v}_{j} we may w.l.o.g. suppose $|\vec{w}|=1$. Now take an orientation preserving orthogonal transformation

[^1]O with $O \cdot \vec{w}=\vec{e}_{3}$: 2b) yields $t\left(O \cdot \vec{v}_{1}, \ldots, O \cdot \vec{v}_{n}\right)=\vec{e}_{3}$. Concerning the reduction from XNONEQUIV $\mathbb{P}_{\mathbb{P}^{2}(\mathbb{F})}^{0}$ to XNONTRIV $\mathbb{F}_{\mathbb{F}}^{0}$ observe that, for $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{F}^{3} \backslash\{\overrightarrow{0}\}, \mathbb{F} s\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right) \neq \mathbb{F} t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ implies $s\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right) \times$ $t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right) \neq 0$ and vice versa. Conversely an instance to XNONTRIV ${ }_{\mathbb{F}}^{0}$ is either a variable (trivial case) or of the form $s \times t$; in which case nontriviality is equivalent to projective nonequivalence of s, t.

We now reduce $\mathrm{XNONTRIV} \mathbb{R}_{\mathbb{R}^{3}}^{0}$ to polynomial identity testing, observing that $\vec{u} \times \vec{v}$ is a triple of bilinear polynomials in the 6 variables $u_{x}, u_{y}, u_{z}, v_{x}, v_{y}, v_{z}$ with coefficients $0, \pm 1$. Thus, $t\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ amounts to a triple of terms p_{x}, p_{y}, p_{z} in $3 n$ variables with coefficients $0, \pm 1$. Now by construction a real assignment $\vec{v}_{1}, \ldots, \vec{v}_{n}$ makes t evaluate to nonzero iff the three terms p_{x}, p_{y}, p_{z} do not simultaneously evaluate to zero. This yields the reduction $t \mapsto p_{x}^{2}+p_{y}^{2}+p_{z}^{2}$.

Concerning $\mathrm{XSAT}_{\mathbb{R}^{3}}$, a nondeterministic real BSS machine can, given a term $t\left(V_{1}, \ldots, V_{n} ; \vec{w}_{1}, \ldots, \vec{w}_{k}\right)$ with constants $\vec{w}_{j} \in \mathbb{R}^{3}$, in time polynomial in the length of t guess an assignment $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{3}$ and apply Eq. (1) to evaluate t and verify the result to be nonzero. Similarly a nondeterministic BSS machine over \mathbb{F} can, given a term $t\left(V_{1}, \ldots, V_{n}\right)$ without constants, in polytime guess and evaluate it on an assignment $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{F}^{3}$.
$\mathrm{XSAT}_{\mathbb{P}^{2}(\mathbb{R})}^{0}$ reduces to $\mathrm{XSAT}_{\mathbb{R}^{3}}^{0}$ in polytime as follows: For any \vec{w} non-parallel to $\vec{t}, \vec{t}^{\prime}:=(\vec{t} \times \vec{w}) \times$ $((\vec{t} \times \vec{w}) \times t)$ is a multiple of \vec{t}; see Fig. 11a). Note that scaling \vec{w} affects \vec{t}^{\prime} quadratically. Similarly, $(\vec{w} \times(\vec{t} \times \vec{w})) \times \vec{t}$ is a multiple of $\vec{t} \times \vec{w}$; and replacing it in the first subterm defining \vec{t}^{\prime} (and renaming $\vec{t}, \vec{t}^{\prime}$ to $\left.\vec{s}, \vec{s}^{\prime}\right)$ shows that $\vec{s}^{\prime}:=((\vec{w} \times(\vec{s} \times \vec{w})) \times \vec{s}) \times(\vec{s} \times(\vec{s} \times \vec{w}))$ is a multiple of \vec{s}; one scaling cubically with \vec{w}. So \mathbb{R} being closed under cubic roots, $s\left(V_{1}, \ldots, V_{n}\right)=V_{1}$ is satisfiable over $\mathbb{P}^{2}(\mathbb{R})$ iff $s\left(V_{1}, \ldots, V_{n}\right)=$ $\lambda^{3} V_{1}$ is satisfiable over \mathbb{R}^{3} for some $\lambda \in \mathbb{R}$ iff $s^{\prime}\left(V_{1}, \ldots, V_{n}, W\right)=V_{1}$ is satisfiable over \mathbb{R}^{3}, where $s^{\prime}:=((W \times(s \times W)) \times s) \times(s \times(s \times W))$. The reduction for the case with constants, that is from $\mathrm{XSAT}_{\mathbb{P}^{2}(\mathbb{R})}$ to $\mathrm{XSAT}_{\mathbb{R}^{3}}$, works similarly.

3.1 Hardness

It remains to reduce (in polynomial time)
i) $\mathrm{FEAS}_{\mathbb{R}}$ to $\mathrm{XSAT}_{\mathbb{P}^{2}(\mathbb{R})}$ and
ii) $\operatorname{FEAS}_{\mathbb{F}}^{0}$ to $\operatorname{XSAT}_{\mathbb{P}^{2}(\mathbb{F})}^{0}$ and
iii) polynomial identity testing to $\mathrm{XNONTRIV}_{\mathbb{P}^{2}(\mathbb{R})}^{0}$.

These can be regarded as quantitative refinements of [HaSv96]. We first recall some elementary, but useful facts about the cross product in the projective setting.
Fact 7. Consider $U, V, W, T \in \mathbb{P}^{2}(\mathbb{F})$. By 'plane' we mean 2 -dimensional linear subspace.

1) $U=V \times W$ iff the plane orthogonal to U is spanned by V, W. In particular, $V \times W=W \times V$.
2) If $V \times W$ and $U \times T$ are defined then $(V \times W) \times(U \times T)$ is the intersection of the plane spanned by V, W with the plane spanned by U, T; undefined if this intersection is degenerate.
3) $V \times(W \times V)$ is the orthogonal projection of W into the plane orthogonal to V; undefined iff $W=V$, i.e. in case the projection is degenerate.

The following considerations are heavily inspired by the works of John von Neumann but for the sake of self-containment here boiled down explicitly.

Lemma 8. Fix a subfield \mathbb{F} of \mathbb{R}. Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ denote an orthogonal basis of \mathbb{F}^{3}. Then $V_{j}:=\mathbb{F} \vec{v}_{j}$ satisfies $V_{1} \times V_{2}=V_{3}, V_{2} \times V_{3}=V_{1}$, and $V_{3} \times V_{1}=V_{2}$. Moreover abbreviating $V_{12}:=\mathbb{F}\left(\vec{v}_{1}-\vec{v}_{2}\right)$ and $V_{23}:=\mathbb{F}\left(\vec{v}_{2}-\vec{v}_{3}\right)$ and $V_{13}:=\mathbb{F}\left(\vec{v}_{1}-\vec{v}_{3}\right)$, we have for $r, s \in \mathbb{F}:$
a) $\mathbb{F}\left(\vec{v}_{1}-r s \vec{v}_{2}\right)=V_{3} \times\left[\mathbb{F}\left(\vec{v}_{3}-r \vec{v}_{2}\right) \times \mathbb{F}\left(\vec{v}_{1}-s \vec{v}_{3}\right)\right]$
b) $\mathbb{F}\left(\vec{v}_{1}-s \vec{v}_{3}\right)=V_{2} \times\left[V_{23} \times \mathbb{F}\left(\vec{v}_{1}-s \vec{v}_{2}\right)\right]$
c) $\mathbb{F}\left(\vec{v}_{3}-r \vec{v}_{2}\right)=V_{1} \times\left[V_{13} \times \mathbb{F}\left(\vec{v}_{1}-r \vec{v}_{2}\right)\right]$
d) $\mathbb{F}\left(\vec{v}_{1}-(r-s) \vec{v}_{2}\right)=V_{3} \times\left[\left(\left[V_{23} \times \mathbb{F}\left(\vec{v}_{1}-r \vec{v}_{2}\right)\right] \times\left[V_{2} \times \mathbb{F}\left(\vec{v}_{1}-s \vec{v}_{3}\right)\right]\right) \times V_{3}\right]$
e) $V_{13}=V_{2} \times\left(V_{12} \times V_{23}\right)$.
f) For $W \in \mathbb{P}^{2}(\mathbb{F})$, the expression $\imath(W):=\left(W \times V_{3}\right) \times\left(\left(\left(W \times V_{3}\right) \times V_{3}\right) \times V_{2}\right)$ is defined precisely when $W=\mathbb{F}\left(\vec{v}_{1}-r \vec{v}_{2}+s \vec{v}_{3}\right)$ for some $s \in \mathbb{F}$ and a unique $r \in \mathbb{F}$; and in this case $\imath(W)=\mathbb{F}\left(\vec{v}_{1}-r \vec{v}_{2}\right)$. Moreover, if $W=\mathbb{F}\left(\vec{v}_{1}-r \vec{v}_{2}\right)$ then $\imath(W)=W$.
Note that the V_{j} here do not denote variables but elements of $\mathbb{P}^{2}(\mathbb{F})$. Concerning the proof of Lemma Lemma18, e.g. for a) observe that $\vec{v}_{1}-r s \vec{v}_{2}=\vec{v}_{1}-s \vec{v}_{3}-s\left(\vec{v}_{3}-r \vec{v}_{2}\right)$ is orthogonal to V_{3} and contained in the plane spanned by $\vec{v}_{3}-r \vec{v}_{2}$. In d) one applies 3) of Fact 7 with subterm W evaluating to $\mathbb{F}\left(\vec{v}_{1}-(r-\right.$ s) $\left.\vec{v}_{2}-s \vec{v}_{3}\right)$ in view of 2). For f) observe that, if W lies in the $V_{2}-V_{3}$-plane, its projection $\left(W \times V_{3}\right) \times V_{3}$ according to 3) coincides with V_{2} (corresponding to slope $r= \pm \infty$) and renders the entire term undefined; whereas for W not in the $V_{2}-V_{3}$-plane, $\left(\left(W \times V_{3}\right) \times V_{3}\right) \times V_{2}$ coincides with V_{3}.

Let us abbreviate $\bar{V}:=\left(V_{1}, V_{2}, V_{3}, V_{12}, V_{23}\right)$ derived from an orthogonal basis $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ as above. In terms of von Staudt's encoding of elements $r \in \mathbb{F}$ as projective points $\Theta_{\bar{V}}(r):=\mathbb{F}\left(\vec{v}_{1}-r \vec{v}_{2}\right) \perp \mathbb{F} \vec{v}_{3}$, Lemma $8 \mathrm{a}+\mathrm{d}$) demonstrate how to express the ring operations using only the crossproduct; note that $r+s=r-(0-s)$ where $0 \in \mathbb{F}$ is encoded as V_{1}. Lemma 8 a) involves two other encodings such as $\mathbb{F}\left(\vec{v}_{1}-s \vec{v}_{3}\right)$, but Lemma $\left.8 \mathrm{~b}+\mathrm{c}\right)$ exhibit how to express these using the cross product and $\Theta_{\bar{V}}$ only as well as V_{23} and V_{13}. V_{13} can even be disposed off by means of Lemma 8e). Plugging b)+c)+e) into a) and d), we conclude that there exist cross product terms $\ominus(R, S ; \bar{V})$ and $\otimes(R, S ; \bar{V})$ in variables R, S with constants $\bar{V}=\left(V_{1}=\Theta_{\bar{V}}(0), V_{2}, V_{3}, V_{12}=\Theta_{\bar{V}}(1), V_{23}\right)$ as above such that for every $r, s \in \mathbb{F}$ it holds $\Theta_{\bar{V}}(r s)=\otimes\left(\Theta_{\bar{V}}(r), \Theta_{\bar{V}}(s) ; \bar{V}\right)$ and $\Theta_{\bar{V}}(r-s)=\ominus\left(\Theta_{\bar{V}}(r), \Theta_{\bar{V}}(s) ; \bar{V}\right)$

Now any polynomial $p \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ is composed, using the two ring operations, from variables and coefficients from \mathbb{F}. More precisely, according to Lemma 8 , the above encoding extends to a mapping $\Theta_{\bar{V}}$ assigning, to any ring term $p\left(X_{1}, \ldots, X_{n}\right)$ with constants $c \in \mathbb{F}$, some cross product term t_{p} in variables X_{1}, \ldots, X_{n} with constants $\Theta_{\bar{V}}(c) \in \mathbb{P}^{2}(\mathbb{F})$ and constants $V_{1}, V_{2}, V_{3}, V_{12}, V_{23} \in \mathbb{P}^{2}(\mathbb{F})$; moreover $\Theta_{\bar{V}}$ 'commutes' with the map $p \mapsto t_{p}$ in the sense that

$$
\begin{equation*}
t_{p}\left(\Theta_{\bar{V}}\left(x_{1}\right), \ldots, \Theta_{\bar{V}}\left(x_{n}\right)\right)=\Theta_{\bar{V}}\left(p\left(x_{1}, \ldots, x_{n}\right)\right) \tag{2}
\end{equation*}
$$

Since t_{p} is defined by structural induction over p using the constant-size terms from Lemma 8 , it can be evaluated by a BSS machine in time polynomial in the description length of the ring term p.

Moreover by Lemma 8 f) precisely the $\bar{l}_{\bar{V}}(W)$ are images under $\Theta_{\bar{V}}$. Thus, every satisfying assignment to the cross product equation

$$
\begin{equation*}
t_{p}^{\prime}:=\left(t_{p}\left(\imath\left(X_{1}\right), \ldots, l\left(X_{n}\right)\right)=V_{1}\right) \tag{3}
\end{equation*}
$$

comes from a root $\left(r_{1}, \ldots, r_{n}\right)$ of p; namely the unique r_{j} such that $X_{j}=\mathbb{F}\left(\vec{v}_{1}+r_{j} \vec{v}_{2}+s_{j} \vec{v}_{3}\right)$. Conversely, given a root $\left(r_{1}, \ldots, r_{n}\right)$ of $p, X_{j}:=\Theta_{\bar{V}}\left(r_{j}\right)$ yields a a satisfying assignment for the equation $t_{p}^{\prime}=V_{1}$.

Similarly, (the partial map given by) $t_{p}^{\prime} \times V_{1}$ is nontrivial iff p is not identically zero. We have thus proved Claim i).

In order to establish also the remaining Claims ii) and iii) we turn every d-variate ring term p with coefficients $0, \pm 1$ into an 'equivalent' cross product term $t_{p}^{\prime \prime}$ without constants and in particular avoiding explicit reference to the fixed $V_{1}, V_{2}, V_{3}, V_{12}, V_{23}$ from Lemma 8 based on the following
Observation 9. Fix a subfield \mathbb{F} of \mathbb{R}. To $A, B, C \in \mathbb{P}^{2}(\mathbb{F})$ consider

$$
\begin{equation*}
V_{12}:=B \quad V_{2}:=(A \times B) \times A \quad V_{23}:=C \times A \quad V_{1}:=V_{2} \times V_{23} \quad V_{3}:=\left(V_{23} \times\left(B \times V_{2}\right)\right) \times B \tag{4}
\end{equation*}
$$

a) These may be undefined in cases such as $A=B$ (whence $V_{2}=\perp$) or when $A, C, A \times B$ are collinear (thus $V_{23}=V_{2}$ and $V_{1}=\perp$) or when A, B, C are collinear (where $V_{23}=A \times B$ and $V_{3}=\perp$) or when $A \perp B$ (where $B=V_{2}$ and $V_{3}=\perp$).
b) On the other hand for example $A:=\mathbb{F} \vec{v}_{1}, B:=\mathbb{F}\left(\vec{v}_{2}-\vec{v}_{1}\right)$ and $C:=\mathbb{F}\left(\vec{v}_{2}+\vec{v}_{3}\right)$, defined in terms of an orthogonal basis, recover $V_{1}, V_{2}, V_{3}, V_{12}, V_{23}$ from Lemma \&
c) Conversely when all quantities in Eq. (4) are defined, then $V_{1}=A$ and there exists a right-handed orthogonal basis $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ of \mathbb{F}^{3} such that $V_{j}=\mathbb{F} \vec{v}_{j}$ and $V_{12}=\mathbb{F}\left(\vec{v}_{1}-\vec{v}_{2}\right)$ and $V_{23}=\mathbb{F}\left(\vec{v}_{2}-\vec{v}_{3}\right)$.
We may thus replace the tuple of projective constants \bar{V} in the above reduction $p \mapsto t_{p}$ mapping a ring term $p\left(X_{1}, \ldots, X_{n}\right)$ to a cross product term $t_{p}\left(X_{1}, \ldots, X_{n} ; \bar{V}\right)$ with the subterms $V_{1}(A, B, C), \ldots, V_{23}(A, B, C)$ (considering A, B, C as variables) according to Observation 9 to obtain a constant free cross product term $t_{p}^{\prime \prime}\left(X_{1}, \ldots, X_{n} ; A, B, C\right)$ such that the map $p \mapsto t_{p}^{\prime \prime}$ commutes with $\Theta_{\bar{V}}$ for any projective assignment on which $t_{p}^{\prime \prime}$ is defined and $\bar{V}(A, B, C)$ given by the values of the subterms $V_{i}, V_{i j}$.

Now let $l(X)$ denote the constant free term from Lemma 8 g) in variables X, A, B, C (with subterms V_{i} as above). Then, from each satisfying assignment to $t_{p}^{\prime \prime \prime}:=t_{p}^{\prime \prime}\left(\imath\left(X_{1}\right), \ldots, l\left(X_{n}\right) ; A, B, C\right)=A$ one obtains as previously again a root $\left(r_{1}, \ldots, r_{n}\right)$ of p : Observation 9 c$)$ justifies reusing the reasoning given in the case with constants. Conversely, given a root $\left(r_{1}, \ldots, r_{n}\right)$ of p, evaluate A, B, C according to Observation 9 b) and $X_{j}:=\Theta_{\bar{V}}\left(r_{j}\right)$ to obtain a satisfying assignment for the equation $t_{p}^{\prime \prime \prime}=A$. Since the translation $p \mapsto t_{p}^{\prime \prime}$ can be carried out by structural induction in time polynomial in the description length of p, this establishes Claim ii). To deal with iii), consider $t_{p}^{\prime \prime \prime} \times A$.

Figure 1: Illustrating the geometry of the terms considered a) in the reduction from $X S A T_{\mathbb{P}^{2}(\mathbb{R})}^{0}$ to $X S A T_{\mathbb{R}^{3}}^{0}$ and b) in Observation 9c.

Proof of Observation $9 c$). By construction, affine lines A and $A \times B$ and V_{2} are pairwise orthogonal; see Fig. 1b). Moreover $A \neq B$ because $A \times B$ a subterm of V_{2} is defined by hypothesis. Since both V_{2} and
$V_{23}=C \times A$ are orthogonal to A, their projective cross product V_{1} must coincide with A whenever defined and in particular $V_{2} \neq V_{23}$; moreover V_{2} and V_{23} and $A \times B$ lie in a common plane. $B \times V_{2}$ as subterm of V_{3} being defined requires $V_{2} \neq B$; yet these two and $A=V_{1}$ are orthogonal to $A \times B$ and thus lie in a common plane. In particular $B \times V_{2}=A \times B$. Finally, V_{23} and $B \times V_{2}=A \times B$ both being orthogonal to A, their defined cross product as subterm of V_{3} requires $V_{23} \neq B \times V_{2}$ and $V_{3}=B \times V_{2}=A \times B$. To summarize: V_{1}, V_{2}, V_{3} are pairwise orthogonal; and V_{1}, V_{12}, V_{2} are pairwise distinct yet all orthogonal to V_{3}; similarly V_{2}, V_{23}, V_{3} are pairwise distinct yet all orthogonal to V_{1}. Now choose $0 \neq \vec{v}_{1} \in V_{1}$ arbitrary and $\vec{v}_{2} \in V_{2}$ such that $V_{12}=\mathbb{F}\left(\vec{v}_{1}-\vec{v}_{2}\right)$; finally choose $\vec{v}_{3} \in V_{3}$ such that $V_{23}=\mathbb{F}\left(\vec{v}_{2}-\vec{v}_{3}\right)$. If these pairwise orthogonal vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ happen to form a left-handed system, simply flip all their signs.

4 Conclusion

We have identified a new problem complete (i.e. universal) for nondeterministic polynomial-time BSS machines, namely from exterior algebra: the satisfiability of a single equation built only by iterating cross products. This enriches algebraic complexity theory and emphasizes the importance of the Turing (!) complexity class $\mathbf{B P}\left(\mathbf{N P}_{\mathbb{R}}^{0}\right)$.

Moreover our proof yields a cross product equation $t_{X^{2}-2}^{\prime \prime \prime}(Y, A, B, C)=A$ solvable over $\mathbb{P}^{2}(\mathbb{R})$ but not over $\mathbb{P}^{2}(\mathbb{Q})$, the rational projective plane. In fact the decidability of $\operatorname{XSAT}_{\mathbb{P}^{2}(\mathbb{Q})}^{0}$ is equivalent to a long-standing open question [Poon09].

We wonder about the computational complexity of equations over the 7 -dimensional cross product.

References

[BaMe13] M. BaArtse, K. Meer: "The PCP Theorem for NP over the reals", pp.104-115 in Proc. 30th Symp. on Theoret. Aspects of Computer Science (STACS'13), Dagstuhl LIPIcs vol. 20. doi:10.4230/LIPIcs.STACS. 2013.104
Full version to appear in Contemporary Mathematics, American Mathematical Society.
[BCSS98] L. Blum, F. Cucker, M. Shub, S. Smale: "Complexity and Real Computation", Springer (1998).
[BKOS97] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf: "Computational Geometry, Algorithms and Applications", Springer (1997).
[BSS89] L. Blum, M. Shub, S. Smale: "On a Theory of Computation and Complexity over the Real Numbers: NP-completeness, Recursive Functions, and Universal Machines", pp.1-46 in Bulletin of the American Mathematical Society (AMS Bulletin) vol. 21 (1989). doi:10.1090/S0273-0979-1989-15750-9
[Bürg00] P. BÜrgisser: "Completeness and Reduction in Algebraic Complexity Theory", Springer (2000)
[BüSc09] P. BÜRGISSER, P. SCHEIBLECHNER: "On the Complexity of Counting Components of Algebraic Varieties", pp.1114-1136 in Journal of Symbolic Computation vol.44:9 (2009). doi:10.1016/j.jsc.2008.02.009
[Cann88] J. CANNY: "Some Algebraic and Geometric Computations in PSPACE", pp.460-467 in Proc. 20th annual ACM Symposium on Theory of Computing (SToC 1988). doi:10.1145/62212.62257
[Cuck93] F. Cucker: "On the Complexity of Quantifier Elimination: the Structural Approach", pp.400-408 in The Computer Journal vol.36:5 (1993). doi:10.1093/comjnl/36.5.400
[CuRo92] F. Cucker, F. Rosselló: "On the Complexity of Some Problems for the Blum, Shub \& Smale model", pp.117-129 in Proc. LATIN'92, Springer LNCS vol.583. doi:10.1007/BFb0023823
[GaJo79] M.R. Garey, D.S. Johnson: "Computers and Intractability: A Guide to the Theory of NPcompleteness", Freeman (1979).
[Gius91] M. Giusti, J. Heintz: "Algorithmes - disons rapides - pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles", pp.169-193 in Effective Methods in Algebraic Geometry (Proceedings of MEGA'90), T. Mora and C. Traverso editors, Birkhäuser (1991).
[Grig88] D.Y. GRIGORIEV: "Complexity of Deciding Tarski Algebra", pp.65-108 in Journal of Symbolic Computation vol. 5 (1988). doi:10.1016/S0747-7171(88)80006-3
[HaSv96] H. HavLicek, K. Svozil: "Density Conditions for Quantum Propositions", pp.5337-5341 in Journal of Mathematical Physics vol. 37 (1996). doi:10.1063/1.531738
[HeZi11] C. Herrmann, M. Ziegler: "Computational Complexity of Quantum Satisfiability", pp.175-184 in Proc. 26th Annual IEEE Symposium on Logic in Computer Science (2011). doi:10.1109/LICS.2011.8
[HRS90] J. Heintz, M.-F. Roy, P. Solernó: "Sur la complexité du principe de Tarski-Seidenberg", pp.101126 in Bull. Soc. Math. France vol. 118 (1990).
[Koir99] P. Koiran: "The Real Dimension Problem is $\mathbf{N P}_{\mathbb{R}}$-complete", pp.227-238 in J. Complexity vol.15:2 (1999). doi:10.1006/jcom. 1999.0502
[Lece00] G. Lecerf: "Computing an Equidimensional Decomposition of an Algebraic Variety by means of Geometric Resolutions", pp.209-216 in Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (ISAAC), ACM. doi:10.1145/345542.345633
[MeMi97] K. Meer, C. Michaux: "A Survey on Real Structural Complexity Theory", pp.113-148 in Bulletin of the Belgian Mathematical Society vol. 4 (1997).
[MR95] R. Motvani, P. Raghavan: "Randomized Algorithms", Cambridge University Press (1995).
[Poon09] B. Poonen: "Characterizing Integers among Rational Numbers with a Universal-Existential Formula", in American Journal of Mathematics vol.131:3 (2009).
[Rene92] J. Renegar: "On the Computational Complexity and Geometry of the First-order Theory of the Reals", pp.255-352 in Journal of Symbolic Computation vol.13:3 (1992). doi:10.1016/S0747-7171(10)80003-3 doi:10.1016/S0747-7171(10)80004-5 doi:10.1016/S0747-7171(10)80005-7
[Rich99] J. RIChter-Gebert: "The Universality Theorems for Oriented Matroids and Polytopes", pp.269-292 in Contemporary Mathematics vol. 223 (1999). doi:10.1090/conm/223/03144
[Scha10] M. SCHAEFER: "Complexity of Some Geometric and Topological Problems", pp.334344 in Proc. 17th Int. Symp. on Graph Drawing, Springer LNCS vol. 5849 (2010). doi:10.1007/978-3-642-11805-0_32
[Shor91] P. SHOR: "Stretchability of Pseudolines is NP-hard", pp.531-554 in Applied Geometry and Discrete Mathematics - The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels Edts), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4 (1991). doi:10.1007/BF03025291
[Smal98] S. Smale: "Mathematical Problems for the Next Century", pp.7-15 in Math. Intelligencer vol.20:2 (1998).
[Zhan92] X.-D. Zhang: "Complexity of Neural Network Learning in the Real Number Model", pp.146-149 in Proc. Workshop on Physics and Computation (1992).doi:10.1109/PHYCMP.1992.615511

[^0]: *Supported in parts by the Marie Curie International Research Staff Exchange Scheme Fellowship 294962 within the 7th European Community Framework Programme
 \dagger e.g. as lists of monomials and their coefficients or as algebraic expressions

 Machines, Computations and Universality (MCU 2013)
 EPTCS 128, 2013, pp. 85-92 doi 10.4204/EPTCS.128.16
 © C. Herrmann, J. Sokoli, M. Ziegler
 This work is licensed under the Creative Commons Attribution License.

[^1]: ${ }^{\#}$ This requires taking square roots

