
Kiselyov and Garrigue (Eds.): ML Family/OCaml Workshops 2014.
EPTCS 198, 2015, pp. 1–21, doi:10.4204/EPTCS.198.1

A Simple and Practical Linear Algebra Library Interface
with Static Size Checking∗

Akinori Abe Eijiro Sumii
Graduate School of Information Sciences

Tohoku University, Japan
abe@sf.ecei.tohoku.ac.jp sumii@sf.ecei.tohoku.ac.jp

Linear algebra is a major field of numerical computation and is widely applied. Most linear algebra
libraries (in most programming languages) do not statically guarantee consistency of the dimensions
of vectors and matrices, causing runtime errors. While advanced type systems—specifically, depen-
dent types on natural numbers—can ensure consistency among the sizes of collections such as lists
and arrays [3, 4, 22], such type systems generally require non-trivial changes to existing languages
and application programs, or tricky type-level programming.

We have developed a linear algebra library interface that verifies the consistency (with respect
to dimensions) of matrix operations by means of generative phantom types, implemented via fairly
standard ML types and module system. To evaluate its usability, we ported to it a practical machine
learning library from a traditional linear algebra library. We found that most of the changes required
for the porting could be made mechanically, and changes that needed human thought are minor.

1 Introduction

Linear algebra is a major field of numerical computation and is widely applied to many domains such
as image processing, signal processing, and machine learning. Some programming languages support
built-in matrix operations, while others are equipped with libraries. Examples of the former are Mat-
Lab, statistical programming language S, and OptiML [18, 20] (a domain-specific language for machine
learning embedded in Scala). The latter include BLAS [16] and LAPACK [17], originally developed for
Fortran and now ported to many languages.

Most of the programming languages and linear algebra libraries do not statically verify consistency
of the dimensions of vectors and matrices. Dimensional inconsistency like addition of a 3-by-5 matrix
and a 5-by-3 matrix causes runtime errors such as exceptions or, worse, memory corruption.

Advanced type systems—specifically, dependent types on natural numbers—can statically ensure
consistency among the sizes of collections such as lists and arrays [3,4,22]. However, such type systems
generally require non-trivial changes to existing languages and application programs, or tricky type-level
programming.

We have developed a linear algebra library interface that guarantees the consistency (with respect to
dimensions) of matrix (and vector) operations by using generative phantom types as fresh identifiers for
statically checking the equality of sizes (i.e., dimensions). This interface has three attractive features in
particular.

• It can be implemented only using fairly standard ML types and module system. Indeed, we imple-
mented the interface in OCaml (without significant extensions like GADTs) as a wrapper for an
existing library.

∗This work was partially supported by JSPS KAKENHI Grant Numbers 22300005, 25540001, 15H02681, and by Mitsubishi
Foundation Research Grants in the Natural Sciences.

http://dx.doi.org/10.4204/EPTCS.198.1

2 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

• For most high-level operations on matrices (e.g., addition and multiplication), the consistency of
sizes is verified statically. (Certain low-level operations, like accesses to elements by indices, need
dynamic checks.)

• Application programs in a traditional linear algebra library can be easily migrated to our interface.
Most of the required changes can be made mechanically.

We implemented our static size checking scheme as a linear algebra library interface—that we call
SLAP (Sized Linear Algebra Package, https://github.com/akabe/slap/)—on top of an ex-
isting linear algebra library LACAML [15]. To evaluate the usability of our interface, we ported to it a
practical machine learning library OCaml-GPR [14] from LACAML, thereby ensuring the consistency
of sizes.

This paper is structured as follows. In the next section, we explain our basic idea of static size
checking through examples. In Section 3, we describe the implementation of our library interface. In
Section 4, we report the changes required for the porting of OCaml-GPR along with the number of lines
changed. We compare our approach with related work in Section 5 and conclude in Section 6.

2 Our idea

Let ’n vec be the type of ’n-dimensional vectors, (’m,’n) mat be the type of ’m-by-’n matrices,
and ’n size be the singleton type on natural numbers as sizes of vectors and matrices, i.e., evaluation
of a term of type ’n size always results in the natural number corresponding to ’n. The formal type
parameters ’m and ’n are instantiated with actual types that represent the sizes of the vectors or matrices.
Here we only explain how the dimensions of vectors are represented since those of matrices (as well as
sizes) can be represented similarly.

The abstract type ’n vec can be implemented as any data type that can represent vectors, e.g.,
float array, where the type parameter ’n is phantom, meaning that it does not appear on the right
hand side of the type definition. A phantom type parameter is often instantiated with a type that has no
value (i.e., no constructor), which we call a phantom type1. The type ’n vec must be made abstract
by hiding its implementation in the module signature so that the size information in the (phantom) type
parameter ’n is not ignored by the typechecker.

It is relatively straightforward to represent dimensions (size information) as types by, for example,
using type-level natural numbers when this information is decided at compile time. The main problem is
how to represent dimensions that are unknown until runtime. It is practically important because such dy-
namically determined dimensions are common (e.g., the length of a vector loaded from a file). Consider
the following code for example:

let (x : ?1 vec) = loadvec "file1" in
let (y : ?2 vec) = loadvec "file2" in
add x y (* add : ’n vec → ’n vec → ’n vec *)

The function loadvec of type string → ? vec returns a vector of some dimension, loaded from the
given path. The third line should be ill-typed because the dimensions of x and y are probably different.
(Even if "file1" and "file2" were the same path, the addition should be ill-typed because the file
might have changed between the two loads.) Thus, the return type of loadvec should be different every

1In [1], the term “phantom type” has the same meaning as in this paper. However, it is used differently in some other papers:
types with phantom type parameters [13]—or GADT (generalized algebraic data type) [10]—are called “phantom types”.

https://github.com/akabe/slap/

A. Abe & E. Sumii 3

time it is called (regardless of the specific values of the argument). We call such a return type generative
because the function returns a value of a fresh type for each call.

The vector type with generative size information essentially corresponds to an existentially quantified
sized type like ∃n. n vec. Our basic idea is to verify only the equality of dimensions by representing
them as (only) generative phantom types. We implemented this idea in OCaml and carried out a realistic
case study to demonstrate that it is mostly straightforward to write (or port) application programs by
using our interface (see Section 4 for details).

2.1 Implementation of generative phantom types

We implement the idea of generative phantom types via packages of types like ∃n. n vec by using
first-class modules and (generative) functors. For convenience, assume that the abstract type ’n vec is
implemented as float array.

With first-class modules, the function loadvec can be defined as

module type VEC = sig
type n (* corresponds to a generative phantom type ‘?’. *)
val value : n vec (* corresponds to ‘? vec’. *)

end

let loadvec filename = (module struct
type n
let value = loadarray filename

end : VEC)

where loadarray : string → float array loads an array from the given path. The existential
type n in the module returned by loadvec is different every time it is called:

module X = (val loadvec "file1" : VEC)
module Y = (val loadvec "file2" : VEC)
add X.value Y.value (* ill-typed since X.n 6= Y.n *)

Alternatively, this behavior can also be implemented by using generative functors2 as follows.

module Loadvec (X : sig val filename : string end) () : VEC = struct
type n
let value = loadarray filename

end

module X = Loadvec(struct let filename = "file1" end)()
module Y = Loadvec(struct let filename = "file2" end)()
add X.value Y.value (* ill-typed since X.n 6= Y.n *)

Let us compare the two approaches at the caller site (i.e., from the viewpoint of a user of our interface)
in the code above. With first-class modules, the user needed to write the signature VEC for unpacking,
which was not required for generative functors.

In some cases, however, both approaches require more annotations. Specifically, consider columns
: ’m vec list → (’m,?) mat, which creates a matrix by concatenating column vectors in a given
list. The number of rows in the matrix returned by columns is equal to the dimension of the given

2Generative functors have been supported since OCaml 4.02. Before 4.02, they can be simulated by always passing a
module expression of the form struct ... end (rather than a named module like M) to applicative functors.

4 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

(* definition: *)
let columns (type k)

(l : k vec list) =
(module struct

type n and m = k
let value = ...

end : MAT with type m = k)

(* caller site: *)
let f (type k) ... =

let l0 = ... in
let module X =

(val concat l0
: MAT with type m = k)

in
...

(a) using first-class modules

(* definition: *)
module Columns (L : sig

type k
val l : k vec list

end) () : MAT with type m = L.k =
struct
type n and m = L.k
let value = ...

end

(* caller site: *)
let f (type k’) ... =
let l0 = ... in
let module X =

Concat(struct type k = k’
let l = l0 end)()

in
...

(b) using a functor

Figure 1: Implementations and callers of columns

vectors, while the number of columns is the same as the length of the list, so the latter is generative while
the former is not. Figure 1 shows implementations and callers of columns using first-class modules and
a functor. The signature MAT in Figure 1 is defined as:

module type MAT = sig
type m and n
val value : (m, n) mat

end

On one hand, when using first-class modules, the signature MAT of the returned module columns l0

needs the sharing constraint with type m = k. On the other hand, with functors, the actual type
argument type k = k’ cannot be omitted.

In summary, the two approaches require different styles of annotations. We therefore adopted both
and often provided two interfaces for the same function so that a user can choose.

2.2 Free type constructors to represent operations on natural numbers

Results of some deterministic functions could also be given generative phantom types but can be given
a more precise type using free (in the sense of free algebra) constructors. For example, consider the
append function, which concatenates an m-dimensional vector and an n-dimensional vector, and returns
a vector of dimension m+n. Theoretically, its typing would be

val append : ’m vec → ’n vec → (’m + ’n) vec

if there were addition + of type-level natural numbers. Using generative phantom types, however, it can
instead be typed as follows

val append : ’m vec → ’n vec → ? vec

or, using a type constructor add,

A. Abe & E. Sumii 5

val append : ’m vec → ’n vec → (’m, ’n) add vec

The last alternative can be implemented directly in OCaml (or any language with ML-like parametrized
data types) with a (preferably phantom) type (’m,’n) add, which represents a size that differs from
any other (e.g., (’m,’n) add differs from (’n,’m) add since the constructor add is “free”). The
return type of append does not need to be generative because the dimension of the returned vector is
uniquely determined by the dimensions (i.e., the types) of the argument vectors. The same technique can
also be applied for other functions such as cons (which adds an element to the head of a given vector)
and tl (which takes a subvector without the head element.)

3 Typing of BLAS and LAPACK functions

BLAS (Basic Linear Algebra Subprograms) [16] and LAPACK (Linear Algebra PACKage) [17] are
major linear algebra libraries for Fortran. To evaluate the effectiveness of our idea, we implemented a
linear algebra library interface as a “more statically typed” wrapper of LACAML, which is a BLAS and
LAPACK binding in OCaml. Our interface is largely similar to LACAML so that existing application
programs can be easily ported. Here we explain several techniques required for typing the BLAS and
LAPACK functions.

3.1 Function types that depend on flags

3.1.1 Transpose flags for matrices

The BLAS function gemm multiplies two general matrices:

val gemm : ?beta:num type → ?c:mat (* C *) →
?transa:[‘N | ‘T | ‘C] → ?alpha:num type → mat (* A *) →
?transb:[‘N | ‘T | ‘C] → mat (* B *) → mat (* C *)

Basically, it executes C := αAB + βC. The parameters transa and transb specify no transpose
(‘N), transpose (‘T), or conjugate transpose (‘C) of the matrices A and B respectively. For example,
if transa=‘N and transb=‘T, then gemm executes C := αAB>+βC. Thus, the types (dimensions)
of the matrices change depending on the values of the flags (the transpose of an m-by-n matrix is an
n-by-m matrix). To implement this behavior, we give each transpose flag a function type that represents
the change in types induced by that particular transposition, like:

type ’a trans (* = [‘N | ‘T | ‘C] *)
val normal : ((’m, ’n) mat → (’m, ’n) mat) trans (* = ‘N *)
val trans : ((’m, ’n) mat → (’n, ’m) mat) trans (* = ‘T *)
val conjtr : ((’m, ’n) mat → (’n, ’m) mat) trans (* = ‘C *)

val gemm : ?beta:num type → ?c:(’m, ’n) mat (* C *) →
transa:((’am, ’ak) mat → (’m, ’k) mat) trans →
?alpha:num type → (’am, ’ak) mat (* A *) →
transb:((’bk, ’bn) mat → (’k, ’n) mat) trans →
(’bk, ’bn) mat (* B *) → (’m, ’n) mat (* C *)

The arguments transa and transb are optional in LACAML, but mandatory in our interface because
OCaml restricts the types of parameters to those of the default arguments. This a shortcoming of the
typing of optional arguments in OCaml.

6 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

3.1.2 Side flags for square matrix multiplication

The BLAS function symm multiplies a symmetric matrix A by a general matrix B:

val symm : ?side:[‘L | ‘R] → ?beta:num type →
?c:mat (* C *) → ?alpha:num type → mat (* A *) →
mat (* B *) → mat (* C *)

The parameter side specifies the “direction” of the multiplication: symm executes C := αAB+βC if
side is ‘L, and C := αBA+βC if it is ‘R. If B and C are m-by-n matrices, A is an m-by-m matrix in
the former case and n-by-n in the latter case. We implemented these flags as follows:

type (’k, ’m, ’n) side (* = [‘L | ‘R] *)
val left : (’m, ’m, ’n) side (* = ‘L *)
val right : (’n, ’m, ’n) side (* = ‘R *)

The parameter ’k in type (’k,’m,’n) side corresponds to the dimension of the ’k-by-’k symmetric
matrix A, and the other parameters ’m and ’n correspond to the dimensions of the ’m-by-’n general
matrix B. When A is multiplied from the left to B (i.e., like AB), ’k is equal to ’m; therefore, the type
of the flag left is (’m,’m,’n) side. Conversely, if A is right-multiplied to B (i.e., like BA), ’k is
equal to ’n. Thus, the flag right is given the type (’n,’m,’n) side. By using this trick, we can type
symm as:

val symm : side:(’k, ’m, ’n) side → ?beta:num type →
?c:(’m, ’n) mat (* C *) → ?alpha:num type →
(’k, ’k) mat (* A *) → (’m, ’n) mat (* B *) → (’m, ’n) mat

The same trick can be applied to other square matrix multiplications as well.

3.1.3 Flags that change the size of the results

LAPACK provides routines gesdd and gesvd for singular value decomposition (SVD), a variant of the
eigenvalue problem. It factorizes a given m-by-n matrix A as

A = UDV†

where U is an m-by-m unitary matrix, V† is the conjugate transpose of an n-by-n unitary matrix V, and
D is an m-by-n matrix with min(m,n) diagonal elements. The diagonal elements are called singular
values (similar to eigenvalues), and columns of U and V are called left and right singular vectors (similar
to eigenvectors), respectively. The singular vectors are sorted according to the corresponding singular
values. The challenge is that gesdd and gesvd store the singular vectors differently to U, V, or A
depending on the flags.

We consider gesdd first:

val gesdd : ?jobz:[‘A | ‘N | ‘O | ‘S] →
?s:vec (* D *) → ?u:mat (* U *) → ?vt:mat (* V†

) → mat (A *) →
vec (* D *) * mat (* U *) * mat (* V†

*)

It computes all singular values but computation of the singular vectors is optional depending on the flags:

• When the flag jobz is ‘A, all the left and right singular values are computed and are stored in u

and vt. In this case, the storage u and vt must be an m-by-m and an n-by-n matrices, respectively.

• If jobz is ‘S, only the top min(m,n) columns in U and the top min(m,n) rows in V† are stored in
u and vt, which must be m-by-min(m,n) and min(m,n)-by-n, respectively.

A. Abe & E. Sumii 7

• Flag ‘O specifies to overwrite the matrix A with the top singular vectors as follows:

– If m ≥ n, A is overwritten with the top min(m,n) columns of U, and the n rows of V† are
returned in vt; thus vt is n-by-n while u is not used.

– If m < n, A is overwritten with the top min(m,n) rows of V†, and the m columns of U are
returned in u, so u is m-by-m and vt is not used.

• For ‘N, no singular vectors are calculated at all (only singular values are returned).

We implement the dependency of the sizes of u and vt only on the value of jobz, ignoring whether m≥ n
or m < n in the case of ‘O (i.e., u is required to be m-by-m and vt to be n-by-n whenever the flag is ‘O
even though only one of them is used; in addition, the SLAP-version of gesdd returns a value of type
vec * mat option * mat option instead of vec * mat * mat to avoid allocating

dummy matrices when U or V are not returned).
Based on the ideas above, we defined the SVD job flags and the type of gesdd as follows:

type (’a, ’b, ’c, ’d, ’e) svd job (* = [‘A | ‘N | ‘O | ‘S] *)

val svd all : (’a, ’a, , ,) svd job (* = ‘A *)
val svd top : (’a, , ’a, ,) svd job (* = ‘S *)
val svd overwrite : (’a, , , ’a,) svd job (* = ‘O *)
val svd no : (’a, , , , ’a) svd job (* = ‘N *)

val gesdd : jobz:(’u cols * ’vt rows,
’m * ’n,
(’m, ’n) min * (’m, ’n) min,
’m * ’n,
z * z)

svd job →
?s:((’m, ’n) min, cnt) vec (* D *) →
?u:(’m, ’u cols, ’u cd) mat (* U *) →
?vt:(’vt rows, ’n, ’vt cd) mat (* V†

*) →
(’m, ’n, ’a cd) mat (* A *) →

((’m, ’n) min, ’s cd) vec (* D *) *
(’m, ’u cols, ’u cd) mat option (* U *) *
(’vt rows, ’n, ’vt cd) mat option (* V†

*)

In the type of svd all, the first type parameter is the same as the second. When it is passed to
jobz, the OCaml typechecker unifies ’u cols * ’vt rows and ’m * ’n so that u and vt have types
(’m,’m) mat and (’n,’n) mat, respectively. Similarly, if svd top is specified, u and vt are typed
as (’m,(’m,’n) min) mat and ((’m,’n) min,’n) mat. In the case of svd overwrite, u :

(’m,’m) mat and vt : (’n,’n) mat are derived. For svd no, u and vt have types (’m,z) mat

and (z,’n) mat, where z is a nullary type constructor representing 0. (These types are virtually equal
to (z,z) mat because a matrix of (’m,z) mat or (z,’n) mat has no element at all.)

Second, we consider the type of gesvd. The original typing (in LACAML) of gesvd is:

val gesvd : ?jobu:[‘A | ‘N | ‘O | ‘S] → ?jobvt:[‘A | ‘N | ‘O | ‘S] →
?s:vec (* D *) → ?u:mat (* U *) → ?vt:mat (* V†

) → mat (A *) →
vec (* D *) * mat (* U *) * mat (* V†

*)

It takes two SVD job flags jobu and jobvt for the computation of the singular vectors in U and V†.
When jobu is ‘A, ‘S, or ‘N, all, the top min(m,n), or no columns in U are computed respectively. If it

8 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

is ‘O, a is overwritten with the top min(m,n) columns. The meaning of jobvt is similar. (It is a runtime
error to give ‘O for both jobu and jobvt, because A cannot accommodate U and V† at the same time.)
The type of gesvd can be given using the above definition of SVD flags:

val gesvd : jobu:(’u cols, ’m, (’m, ’n) min, (’m, ’n) min, z) svd job →
jobvt:(’vt cols, ’m, (’m, ’n) min, (’m, ’n) min, z) svd job →
?s:((’m, ’n) min, cnt) vec (* D *) →
?u:(’m, ’u cols, ’u cd) mat (* U *) →
?vt:(’vt rows, ’n, ’vt cd) mat (* V†

*) →
(’m, ’n, ’a cd) mat (* A *) →

((’m, ’n) min, ’s cd) vec (* D *) *
(’m, ’u cols, ’u cd) mat (* U *) *
(’vt rows, ’n, ’vt cd) mat (* V†

*)

In accordance with the type-level trick described in the next section, D of gesdd and gesvd has type
((’m, ’n) min, cnt) vec in the argument (contravariant position) and type ((’m, ’n) min,

’s cd) vec in the return value (covariant position) because D refers to a contiguous memory region.

3.2 Subtyping for discrete memory access

In Fortran, elements of a matrix are stored in column-major order in a flat, contiguous memory region.
BLAS and LAPACK functions can take part of a matrix (like a row, a column, or a submatrix) and use it
for computation without copying the elements, so they need to access the memory discretely in order to
access the elements. However, some original functions of LACAML do not support such discrete access.
For compatibility and soundness, we need to prevent those functions from receiving (sub)matrices that
require discrete accesses while allowing the converse (i.e., the other functions may receive contiguous
matrices as well as discrete ones). We achieved this by extending the type definition of matrices by
adding a third parameter for “contiguous or discrete” flags (in addition to the existing two parameters for
dimensions):

type (’m, ’n, ’cnt or dsc) mat (* ’m-by-’n matrices *)
type cnt (* phantom *)
type dsc (* phantom *)

Then, formal arguments that may be either contiguous or discrete matrices are given type (’m,’n,’cnt
or dsc) mat, while the types of (formal) arguments that must be contiguous are specified in the form
(’m,’n,cnt) mat. In contrast, return values that may be either contiguous or discrete have type
(’m,’n,dsc) mat, while those that are known to be always contiguous are typed (’m,’n,’cnt or
dsc) mat so that they can be mixed with discrete matrices.

Appendix A presents a generalization of the idea in this subsection to encode subtyping via phantom
types.

3.3 Dynamic checks remaining

Although many high-level operations provided by BLAS and LAPACK can be statically verified by using
the scheme described above as far as equalities of dimensions are concerned, other operations still require
dynamic checks for inequalities:

• get and set operations allow accesses to an element of a matrix via given indices, which must
be less than the dimensions of the matrix. This inequality is dynamically checked and no static

A. Abe & E. Sumii 9

size constraint is imposed. (The use of these low-level functions is therefore unrecommended and
high-level matrix operations such as map or BLAS/LAPACK functions should be used instead; see
Section 4.2 for details.)

• As mentioned above, BLAS and LAPACK functions can take a submatrix without copying it. Our
original function submat returns such a submatrix for the dimensions given. This submatrix must
be smaller than the original matrix.

• An efficient memory arrangement for band matrices in BLAS and LAPACK, called the band stor-
age scheme, requires a dynamic check that the specified numbers of sub- and super-diagonals are
smaller than the size of the band matrix; for details, see Section 3.4.2.

• There are several high-level functions with specifications that essentially involve submatrices and
inequalities of indices, such as syevr (for finding eigenvalues), orgqr, and ormqr (for QR fac-
torization).

• For most LAPACK functions, the workspace for computation can be given as an argument. It
must be larger than the minimum workspace required as determined by each function (and other
arguments).

We gave these dynamically checked functions the suffix dyn, like get dyn and set dyn (with
the exception of the last bullet point since almost all LAPACK functions can take the workspace as a
parameter whose size must be checked dynamically).

These inequalities are dynamically checked by our library interface for the sake of usability and
compatibility with LACAML because the interface would become too complex if the inequalities were
represented as types: for example, consider (’m,’n) le as a type that would represent ’m ≤ ’n; then
the types of get and set could be given as follows (one is the type for the natural number 1):

val get : (one, ’i) le → (’i, ’n) le → (’n,) vec → ’i size → float
val set : (one, ’i) le → (’i, ’n) le → (’n,) vec → ’i size → float →

unit

Not only the users must pass two extra arguments, but they would also have to derive the inequalities
by applying functions for axioms such as reflexivity and transitivity. We have rejected this approach
because, after all, users want to write linear algebra, not proof terms.

3.4 Inequality capabilities

Although most inequalities are dynamically checked, we introduced capabilities and types for guaran-
teeing inequalities in the following two cases as they arise naturally.

3.4.1 Submatrices and subvectors

All BLAS and LAPACK functions support operations on subvectors and submatrices. For instance,

lange ˜m ˜n ˜ar ˜ac a

computes the norm of the m-by-n submatrix in matrix a where element (i, j) corresponds to the (i+
ar− 1, j+ ac− 1) element of a3. We cannot statically verify whether this function call is safe, i.e., the
submatrix is indeed a submatrix of a. Since adding dynamic checks to all BLAS and LAPACK functions
is undesirable, we have introduced a new, separate function

3The actual lange function takes another parameter norm that indicates the kind of the norm, e.g., 1-norm, Frobenius
norm, etc.

10 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

diagonals superdiagonals

subdiagonals

*

**

*

* *

(a) Band matrix (b) Band-storage representation

Figure 2: Band storage scheme

val submat dyn : ’m size → ’n size → ?ar:int → ?ac:int →
(’k, ’l, ’cnt or dsc) mat → (’m, ’n, dsc) mat

to return a submatrix of the given matrix. Then the type of lange can be given simply as:

val lange : (’m, ’n, ’cnt or dsc) mat → float

Thus lange itself requires no dynamic checks because the inequalities are already checked by submat

dyn.
Similarly, we defined the function subvec dyn to return a subvector of a given vector or matrix.

3.4.2 Band storage scheme

In BLAS (and therefore LAPACK), an m-by-n band matrix with kl subdiagonals and ku superdiago-
nals can be stored in a matrix with kl + ku + 1 rows and n columns. This band storage scheme is
used in practice only when kl,ku� min(m,n). The (i, j) element in the original matrix is stored in the
(ku+1+ i− j, j) element of the band-storage representation, where max(1, j−ku)≤ i≤min(m, j+kl).
Figure 2 shows a 5-by-6 band matrix with two superdiagonals and one subdiagonal, and its band-storage
representation as an example (the ∗ symbol denotes an unused element). A matrix like (b) is passed to
special functions like gbmv (which multiplies a band matrix to a vector) for band-storage representations.

We implemented our original function geband dyn4 that converts a band matrix into band-storage
representation

val geband dyn : ’kl size → ’ku size → (’m, ’n) mat →
((’m, ’n, ’kl, ’ku) geband, ’n) mat

where the phantom type (’m,’n,’kl,’ku) geband guarantees the inequalities kl < m and ku < n,
and represents the height of the band-storage representation of an ’m-by-’n band matrix with ’kl sub-
diagonals and ’ku superdiagonals. geband dyn dynamically checks the inequalities and performs the
conversion.

The matrix-vector multiplication function gbmv in LACAML5 is typed as

val gbmv : ?m:int → ?beta:num type →
?y:vec → (* y *)

4geband dynmeans GEneral BAND matrix. There is also a variant syband dyn for symmetric band matrices, hence
the name.

5We omit an optional argument ?n:int to take a submatrix of A, since we separate such submatrix operations as in
Section 3.4.1.

A. Abe & E. Sumii 11

?trans:trans3 →
?alpha:num type →
mat (* A *) →
int (* kl *) → int (* ku *) → vec (* x *) → vec (* y *)

while we give it the following type using (’m,’n,’kl,’ku) geband.

val gbmv : m:’a m size → ?beta:num type →
?y:’m vec (* y *) →
trans:((’a m, ’a n) mat → (’m, ’n) mat) trans →
?alpha:num type →
((’a m, ’a n, ’kl, ’ku) geband, ’a n) mat (* A *) →
’kl size (* kl *) → ’ku size (* kl *) → ’n vec (* x *) → ’m vec (* y *)

This function computes y := αAx+βy or y := αA>x+βy for an m-by-n matrix A, an n-dimensional
vector x, and an m-dimensional vector y. Note that gbmv requires no dynamic check of kl < m or ku < n
because the inequalities are statically guaranteed by the type (’m,’n,’kl,’ku) geband.

4 Porting of OCaml-GPR

To evaluate the usability of SLAP, we ported OCaml-GPR—a practical machine learning library for
Gaussian process regression, written using LACAML by the same author—to use SLAP. The ported
library, called SGPR, is available at https://github.com/akabe/sgpr.

Just to give a (very) rough feel for the library via a simple (but non-trivial) example, the type of a
function that “calculates a covariance matrix of inputs given a kernel”

val calc upper : Kernel.t → Inputs.t → mat

is augmented like

val calc upper : (’D, ,) Kernel.t → (’D, ’n) Inputs.t →
(’n, ’n, ’cnt or dsc) mat

indicating that it takes ’n vectors of dimension ’D and returns an ’n-by-’n contiguous matrix.
We added comments of the form (*! label *) on lines changed in the SGPR source code to in-

vestigate the categories and numbers of changes required for the porting, where label corresponds to
a category of changes, e.g., (*! IDX *) for replacement of index-based accesses. We classified the
changes into 19 categories, some of which we outline here (see https://akabe.github.io/
sgpr/changes.pdf for the others).

4.1 Changes that could be made mechanically

Of the 19 categories of changes required, 12 could be made mechanically. Here we describe three
representative examples.

Replacement of index-based accesses (IDX) In LACAML, the syntax sugar x.{i,j} can be used for
index-based accesses to elements of vectors and matrices because they are implemented with the built-in
OCaml module Bigarray. In SLAP, however, this syntax sugar cannot be used since (’n,’cd) vec

and (’m,’n,’cd) mat are abstract6; one must use the get dyn and set dyn functions instead.
6Since the development version of OCaml (4.03, not released yet) will support user-defined index operators.{} and.{,},

our replacement functions get dyn and set dyn will be unnecessary in the (near) future.

https://github.com/akabe/sgpr
https://akabe.github.io/sgpr/changes.pdf
https://akabe.github.io/sgpr/changes.pdf

12 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

Rewriting of the flags (RF) The transpose flags had to be rewritten from ‘N, ‘T, and ‘C to normal,
trans, and conjtr (and similarly for side and SVD job flags) for the sake of typing as described in
Section 3.1.

Insertion of type parameters (ITP) Recall that we changed the types vec and mat on the right hand
side of a type definition to (’n,’cd) vec and (’m,’n,’cd) mat, respectively. It is then necessary
to add the type parameters ’m, ’n, and ’cd on the left hand side as well. Theoretically, it suffices to give
fresh type parameters to all vec and mat. For example7,

module M : sig
type t
val f : int → t

end = struct
type t = {

n : int;
id : mat;

}
let f n = { n; id = Mat.identity n }

end

should be rewritten:

module M : sig
type (’a, ’b, ’c, ’d) t
val f : ’a size → (’a, ’a, ’a, ’cnt or dsc) t

end = struct
type (’a, ’b, ’c, ’d) t = {

n : ’a size;
id : (’b, ’c, ’d) mat;

}
let f n = { n; id = Mat.identity n }

end

Note that, in the latter code, type parameters of function f could be automatically inferred by OCaml.
In practice, however, it would introduce too many type parameters to take all of them fresh. We thus

unified the type parameters that are known to be always equal by looking at the constructor functions
such as f:

module M : sig
type (’n, ’cnt or dsc) t (*! ITP *)
val f : ’n size → (’n, ’cnt or dsc) t (*! ITP *)

end = struct
type (’n, ’cnt or dsc) t = { (*! ITP *)

n : ’n size; (*! ITP *)
id : (’n, ’n, ’cnt or dsc) mat; (*! ITP *)

}
let f n = { n; id = Mat.identity n }

end

7This example is imaginary and not from the real OCaml-GPR code, which is too complex to explain on paper.

A. Abe & E. Sumii 13

4.2 Changes that had to be made manually

Other changes needed human brain and had to be made manually. We here explain the following two
representatives of the seven categories of manual changes. (The other categories are function types that
depend on the values of arguments, and some ad hoc changes; again see https://akabe.github.
io/sgpr/changes.pdf.)

Insertion of type annotations (ITA) When a matrix operation is implemented by using low-level
index-based access functions, its size constraints cannot be inferred statically (since they are checked
only at runtime). For example, consider the function axby, which calculates αx+βy where α and β are
scalar values, and x and y are vectors.

let axby alpha x beta y =
let n = Vec.dim x in
let z = Vec.create n in
for i = 1 to Size.to int n do
Vec.set dyn z i

(alpha *. (Vec.get dyn x i) +. beta *. (Vec.get dyn y i))
done;
z

The dimensions of vectors x and y must be the same, but OCaml cannot infer that:

val axby : float → (’n,) vec → float → (’m,) vec → (’n,) vec

There are two ways to solve this problem. One is to type-annotate the function by hand:

let axby alpha (x : (’n,) vec) beta (y : (’n,) vec) =
...

The other is to use high-level operations such as BLAS/LAPACK functions or map2 instead of the low-
level operations get dyn and set dyn:

let axby alpha x beta y =
let z = copy y in (* z := y *)
scal beta z; (* z := beta * z *)
axpy ˜alpha ˜x z; (* z := alpha * x + z *)
z

or

let axby alpha x beta y =
Vec.map2 (fun xi yi → alpha *. xi +. beta *. yi) x y

In either way, we need to rewrite existing programs by considering their meanings.
We encountered five such functions in OCaml-GPR and adopted the former approach for all of them

so as to keep the changes minimal.

Escaping generative phantom types (EGPT) We needed to prevent a generative phantom type from
escaping its scope. Consider the following function implemented using LACAML8.

let vec of array a = Vec.init (Array.length a) (fun i → a.(i))

8Again, this is just an example for pedagogy; SLAP itself supplies a similar function Vec.of array.

https://akabe.github.io/sgpr/changes.pdf
https://akabe.github.io/sgpr/changes.pdf

14 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

It converts an array into a vector. In SLAP, the above code causes a type error because Vec.init expects
a size value of singleton type ’n size, not an integer, as the first argument. We thus should convert the
integer into a size with Size.of int dyn : int → (module SIZE)9 as follows:

module type SIZE = sig
type n
val value : n size

end

let vec of array a =
let module N = (val Size.of int dyn (Array.length a) : SIZE) in
Vec.init N.value (fun i → a.(i))

The fix may seem correct, but it does not type-check in OCaml because the generative phantom type N.n
escapes its scope.

There are two ways to handle this situation in SLAP. One is to insert the argument n for the size of
the array and remove the generative phantom type from the function:

let vec of array n a = (* : ’n size → float array → (’n,) vec *)
if Size.to int n <> Array.length a then invalid arg "error";
Vec.init n (fun i → a.(i))

In this approach, the generative phantom type should be given from the outside of the function. For
example, vec of array can be called like:

let f a =
let module N = (val Size.of int dyn (Array.length a) : SIZE) in
let v = vec of array N.value a in
printf "%a" pp rfvec v

However, the dynamic check in the definition of vec of array is redundant in this case.
The other way is to define vec of array : float array → (?,) vec using a first-class

module (or a functor):

let vec of array a = (* : float array → (module VEC) *)
let module N = (val Size.of int dyn (Array.length a) : SIZE) in
(module struct

type n = N.n
let value = Vec.init N.value (fun i → a.(i))

end : VEC)

In this approach, the generative phantom type is created inside the function. No extra dynamic check
is required, but the user needs to write a type annotation for the returned module like (val vec of
array a : VEC) at the caller site. We suppose that conversion from the first vec of array imple-

mented in LACAML into the last code can be made automatically by inserting packing and unpacking of
first-class modules: packing should be inserted where a generative phantom type escapes, and unpacking
should be inserted where the contents (a vector or a matrix) of the packed module are used. It is however
burdensome to manually insert them because of the heavy syntax. We thus adopted the former approach
for our (manual) porting.

Note that, in either approach, the conversion may introduce another escape of the generative phantom
type at the caller site and therefore may have to be repeated (until it reaches the main routine in the worst
case, though we conjecture from our experiences with SLAP that such cases are rare).

9 It raises an exception if the given integer is negative because a size must be non-negative, hence the suffix dyn.

A. Abe & E. Sumii 15

Table 1: Number and percentage of mechanically changed lines
S2I SC SOP I2S IDX RF IF SUB ETA RID RMDC ITP Total

lib/block diag.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/block diag.ml 1 0 0 0 0 0 0 0 0 1 6 1 9
lib/cov const.mli 0 0 0 0 0 0 0 0 0 0 0 5 5
lib/cov const.ml 2 0 0 0 1 0 0 0 0 2 0 9 14
lib/cov lin one.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/cov lin one.ml 0 0 0 0 1 4 2 0 0 2 0 9 17
lib/cov lin ard.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/cov lin ard.ml 7 0 0 0 10 5 2 0 0 2 0 9 32
lib/cov se iso.mli 0 0 0 0 0 0 0 0 0 1 0 5 6
lib/cov se iso.ml 18 4 0 0 31 0 0 0 0 2 2 14 71
lib/cov se fat.mli 0 0 0 0 0 0 0 0 0 1 0 10 11
lib/cov se fat.ml 43 9 1 0 87 2 2 0 0 2 8 23 174
lib/fitc gp.mli 0 0 0 0 0 0 0 0 0 0 0 0 0
lib/fitc gp.ml 81 3 3 0 63 19 26 14 34 3 15 69 298
lib/interfaces.ml 0 0 0 0 0 0 0 0 0 1 0 196 197
lib/gpr utils.ml 10 0 0 0 13 0 2 0 0 4 17 1 46
app/ocaml gpr.ml 13 0 2 4 10 0 0 0 0 3 0 8 35
Total 175 16 6 4 216 30 34 14 34 27 48 374 933
Percentage 2.89 0.26 0.10 0.07 3.56 0.49 0.56 0.23 0.56 0.45 0.79 6.17 15.39

4.3 Results

Table 1 shows the number of lines that required mechanical changes. The major change was ITP (6.17
%) because OCaml-GPR consists of several large modules with a large number of functions involving
sized types. Most of the ITP changes have been made in lib/interfaces.ml, which defines all the signatures
provided by OCaml-GPR. IDX was the second largest (3.56 %) because index-based access functions
are frequently used in OCaml-GPR, even when they could be replaced with high-level matrix operations
such as map.

Table 2 shows the numbers and percentages of lines for which the required changes had to be made
manually, and Table 3 gives the total of all changes. Overall, 18.4 % of lines required some changes,
out of which (with some overlap) 15.4 % were mechanical and 3.6 % required human brain. From these
results, we conjecture in general that the number of non-trivial changes required for a user program of
SLAP is small.

5 Related work

Dependent ML (DML) [22] and sized type [3] can statically verify consistency among the sizes of collec-
tions such as lists and arrays, using dependent types on natural numbers. In ATS [4], a successor of DML,
BLAS and LAPACK bindings are provided. Advantages of dependent types over our approach are: (1)
they can represent more complex specifications including inequalities such as array bounds; (2) they can
verify the consistency of sizes in the internal implementations of vector and matrix operations (though
the BLAS and LAPACK bindings for ATS are currently implemented as wrappers of C functions, so the
internals are not statically verified). Conversely, our approach only requires fairly standard ML types
and module system, and application programs can be ported almost mechanically, while dependent types
generally require non-trivial changes to the programming language and application programs.

The dimensions of vectors and matrices can also be represented [11] using GADT, a lightweight

16 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

Table 2: Number and percentage of manually changed lines
ITA EGPT O2L FT ET DKS FS Total

lib/block diag.mli 0 0 0 0 0 0 0 0
lib/block diag.ml 0 0 0 0 0 0 0 0
lib/cov const.mli 0 0 0 0 0 0 2 2
lib/cov const.ml 0 1 0 0 0 1 8 10
lib/cov lin one.mli 0 0 0 0 0 0 2 2
lib/cov lin one.ml 0 0 0 0 0 1 12 13
lib/cov lin ard.mli 0 0 0 0 0 0 2 2
lib/cov lin ard.ml 0 0 0 0 0 1 8 9
lib/cov se iso.mli 0 0 0 0 0 0 2 2
lib/cov se iso.ml 2 0 0 0 0 1 6 9
lib/cov se fat.mli 0 0 0 4 0 0 0 4
lib/cov se fat.ml 0 0 0 28 0 1 1 30
lib/fitc gp.mli 0 0 0 0 0 0 0 0
lib/fitc gp.ml 0 28 31 16 0 0 0 68
lib/interfaces.ml 0 11 7 5 0 3 0 26
lib/gpr utils.ml 6 0 0 0 0 0 1 7
app/ocaml gpr.ml 0 17 0 6 16 0 0 35
Total 8 57 38 59 16 8 44 219
Percentage 0.13 0.94 0.63 0.97 0.26 0.13 0.73 3.61

Table 3: Number and percentage of all changed lines
Lines Mechanical Manual Total

lib/block diag.mli 56 6 0 6
lib/block diag.ml 58 9 0 9
lib/cov const.mli 52 5 2 6
lib/cov const.ml 141 14 10 16
lib/cov lin one.mli 56 6 2 7
lib/cov lin one.ml 149 17 13 26
lib/cov lin ard.mli 56 6 2 7
lib/cov lin ard.ml 188 32 9 39
lib/cov se iso.mli 58 6 2 7
lib/cov se iso.ml 343 71 9 78
lib/cov se fat.mli 105 11 4 15
lib/cov se fat.ml 680 174 30 199
lib/fitc gp.mli 151 0 0 0
lib/fitc gp.ml 2294 298 68 364
lib/interfaces.ml 1008 197 26 215
lib/gpr utils.ml 229 46 7 53
app/ocaml gpr.ml 440 35 35 66
Total 6064 933 219 1113
Percentage 100.00 15.39 3.61 18.35

A. Abe & E. Sumii 17

form of dependent types. Existential types can be implemented not only using first-class modules but
also using GADT.

The idea of using phantom and generative types for static size checking is not novel. Kiselyov and
Shan [12] implemented DML-like size checking (including inequalities, e.g., array bound checking) by
CPS encoding of existential types using first-class polymorphism. Eaton [6] developed a linear algebra
library with static size checking for matrix operations as a “strongly statically typed” binding of GSL-
Haskell10. His basic idea is similar to ours, but he adopted Template Haskell [19] for the CPS encoding
of generative types. The approaches of [6, 12] need CPS conversion when a generative type escapes
its scope and thereby change the structures of programs. In contrast, we either implemented generative
types with first-class modules in OCaml instead of the CPS encoding, or else removed them in the first
place, like the conversions in EGPT. Our contribution is the discovery that practical size checking for
a linear algebra library can be constructed on the simple idea of verifying mostly the equality of sizes
without significantly restructuring application programs.

Braibant and Pous [2] implemented static size checking of matrix operations using phantom types on
Coq. It requires more type annotations than our interface.

Eigen [7] is another practical linear algebra libraries with static size checking. It does not statically
check the consistency of dynamically determined sizes of matrices and vectors.

6 Conclusions

Our proposed linear algebra library interface SLAP uses generative phantom types to statically ensure
that most operations on matrices satisfy dimensional constraints. It is based on a simple idea—only the
equality of sizes needs to be verified—and can be realized by using a fairly standard type and module
system of ML. We implemented this interface on top of LACAML and then ported OCaml-GPR to
it. Most of the high-level matrix operations in the BLAS and LAPACK linear algebra libraries were
successfully typed, and few non-trivial changes were required for the porting.

We did not find any bug in LACAML or OCaml-GPR, maybe because both libraries have already
been well tested and debugged or carefully written in the first place. However, in our experience of
implementing other (relatively small) programs11, our version of the libraries have been particularly
useful when developing a new library or application on top since they detect an error not only earlier
(i.e., at compile time instead of runtime) but also at higher level: for instance, if the programmer misuses
a function of SGPR, an error is reported at the caller site rather than somewhere deep inside the call stack
from the function.

Interesting directions for future work include formalization of the idea of generative phantom types,
and extension of the static types to enable verification of inequalities (in addition to equalities), just to
name a few.

References

[1] Matthias Blume (2001): No-Longer-Foreign: Teaching an ML compiler to speak C ”natively”. Electr.
Notes Theor. Comput. Sci. 59(1), pp. 36–52. Available at http://dx.doi.org/10.1016/
S1571-0661(05)80452-9.

10 GSLHaskell is a binding of the GNU Scientific Library (GSL) [9], a library for linear algebra and numerical computation
on C and C++. GSL also provides interfaces for BLAS and LAPACK.

11such as neural networks; see https://github.com/akabe/slap/tree/master/examples

http://dx.doi.org/10.1016/S1571-0661(05)80452-9
http://dx.doi.org/10.1016/S1571-0661(05)80452-9
https://github.com/akabe/slap/tree/master/examples

18 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

[2] Thomas Braibant & Damien Pous (2010): An Efficient Coq Tactic for Deciding Kleene Algebras. In: In-
teractive Theorem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, Lecture Notes in Computer Science 6172, Springer, pp. 163–178. Available at http:
//dx.doi.org/10.1007/978-3-642-14052-5_13.

[3] Wei-Ngan Chin & Siau-Cheng Khoo (2001): Calculating Sized Types. Higher-Order and Symbolic Compu-
tation 14(2-3), pp. 261–300. Available at http://dx.doi.org/10.1023/A:1012996816178.

[4] Sa Cui, Kevin Donnelly & Hongwei Xi (2005): ATS: A Language That Combines Programming with The-
orem Proving. In: FroCoS, Lecture Notes in Computer Science 3717, Springer, pp. 310–320. Available at
http://dx.doi.org/10.1007/11559306_19.

[5] Olivier Danvy (1998): Functional Unparsing. J. Funct. Program. 8(6), pp. 621–625. Available at http:
//dx.doi.org/10.1017/S0956796898003104.

[6] Frederik Eaton (2006): Statically typed linear algebra in Haskell. In: Proceedings of the ACM SIGPLAN
Workshop on Haskell, Haskell 2006, Portland, Oregon, USA, September 17, 2006, ACM, pp. 120–121.
Available at http://dx.doi.org/10.1145/1159842.1159859.

[7] Eigen. http://eigen.tuxfamily.org/.

[8] Matthew Fluet & Riccardo Pucella (2006): Phantom types and subtyping. J. Funct. Program. 16(6), pp.
751–791. Available at http://dx.doi.org/10.1017/S0956796806006046.

[9] Mark Galassi et al.: the GNU Scientific Library (GSL). http://www.gnu.org/software/gsl/.

[10] Ralf Hinze (2003): Fun with phantom types. In Jeremy Gibbons & Oege de Moor, editors: The Fun of
Programming, Cornerstones of Computing, Palgrave Macmillan, pp. 245–262.

[11] hyone: Length Indexed Matrix and Indexed Functor. https://gist.github.com/hyone/
3990929.

[12] Oleg Kiselyov & Chung chieh Shan (2007): Lightweight Static Capabilities. Electr. Notes Theor. Comput.
Sci. 174(7), pp. 79–104. Available at http://dx.doi.org/10.1016/j.entcs.2006.10.039.

[13] Daan Leijen & Erik Meijer (1999): Domain specific embedded compilers. In: Proceedings of the Second
Conference on Domain-Specific Languages (DSL ’99), Austin, Texas, USA, October 3-5, 1999, ACM, pp.
109–122. Available at http://dx.doi.org/10.1145/331960.331977.

[14] Markus Mottl: OCaml-GPR – Efficient Gaussian Process Regression in OCaml. https://github.com/
mmottl/gpr.

[15] Markus Mottl & Christophe Troestler: LACAML – Linear Algebra for OCaml. https://github.com/
mmottl/lacaml.

[16] NetLib: BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/.

[17] NetLib: LAPACK – Linear Algebra PACKage. http://www.netlib.org/lapack/.

[18] Stanford University’s Pervasive Parallelism Laboratory (PPL): OptiML. http://stanford-ppl.
github.io/Delite/optiml/.

[19] Tim Sheard & Simon L. Peyton Jones (2002): Template meta-programming for Haskell. SIGPLAN Notices
37(12), pp. 60–75. Available at http://dx.doi.org/10.1145/636517.636528.

[20] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf, Hassan Chafi, Michael Wu, Anand R.
Atreya, Martin Odersky & Kunle Olukotun (2011): OptiML: An Implicitly Parallel Domain-Specific Lan-
guage for Machine Learning. In: Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, Omnipress, pp. 609–616.

[21] uBlas. http://www.boost.org/doc/libs/1_55_0/libs/numeric/ublas/doc/.

[22] Hongwei Xi (2007): Dependent ML – An approach to practical programming with dependent types. J. Funct.
Program. 17(2), pp. 215–286. Available at http://dx.doi.org/10.1017/S0956796806006216.

http://dx.doi.org/10.1007/978-3-642-14052-5_13
http://dx.doi.org/10.1007/978-3-642-14052-5_13
http://dx.doi.org/10.1023/A:1012996816178
http://dx.doi.org/10.1007/11559306_19
http://dx.doi.org/10.1017/S0956796898003104
http://dx.doi.org/10.1017/S0956796898003104
http://dx.doi.org/10.1145/1159842.1159859
http://eigen.tuxfamily.org/
http://dx.doi.org/10.1017/S0956796806006046
http://www.gnu.org/software/gsl/
https://gist.github.com/hyone/3990929
https://gist.github.com/hyone/3990929
http://dx.doi.org/10.1016/j.entcs.2006.10.039
http://dx.doi.org/10.1145/331960.331977
https://github.com/mmottl/gpr
https://github.com/mmottl/gpr
https://github.com/mmottl/lacaml
https://github.com/mmottl/lacaml
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://stanford-ppl.github.io/Delite/optiml/
http://stanford-ppl.github.io/Delite/optiml/
http://dx.doi.org/10.1145/636517.636528
http://www.boost.org/doc/libs/1_55_0/libs/numeric/ublas/doc/
http://dx.doi.org/10.1017/S0956796806006216

A. Abe & E. Sumii 19

Table 4: Encoding of supertype T and subtype U
Positive (covariant) position Negative (contravariant) position

Supertype T t τ ’t or u τ

Subtype U ’t or u τ u τ

SA

SCSB

SD SE

SF

Figure 3: Example of powerset lattice

A Encoding of subtyping

We explain generalization of the subtyping encoding used in Section 3.2. To start with, consider a
subtyping with only one base case T :> U. Table 4 shows encoding of the types T and U (which depends
on their positions of appearance). It is similar to the subtyping encoding for the types of contiguous and
discrete matrices (without type parameters ’m and ’n for dimensions) in Section 3.2. t and u are phantom
types, and ’t or u τ is the sum type of T and U where ’t or u is a phantom type parameter.

More generally, to encode an arbitrary subtyping hierarchy with a finite number of base cases, we
give an encoding of powerset lattices. The powerset lattice of a finite set S is the lattice of all subsets
of S, ordered by inclusion. As in [8], we represent our subtyping relation as the inclusion relation
between subsets of some S so that T :> U iff ST ⊇ SU for any types T and U, where ST and SU are some
appropriate subsets of S corresponding to T and U, respectively. For example, consider the subtyping
relation illustrated in Figure 3, where A is the largest type, and E and F are the smallest. Let S be
{1,2,3,4}. Then we can take, e.g., SA = {1,2,3,4}, SB = {1,2}, SC = {1,3,4}, SD = {2,3}, SE = {4},
and SF = {1}.

We now assume a total ordering s1,s2, . . . ,sn among the elements of S, where n is the cardinality of
S. A base type T is encoded as 〈T〉+ τ at covariant positions, and as 〈T〉− τ at contravariant positions,
where 〈T〉+ and 〈T〉− are n-tuple types defined as

〈T〉+
def
= t1 * · · · * tn where ti =

{
w if si ∈ ST
’ai otherwise,

〈T〉−
def
= t1 * · · · * tn where ti =

{
’ai if si ∈ ST
z otherwise,

for phantom types w and z. We require that every type parameter ’ai is fresh in each 〈·〉+ and 〈·〉−.
Table 5 shows the encoding of the subtyping relation in Figure 3. We can verify, e.g., that 〈E〉+ can

be unified with 〈A〉−, 〈C〉−, or 〈E〉−, but not with 〈B〉−, 〈D〉−, or 〈F〉−. That is, a value of type E can be
passed to a function as an argument of type A, C, or E, but not as B, D, or F. In addition, if we put values
of type E and F in the same list, it can be passed as an argument of type A list or C list (i.e., a list
of elements with a common supertype of E and F).

We implement Bot, a subtype of any type, as a single type parameter (i.e., ∀α. α), which can

20 A Simple and Practical Linear Algebra Library Interface with Static Size Checking

Table 5: Encoding of the subtyping hierarchy of Figure 3
〈·〉+ 〈·〉−

A w * w * w * w ’a1 * ’a2 * ’a3 * ’a4

B w * w * ’a3 * ’a4 ’a1 * ’a2 * z * z

C w * ’a2 * w * w ’a1 * z * ’a3 * ’a4

D w * ’a2 * w * ’a4 ’a1 * z * ’a3 * z

E ’a1 * ’a2 * ’a3 * w z * z * z * ’a4

F w * ’a2 * ’a3 * ’a4 ’a1 * z * z * z

be instantiated to any type. By replacing ’ai with Bot in the definitions of 〈·〉+ and 〈·〉−, we obtain
U <: T ⇐⇒ 〈U〉+ <: 〈T〉+∧〈U〉− :> 〈T〉−.

Related work Fluet and Pucella [8] also proposed a subtyping scheme using phantom types on the ML
type system. They focused on an encoding of Hindley-Milner polymorphism extended with subtyping.
Their approach can encode a type like ∀α <:T. α → α , but does not achieve the contravariance of
argument types. In contrast, our approach accomplishes both covariance and contravariance while it
does not support universal types.

B Generalization of flag-dependent function types

We generalize the phantom type trick in Section 3.1 for function types that depend on flags (cf. Danvy’s
typing of printf [5]). The type of the following function depends on values of x1, . . . ,xn (n = 1 in
many functions of BLAS and LAPACK, but several functions such as gemm and gesvd take two or more
flags).

val f : Πx1:t1. Πx2:t2. . . . Πxn:tn. (T1(x1), T2(x2), . . ., Tn(xn)) u

Ti is a function that maps a flag value to an ML type, (α1, . . ., αn) u is an ML type, and ti is the type
of the ith flags, e.g., [‘N | ‘T | ‘C] (for transpose flags), [‘L | ‘R] (for side flags) or [‘A | ‘S

| ‘O | ‘N] (for SVD job flags). We assume that Ti does not contain dependent types.
We consider how to type f without dependent types. First, we represent each type ti and each flag

vi j of type ti as follows:

type α tti (* = ti *)
val tti vi j : Ti(vi j) tti (* = vi j *)

Then f takes the flag representations tti vi j as arguments of types αi tti, thereby receiving the types
Ti(vi j) tti as αi:

val f : ∀α1,α2, . . . ,αn. α1 tt1 → α2 tt2 → ··· → αn ttn → (α1, α2, . . ., αn) u

We show the encoding of the type of gemm as an example. The original type of it is

val gemm : Πtransa:[‘N | ‘T | ‘C] → Πtransb:[‘N | ‘T | ‘C] →
(T (transa), T (transb)) u

where

((’am, ’ak) mat → (’m, ’k) mat, (’bk, ’bn) mat → (’k, ’n) mat) u
= ?beta:num type → ?c:(’m, ’n) mat (* C *) →

A. Abe & E. Sumii 21

?alpha:num type → (’am, ’ak) mat (* A *) →
(’bk, ’bn) mat (* B *) → (’m, ’n) mat (* C *)

and

T (trans) =

{
(’m, ’n) mat→ (’m, ’n) mat (trans= ‘N)

(’m, ’n) mat→ (’n, ’m) mat (trans= ‘T,‘C).

Our representations of the flags are

type α trans (* = [‘N | ‘T | ‘C] *)
val normal : T (‘N) trans (* = ‘N *)
val trans : T (‘T) trans (* = ‘T *)
val conjtr : T (‘C) trans (* = ‘C *)

and our type of gemm is:

val gemm : ∀α1,α2. α1 trans → α2 trans → (α1, α2) u

Side flags and SVD job flags can be represented similarly.

	1 Introduction
	2 Our idea
	2.1 Implementation of generative phantom types
	2.2 Free type constructors to represent operations on natural numbers

	3 Typing of BLAS and LAPACK functions
	3.1 Function types that depend on flags
	3.1.1 Transpose flags for matrices
	3.1.2 Side flags for square matrix multiplication
	3.1.3 Flags that change the size of the results

	3.2 Subtyping for discrete memory access
	3.3 Dynamic checks remaining
	3.4 Inequality capabilities
	3.4.1 Submatrices and subvectors
	3.4.2 Band storage scheme

	4 Porting of OCaml-GPR
	4.1 Changes that could be made mechanically
	4.2 Changes that had to be made manually
	4.3 Results

	5 Related work
	6 Conclusions
	A Encoding of subtyping
	B Generalization of flag-dependent function types

