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Getting polymorphism and effects such as mutation to live together in the same language is a tale
worth telling, under the recurring refrain of copying vs. sharing. We add new stanzas to the tale, about
the ordeal to generate code with polymorphism and effects, and be sure it type-checks. Generating
well-typed–by–construction polymorphic let-expressions is impossible in the Hindley-Milner type
system: even the author believed that.

The polymorphic-let generator turns out to exist. We present its derivation and the application for
the lightweight implementation of quotation via a novel andunexpectedly simple source-to-source
transformation to code-generating combinators.

However, generating let-expressions with polymorphic functions demands more than even the
relaxed value restriction can deliver. We need a new deal forlet-polymorphism in ML. We conjecture
the weaker restriction and implement it in a practically-useful code-generation library. Its formal
justification is formulated as the research program.

1 Introduction

This paper revolves around code generation, namely, generating typed, higher-order code for languages
such as OCaml. Specifically we deal with one approach to code generation: staging (recalled in§2.2),
and the lightweight way of implementing it via code-generating combinators. In our approach, the
generated code is assured to be well-formed and well-typed by construction: attempts to produce ill-
typed fragments are reported when type-checking the generator itself. In contrast, the post-validation
used, for example, in Template Haskell [23], type-checks the code only after it has been completely
generated. The errors are thus reported in terms of the generated code rather than the generator, breaking
the generator’s abstractions1.

However, staging here is the lens through which to look at theold problem of let-generalization.
The unexpected interactions of polymorphism and staging brings into focus the ‘too obvious’ and hence
rarely mentioned assumptions of the value restriction. Generating code that contains polymorphic let-
expressions is a non-contrived, real-life application that requires let-generalization of effectful expres-
sions – going beyond what even the relaxed value restrictionoffers. Staging thus motivates further work
on the seemingly closed topic of let-generalization in the presence of effects.

Although program generation is a vast area, surprisingly there has been very little research on typed-
assured code generation with polymorphic let. To our knowledge, [15] is the first paper that brings
up a staged calculus that has both polymorphism and mutable cells. It is motivated by the unexpected
interaction of polymorphism and staging that we describe in§2.3. There are many systems for typed

1Post-validation is hence similar to run-time failure of ill-typed code in dynamically-typed languages. However, witha run-
time error we can get a stack trace, etc. On the other hand, when post-validating the (typically large and obfuscated) generated
code, the generator is long gone and its state can no longer beexamined.
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code generation (see [11,§5] for the recent overview) yet polymorphic-let expressions are not included
in the target language. The only related, albeit quite remotely, is the work [3] on typed self-interpreters,
which does include the representation of polymorphic expressions as code – but lacks any effects. That
work is based on System Fω , which is difficult to use in practice, in part because it lacks type inference.
In contrast, in our code generation approach all types are inferred.

Contributions First, the paper presents a new translation from the staged code – with quotations,
unquotations and cross-stage persistence – to quotation-free expressions over code-generating combi-
nators. The translation is remarkably simpler than the other unstaging translations. It also translates
quoted let-expressions to let-expressions, for the first time giving the chance to generate polymorphic
let-expressions, well-typed by construction. Second, we present the first library of typed code combi-
nators whose target language includes polymorphic let-bindings and effects. The library requires no
first-class polymorphism, no type annotations and, combined with the unstaging translation, is suitable
for implementing staging by source-to-source translationto combinators. The library solves the problem
that the author claimed in 2013 to be unsolvable [13].

Although the translation and the library are already practically useful, their formalization requires
deeper understanding of polymorphism and effects. The paper proposes a research program, which will
have to open the old value-restriction wounds and could finally heal them. Thus we end up posing more
questions – the questions that could not have been asked before.

The paper starts with extensive background.§2.1 recalls let-polymorphism and the ways to restrict
it in the presence of effects. That section describes the copying-sharing dichotomy that reverberates
through the rest of the paper.§2.2 introduces staging, using MetaOCaml as an example, and§2.3 de-
scribes the unexpected interactions of staging and polymorphism. We then describe in§3 the novel
translation that systematically eliminates quoted expressions, replacing them with applications of code
combinators. Alas, the translation does not seem work for polymorphic let-expression, as shown in§3.2.
It can be made to work;§4 explains how. As in the ordinary ML, reference cells and polymorphism is a
dangerous mix; our translation hence needs some sort of a restriction, weaker than even the relaxed value
restriction.§4.1 discusses the solutions and the many follow-up problems.

We will be using OCaml throughout the paper for concreteness. However the discussion equally
applies to any other typed, higher-order language with polymorphism and effects.

The complete code accompanying the paper is available at
http://okmij.org/ftp/meta-programming/polylet.ml

2 Background

This background section recalls let-generalization; its problems in the presence of effects; staging; and
the unexpected interaction of generalization and staging that calls up the assumptions of the value re-
striction. The section introduces the running examples used later in the paper.

2.1 Let-polymorphism

Since the early days of LISP and ISWIM [16], let-expressionslet us introduce and name common or
notable expressions which are used, often repetitively, later in the code. Here is a simple example:

(1) let x = [1] in
(2:: x ,3:: x)

http://okmij.org/ftp/meta-programming/polylet.ml
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It may be regarded as a sort of a ‘macro’ that expands into

(2) (2::[1],3::[1])

In fact, such a ‘macro-expansion’ – copying (inlining) the let-bound expression into the places marked by
the let-bound variable – is the meaning given to let-expressions in Landin’s ISWIM [16]. The alternative
to this copying, or substitution-based semantics is sharing. It views (1) as introducing the expression[1]
that is shared across all occurrences ofx. Hence the two lists in (2) share the common tail. Copying vs.
sharing reverberates throughout the paper as the constant refrain. If our program simply prints out (2),
the two semantics are indistinguishable. The equivalence lets the compiler choose inlining or sharing as
fits.

Likewise, the code

(3) let x = [] in
(2:: x,”3”::x)

may be viewed as a macro that expands into

(4) (2::[], ”3” ::[])

It is tempting to also regard (3) as the sharing of the empty list across the two components of the returned
pair. Unlike (2), however,[] in (4) has different types: namely,int list in the first component vs.string list
in the second. Thus comes the problem of what type to give to the shared value and tox.

The answer developed by Milner [20] was polymorphism: the same expression that occurs in – has
been copied into – differently typed contexts may be shared and given the common, the most general,
polymorphic type (see also the extended discussion in [5]).The empty list[] has the typeα list to be
fully determined by the context;α is the placeholder: a (unique) type variable. In (4), the contexts
determine the type asint list andstring list, respectively. In (3), the context of the right-hand side (RHS)
of the let-binding has not determined whatα list should be. In that case, the type isgeneralizedto the
polymorphic type schema:∀α . α list.

Formally, the typing of let-expressions is represented by the (GenLet) rule below. The rule is written
in terms of the judgmentsΓ ⊢ e : t that an expressione has the typet in the type environmentΓ (which
lists the free variables ofe and their types).

Γ ⊢ e : t Γ,x : GEN(Γ,t) ⊢ e’ : t’
GenLet

Γ ⊢ let x = e in e’ : t’

x : ∀α1 . . .αn.t ∈ Γ
Inst

Γ ⊢ x : t{α1 = t1 . . .αn = tn}

The generalization functionGEN(Γ,t) for the typet with respect to the type environmentΓ quantifies
the free type variables oft that do not occur as free inΓ:

GEN(Γ,t) = ∀α1 . . .αn.t where{α1 . . .αn}= FV(t)−FV(Γ)

whereFV(·) denotes the set of free variables. When a variable with the polymorphic type schema such
asx: ∀ α . α list in (3) is used in an expression, e.g.,3::x, the schema is converted to a more specific
type,int list in our example: see the rule (Inst). The underlying assumption is that the value named byx
indeed has the same representation for all instances of the polymorphic type schema and hence may be
shared, even across differently-typed contexts; the instantiation is a purely type-checking-time operation
that behaves like identity at run-time. One may say that the motivation of polymorphism is to extend the
equivalence of the copying and sharing semantics to the cases like (3).

Side-effects break the equivalence of copying and sharing.

(5) let x = begin printf ”bound”; [1] end in
(2:: x ,3:: x)
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If the right-hand side is copied, substituting for the occurrences ofx in (5), the string”bound” is printed
twice. If the RHS is first reduced, however, (5) turns to the earlier (1), wherex is bound to the value that
can be either shared or copied. Hence the copying/sharing equivalence holds even in the case of (5), if
we regard variables as bound to values – as we do in call-by-value languages2. The polymorphic case
should likewise be unproblematic:

(6) let x = begin printf ”bound”; [] end in
(2:: x,”3”::x)

The polymorphic equality of OCaml can distinguish sharing and copying:

(7) let x = [1] in
x == x

whereas (7) returns the resulttrue, the expression[1] == [1] producesfalse. Another, universal way
to distinguish sharing and copying uses mutable data structures, in particular, mutable cells [1]. Let’s
define

(8) let rset : α list ref → α → α list = fun r v →
let vs ’ = v :: ! r in
r := vs’;
vs ’

that prepends the valuev to the list stored in the reference cellr, stores the new list in the cell and returns
it. Then

(9) let x = ref [1] in
( rset x 2, rset x 3)
 ([2; 3; 1], [3; 1])
( rset (ref [1]) 2, rset (ref [1]) 3)
 ([2; 1], [3; 1])

produce the different results as shown underneath the expressions. Since the distinction between copying
and sharing is generally visible, there is no longer freedomof choosing between the two. OCaml uses
sharing forlet-expressions, performing inlining (copying) only when it can see the equivalence.

The example paralleling (3) however does not type-check.

(10) let x = ref [] in
( rset x 2, rset x ”3”)
(∗ Does not type−check! ∗)

As we have just seen, with reference cells, sharing and copying differ and the OCaml compiler has to use
the default sharing. Had the expression type-checked, at run-time rset x ”3” would modify the empty
list stored inx by prepending the string”3” to it. The expressionrset x 2 will then try to prepend the
integer2 to the contents ofx, which by that time is the string list[”3”]. Clearly that is a program that
has “gone wrong”. We should well remember this example: we shall be seeing it, in different guises, all
throughout the paper.

Although the RHS of the let-binding in (10) has the typeα list ref with the type variable that could
be generalized, it should not be, to prevent (10) from type-checking. Intuitively, sharing and copying of
a reference cell have different semantics, hence it should not get the polymorphic type schema.

The danger of giving reference cells a polymorphic type has been recognized early on [26]. So has the
problem of how to restrict (GenLet) from applying to “dangerous” expressions. The most straightforward
solution, used in the early ML and OCaml for a long time, was tolimit reference cells to base types

2Another way to restore the equivalence is to regardx as bound to an expression that is evaluated only at the placesof x’s
occurrence. That was the idea of Leroy’s call-by-name polymorphism [18].
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only. The restriction made it impossible however to write any polymorphic function that internally
uses reference cells. A good overview of less draconian approaches is given in [8]. The most widely
implemented, because of its balance of expressiveness withsheer simplicity, is the value restriction [27]:
applying (GenLet) only to those let-expressions whose RHS is syntactically a value. Sinceref [] in (10)
is not a value,x is not generalized and its occurrences in differently typedcontexts will raise the type
error. On the other hand,[] in (3) is a value andx there does get the polymorphic type. Strictly speaking,x
in (6) should not be generalized either. However, it is syntactically obvious that the printing effect has no
contribution to the result of the containing expression. The RHS of (6) is what is called ‘non-expansive’.
OCaml generalizes non-expansive expressions, not just values.

Although the value restriction on balance proved expressive enough for many ML programs, as
OCaml gained features such as objects, polymorphic variants and a form of first-class polymorphism
(enough to support polymorphic recursion), the restrictiveness of the value restriction was felt more and
more acutely. Against this backdrop, Garrigue introduced the ‘relaxed value restriction’ [8], which we
briefly overview below as we will be relying on it.

The relaxed value restriction explores the close analogy between type instantiation and subtyping. It
can also be justified from the point of view of copying-sharing: a value occurring in differently-typed
contexts may be let-bound and shared if it can be given the ‘common type’, the supertype of the types
expected by the contexts. The coercion to a subtype, like thetype instantiation, is a compile-time–
only operation, behaving as identity at run-time. Suppose avalue has the typezero c wherezero is the
empty type, and it can becoercedby subtyping to the typet c for any t. We may as well then give the
variable that is let-bound to the value the type∀α . α c, which can then beinstantiatedto t c. Since
zero is (vacuously) coercible to any type, a value of the typezero c can be coerced tot c only when
the typezero occurs covariantly inzero c. Hence the relaxed value restriction: If the expressione in
let x = e in e’ has a type with covariant type variables (which do not occur in the typing context), they
are generalized in the type inferred forx. (The actual implementation is somewhat more restrictive:see
[8] for details.)

For example,x below is generalized

(11) let x = let r = ref [] in ! r in
(2:: x,”3”::x)

despite the fact the RHS is an expression – moreover, the expression whose result comes right from a
reference cell. Still, the result has the typeα list whose type variable is covariant (withList.map being
the witness of it). On the other hand, the type of reference cells α ref is non-variant and hencex in (10)
remains ungeneralized. The relaxed value restriction applies not only to built-in data types but also to
user-defined and abstract ones:

(12) type +α mylist = List of α list
let mklist : α list → α mylist = fun x → List x
let mycons : α → α mylist → α mylist =

fun x → function List l → mklist (x :: l )
let x = mklist [] in
(mycons 2 x, mycons ”3” x)

Although the RHS of the let-binding is an expression,x is generalized because the typeα mylist is
covariant inα . It is declared to be covariant, by the +α covariance annotation. The compiler will check
that the RHS of the type declaration really uses the type variableα covariantly. The compiler can also
infer the variance, hence the annotations are normally omitted. They are necessary only for abstract
types, whose declaration lacks the RHS.
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Overall, the relaxed value restriction turned up even better balanced, accommodating not just poly-
morphic functions but polymorphic data (including row-polymorphic data such as extensible records
and variants), whose construction often involves computations. The relaxed value restriction was almost
enough for implementing staging via code combinators – but not quite, as we see in§4.1. Let us first
review staging.

2.2 Staging

Staging is an approach to writing programs that generate programs; it may be regarded as a principled
version of Lisp quotation. For example, MetaOCaml lets us quote any OCaml expression, by enclosing
it within .< and>. brackets:

(1) let c = .<1 + 2>.
 val c : int code = .<1 + 2>.

A quoted expression, representing the generated code, is the value of the typeα code, and can be bound,
passed around, printed – as well as saved to a file and afterwards compiled or evaluated. For that reason,
the code value such asc is called a ‘future-stage’ expression (or, an expression atlevel 1), to contrast to
the code that is being evaluated now, at the present, or 0, stage. An expression that evaluates to a code
value can be spliced-in (or, unquoted, in Lisp terminology)into a bigger quotation:

(2) let cb = .<fun x → .˜c + x>.
 val cb : ( int → int ) code = .<fun x 1 → (1 + 2) + x 1>.

The spliced-in expression is marked with.˜, which is called an escape. The generated code can be
executed by the functionrun (in the moduleRuncode), reminiscent of Lisp’seval:

(3) open Runcode
val run :: α code → α

let cbr = run cb
 val cbr : int → int = <fun>
cbr 2
 − : int = 5

Runningcb hence compiled thecb code of a function into anint→int function that can be invoked at the
present level. As one expects, running the code indeed invokes the compiler and the dynamic linker. The
run operation hence lets us generate code at run-time and then use it – in other words, it offers run-time
code specialization.

When generating functions it is natural to require that the behavior of the resulting program should
not depend on the choice of names for bound variables. For example,

(4) let c1 = .<fun x → .˜(let body = .<x>. in .<fun x → .˜body>.)>.
 val c1 : (α → β → α) code = .<fun x 1 → fun x 2 → x 1>.

let c2 = .<fun y → .˜(let body = .<y>. in .<fun x → .˜body>.)>.
 val c2 : (α → β → α) code = .<fun y 3 → fun x 4 → y 3>.

The expressionsc1 andc2 should build the code that behaves the same when evaluated. This is indeed
the case, as one can see from the generated code, printed underneath. If we write this example with
quotations in Lisp, the expressions are no longer equivalent: whereasc2 generates the code for the K
combinator,c1 builds a function that takes two arguments returning the second one. Lisp quotations are
hence not hygienic.

When generating code for a typed language, it is also naturalto require that the produced code is
type-correct by construction. For that reason, the code type is parametrized by the type of the generated



Oleg Kiselyov 7

expression, as we saw forc, cb, etc. The formal treatment of type soundness is well coveredin [24, 4]
and will be briefly reminded of in§2.3.

MetaOCaml has yet another facility, which has no special syntax and is easy to overlook. Let us look
again at.<1 + 2>. and ponder the addition operation there. In the ordinary OCaml expression1+2,
the addition is the ordinary function, defined in thePervasives module. The addition in.<1+2>. refers
to exactly the same function: MetaOCaml permits any value ofthe generator to appear in the generated
code. This is called “cross-stage persistence” (CSP) (see [24] for more discussion). One may think of
CSP identifiers as references to ‘external libraries’.

The trivial code for the addition of two numbers has already demonstrated how wide-spread CSP is.
Let us show a more explicit example of CSP, brought about by the function

(5) let lift : α → α code = fun x → .<x>.

The following example then produces the code as shown (compare with (2)):

(6) .<fun x → .˜( lift (1 + 2)) + x>.
 − : ( int → int ) code = .<fun x 1 → (∗ CSP x ∗) Obj.magic 3 + x 1>.

In contrast to (2), here the addition of(1+2) is done at the code generation time; the generated code
includes the computed value. CSP hence lets us do some of the future-stage computations at the present
stage, and hence generate more efficient code. The bizarreObj.magic appearing in the generated code is
the artifact of printing. The following code

(7) .<fun x → .˜( let y = 1 + 2 in .<y>.) + x>.
 − : ( int → int ) code = .<fun x 2 → 3 + x 2>.

(where the CSP identifiery is known to be of theint type) produces the more obvious result.
Our refrain of copying vs. sharing repeats for CSP. When a value from the present stage is used at a

future stage, do the two stages share the value or does the future stage get a separate copy? Unfortunately
this issue is not discussed in the literature let alone formally addressed3 – which is a pity since it is
responsible for the unexpected soundness problem to be described in the next section. The case of a
global (library) identifier seems clear: code such as.<succ 3>. contains the identifiersucc that refers to
the same library function it does at the present level. Whether that function is shared or copied between
the present-stage and the generated code depends on the inlining strategy of the compiler and the static
vs. dynamic linking. One could expect sharing/copying to beequivalent in this case.

The cross-stage persistence of a locally-created value is much less clear4:

(8) let cs =
let z = string of float @@ Sys.time () in
.< print endline z>.
 val cs : unit code = .<Pervasives. print endline ”0.051”>.

One may imagine that the code value.<print endline z>. (represented, say, as an AST) contains the
pointer to a string allocated in the running-program heap – the same pointer that is denoted by the local
variablez. Thenrun cs will print the value of that string on the heap. The present and the future stage
hence share the string. Rather than runningcs however, we may save it to a file, as library code for
use in other programs. In this case, when the generated code is evaluated the generator program is long
gone, along with its heap. Therefore, when storing a code value to a file we must serialize all its CSP
values, creating copies. In the upshot, cross-staged persistent library identifiers are always shared; other
CSP values are shared if the code value isrun, and copied otherwise. The semantics of CSP is indeed

3the exception being the work [15] which was inspired by the problem we discuss in§2.3.
4The right-associative infix operator@@ of low precedence is application:f @@ x + 1 is the same asf (x + 1) but avoids

the parentheses. The operator is the analogue of$ in Haskell.
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Γ ⊢n e : t’→t Γ ⊢n e’ : t’

Γ ⊢n e e’ : t

Γ,xn : t’ ⊢n e : t

Γ ⊢n fun x → e : t’→t

Γ ⊢n v : t Γ,xn : GEN(Γ,t) ⊢n e’ : t’
GenLet

Γ ⊢n let x = v in e’ : t’

Γ ⊢n+1 e : t
Bracket

Γ ⊢n <e> : t code

Γ ⊢n e : t code
Escape

Γ ⊢n+1 ˜ e : t

Γ ⊢n x : t
CSP

Γ ⊢n+1 x : t

Figure 1: Type system of a staged language

intricate. We have just described the CSP implementation inthe extant MetaOCaml; there is an ongoing
discussion of it and its possible improvements5.

The question of sharing vs. copying CSP becomes non-trivialwhen the CSP value is mutable:

(9) let r = ref 0 in
let cr = .<incr r>. in
run cr ; run cr ; ! r
 − : int = 2

Mutable CSP values naturally arise when run-time specializing imperative code. They can be used for
cross-stage communication, e.g., counting how many times the code is run, as shown in (9) – which
works as intended only with the shared CSP. Sharing of mutable CSP values is also responsible for the
unexpected problem with let-polymorphism, detailed next.

2.3 Let-polymorphism and Staging

For a long time let-polymorphism and staging were considered orthogonal features. It is not until 2009
that their surprising interaction was discovered6; it has not been formally published. Before describing
this interaction, we first briefly remind the type system of a staged language, on a representative subset
of MetaOCaml.

Staging adds to the base language the expression forms for brackets<e> and escapes̃ e and the
type of code valuest code. We use the meta-variablex for variables,e for expressions,v for values,
andt for types. The type system is essentially the standard, Figure 1. It is derived from the type system
of [24] by replacing the sequence of no-longer used classifiers with the single number, the stage level.
(Since brackets may nest, there may be an arbitrary number offuture stages.) The judgments have the
form Γ ⊢n e : t: they are now indexed by the level of the expression; the level is incremented when
type-checking the expression within brackets and decremented for escapes. The identifiers within the
typing environmentΓ are now indexed by the level at which they are bound. The (GenLet) rule reflects
the value restriction.

Staging thus contributes the three rules (Bracket), (Escape) and (CSP) and the indexing of the envi-
ronment and the judgments by the stage level. If the program has no brackets, the stage level stays at 0
and the type system degenerates to the one for the (subset of the) ordinary OCaml. Moreover, except for
the three staging-specific rules, the rest are the ordinary OCaml typing rules, uniformly indexed by the
stage level. Thus, aside from brackets, escapes and CSP, thetype-checking of the staged code proceeds

5http://okmij.org/ftp/ML/MetaOCaml.html#CSP
6http://okmij.org/ftp/meta-programming/calculi.html#staged-poly

http://okmij.org/ftp/ML/MetaOCaml.html#CSP
http://okmij.org/ftp/meta-programming/calculi.html#staged-poly
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identically to that for the ordinary code. In particular, let-expressions within brackets are handled and
generalized the same way they do outside brackets. For example:

(1) .<let x = [] in (2:: x,”3”::x)>.
.<let f = fun x → x in ( f 2, f ”3”)>.

(2) .<let x = ref [] in ( rset x 2, rset x ”3”)>. (∗ Does not type−check! ∗)

It appears hence that let-generalization and staging are orthogonal features.

Consider however the following code

(3) .<let f = fun () → ref [] in
( rset (f ()) 2, rset ( f ()) ”3”)

>.

The type-checker accepts it and infers the type(int list ∗ string list) code. The variablef hence gets the
polymorphic type. After all, the RHS of the let-binding is syntactically the (functional) value. There
is really nothing wrong with (3):f can be either copied or shared across its uses without the change in
semantics: the invocationf () in either case will produce a fresh reference cell holding anempty list,
later modified by prepending either2 or ”3” to its contents.

Now consider the simple modification, along the lines of (6) in §2.2:

(4) let cbad =
.<let f = fun () → .˜( lift ( ref [])) in

( rset (f ()) 2, rset ( f ()) ”3”)
>.
run cbad
 Segmentation fault

It is also accepted, with the same inferred type – for any version of MetaOCaml including the current
one. The RHS of the let-binding is still syntactically a function; we merely modified its body. Running
that code however ends in the segmentation fault. One shouldnot be surprised: we have managed to
generate and type-check (10) from§2.1, the canonical example of the unsoundness of polymorphism for
reference cells.

Thus staging breaks the restriction of the value restriction, unleashing the unsound generalization.
If we re-examine the value restriction we now notice an assumption, which is rarely stated explicitly:
there are no literals of reference types; every expression of the typet ref is not syntactically a value.
Cross-stage persistence, however, lets one stage share itsvalues with a future one. Suddenly there are
literals of the reference types: these are values imported from the generator into the generated code.

The problem has been overlooked for more than a decade because none of the formalizations of
staging have been complete enough, and hence do not handle let-polymorphism along with reference
cells and shared CSP. There is currently no fix for the unsoundlet-generalization problem. One solution
is proposed in [15] but it is restrictive. Another possible solution is to force the CSP locally-created
values to follow the copying semantics. One may also prohibit generalization if the RHS of a future-stage
let-binding contains an escape, thus introducing the explicit correlation of staging and let-polymorphism.
Along with bad programs, all these proposals outlaw good ones. Investigating these trade-offs and finding
better ones is the subject of future work. The present paper does not solve the unsound staged let-
generalization problem either. However, we build a simplerframework to deal with it, reducing the
problem to non-staged generalization.
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3 Translating the Staging Away

The stymieing problems encountered in the previous sectioncome at the confluence of staging, let-
polymorphism and effects. It is only natural to wish to investigate them in a simpler setting; for example,
to find a way to translate a staged calculus into the ordinary one. There have been indeed proposed
several ‘unstaging translations’ [28, 9, 7], with similar motivations.

Translating the staging away is also practically significant, as the method for implementing staged
languages. The most attractive is a source-to-source translation: it lets us implement MetaOCaml just as
a pre-processor to OCaml, fully reusing the existing OCaml compiler without modifying it (and having
to bear the burden of maintaining the modifications, in sync with the mainline OCaml). This practical
application is the main reason to be interested in unstagingtranslations.

Unfortunately, none of the existing unstaging translations deal with polymorphic let-expressions.
Furthermore, an attempt to add them, described in§3.2, requires first-class polymorphism, making the
translation unworkable as a source-to-source translation. Despite its attractiveness, the approach is a
dead-end – as has been widely acknowledged, including by theauthor.

We first describe in§3.1 how well the translation approach works without the polymorphic let, before
illustrating how it does not with it.§4 introduces the solution along with the new questions it poses for
let-polymorphism.

3.1 Staging via Code Combinators

The simplest approach for adding quotation to an existing language is to write a pre-processor that
translates quoted expressions into ordinary ones, which use pre-defined functions that build and combine
code values, so-called code combinators [25, 28, 22]. Code combinators may of course be used for code
generation directly, rather than through quotation, as hasbeen well demonstrated in Scala [22]. That
said, we will explain code combinators in the context of an unstaging translation, from the language with
quotations to the language without them – motivated by the practical benefits of such translation.

Our source language, Figure 2, is a simple subset of MetaOCaml (for now, without let-expressions).
From now on, we restrict staging to two-levels only – in otherwords, considering brackets without
nesting – as this turns out the overwhelmingly common use of staged languages. The constants of the
language are integeri and strings literals and the empty list. Besides abstraction and application the
language includes pairs, consing to a list and the creation and dereference of reference cells. We take the
mutation functionrset: α list ref → α → α list defined in§2.1 as a primitive. Cross-stage persistent
library identifiers such as+ are worked out into the syntax. On the other hand, cross-stage persistence of
other identifiers must be explicitly marked with the% syntax. (The marking is inferred in MetaOCaml.)

Constants c ::= i | s | []
Variables x,y,z,f
Expressions e ::= x | c | e e | fun x → e | e + e | (e,e) | e :: e | ref e | !r | rset r
Staged expressionse +::= .<e>. | .˜e | %x

Figure 2: Source and target languages for the unstaging translation

The target language of the translation is OCaml, without ‘Meta’, i.e., without the staged expressions.
On the other hand, it has additional constants for code generation, defined by the following signature

(1) module type Code = sig
type +α cod
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Translation at the present-stage⌊ e ⌋

⌊ x ⌋ 7→ x
⌊ c ⌋ 7→ c
⌊ e1 e2 ⌋ 7→ ⌊ e1 ⌋ ⌊ e2 ⌋

⌊ fun x → e ⌋ 7→ fun x → ⌊ e ⌋
. . .

⌊ .<e>. ⌋ 7→ ⌈ e ⌉

Translation at the future-stage⌈ e ⌉

⌈ x ⌉ 7→ x
⌈ i ⌉ 7→ int i
⌈ s ⌉ 7→ str i
⌈ [] ⌉ 7→ nil
⌈ e1 + e2 ⌉ 7→ add ⌈ e1 ⌉ ⌈ e2 ⌉
⌈ (e1,e2) ⌉ 7→ pair ⌈ e1 ⌉ ⌈ e2 ⌉
⌈ e1 :: e2 ⌉ 7→ cons ⌈ e1 ⌉ ⌈ e2 ⌉

⌈ ref e ⌉ 7→ ref ⌈ e ⌉
⌈ !e ⌉ 7→ rget ⌈ e ⌉
⌈ rset e ⌉ 7→ rset ⌈ e ⌉
⌈ e1 e2 ⌉ 7→ app ⌈ e1 ⌉ ⌈ e2 ⌉
⌈ fun x → e ⌉ 7→ lam (fun x → ⌈ e ⌉)
⌈ .˜e ⌉ 7→ ⌊ e ⌋
⌈ %x ⌉ 7→ csp x

Figure 3: Unstaging translation

val int : int → int cod
val str : string → string cod
val add: int cod → int cod → int cod
val lam: (α cod → β cod) → (α→β ) cod
val app: (α→β ) cod → (α cod → β cod)

val pair : α cod → β cod → (α ∗ β ) cod
val nil : α list cod
val cons: α cod → α list cod → α list cod

val ref : α cod → α ref cod
val rget : α ref cod → α cod
val rset : α list ref cod → α cod → α list cod

val csp: α → α cod (∗ CSP local values ∗)
end

The signature specifies the collection of typed combinatorsto generate code for our subset of OCaml:
int 1 builds the literal1 code,add combines two pieces of code into the addition expression, etc. The
combinatorlam builds the code of a function; its argument is an OCaml function that returns the code
for the body upon receiving the code for the bound variable. AMetaOCaml expression like

(2) fun x → .<fun y → (y + 1) :: .˜x>.

then corresponds to the plain OCaml expression with the codecombinators:

(3) fun x → lam (fun y → cons (add y ( int 1)) x)

Formally the unstaging translation is specified in Figure 3,with two sets of mutually recursive rules:
⌊ e ⌋ deals with the present-stage expressions of the source language and⌈ e ⌉ handles expressions
within brackets. The former is essentially identity, with the single non-trivial rule for brackets. The
translation seems straightforward, which is a great surprise since the related unstaging translations [6,
§3] and [9, 7] are all excruciatingly more complex and type-directed. The shown translation is novel,
which will become apparent as we discuss the implementationof theCode signature later.

Our translation is clearly syntax-directed but not type-directed. Hence it is a source-to-source trans-
lation, which can be done by a macro-processor such as camlp4or a stand-alone pre-processor. The rest
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⌈ t code ⌉ 7→ ⌈ t ⌉ cod
identity otherwise

⌈ x0: t ⌉ 7→ x0: t
⌈ x1: t ⌉ 7→ x0: t cod

⌈Γ ⊢0 e : t⌉ 7→ ⌈Γ⌉ ⊢0 ⌊e⌋ : ⌈t ⌉
⌈Γ ⊢1 e : t⌉ 7→ ⌈Γ⌉ ⊢0 ⌈e⌉ : ⌈t ⌉cod

Figure 4: Translation for types, typing environments and judgments

of the language system (type-checking, code-generation, standard and user-defined libraries) is used as
it is.

The second property of the translation is that bindings within brackets are translated to ordinary
lambda-bindings. Coupled with the appropriate implementation of the lam combinator, this property
makes it easy to ensure hygiene. Correspondingly, variables bound within brackets are translated to the
ordinary, present-stage variables – with the change in typefrom t to t cod. One can see that change from
the type oflam, and more clearly from Figure 4, which extends the translation to the typing judgments
and environments described Figure 1. The translation is typing-preserving:

Proposition 1 If Γ ⊢n e : t holds then⌈Γ ⊢n e : t⌉ holds as well

In other words, a well-typed two-stage MetaOCaml expression is translated into a well-typed OCaml
expression. The proposition is easily proven by induction on the typing derivation. If we also ensure
that individual code combinators produce well-typed code (see below), any typing errors in the quoted
code manifest themselves as OCaml type errors emitted when type-checking the translated expression.
Absent such errors, the quoted expression, and hence the generated code, are type-correct.

The following figure shows two implementations of theCode signature.CodeString combinators
generate ML code as text strings, justifying their name ‘code-generating combinators’.

(4) module CodeString = struct
type α cod = string

let int = string of int
let str x = ”\”” ˆ String.escaped x ˆ ”\””
let add x y = paren @@ x ˆ ” + ” ˆ y
let lam body =
let var = gensym ”x” in
”fun ” ˆ var ˆ ” → ” ˆ body var

let app f x = paren @@ f ˆ ” ” ˆ x
. . .
let csp x = . . . marshaling/unmarshaling . . .

end

CodeReal is a meta-circular interpreter, representing a code value as an OCaml thunk (which is also a
value).

(5) module CodeReal = struct
type α cod = unit → α
open DynBindRef

let int x = fun () → x
let str x = fun () → x
let add x y = fun () → x () + y ()
let lam body =
let r = dnew () in
let b = body (fun () → dref r) in
fun () →

let denv = denv get () in
fun x → dlet denv r x b

let app f x = fun () → f () (x ())
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let nil = fun () → []
. . .
let csp x = fun () → x

end

The code is utterly trivial, with the exception oflam, which does what a closure has to do: capture the
environment at the point of its creation. We rely on the simple interface for dynamic binding:

(6) module type DynBind = sig
type α dref
type denv
val dnew: unit → α dref
val dref : α dref → α
val dlet : denv → α dref → α → (unit → ω) → ω
val denv get: unit → denv

end

wherednew creates a new unbound variable,dref dereferences it,denv get captures the current envi-
ronment anddlet denv r x body sets the current environment todenv, bindsr to x in it and evaluates
the body, whose result is returned after the original environment isrestored. The implementation, us-
ing either reference cells or delimited control is straightforward; see the accompanying source code for
details. The source code contains more examples of the staged translation, including the obligatory
factorial: although ourCode interface offers neither conditional branching nor recursive bindings (nor
multiplication, for that matter), they are all obtainable via CSP.

Proposition 2 If e : t code is a program in our subset of MetaOCaml, then⌊ e ⌋ : unit→t is the plain
OCaml program (assuming theCode interface is implemented byCodeReal) such thatrun e is observa-
tionally equivalent to⌊ e ⌋ ().

Although the intuitions are clear, the rigorous proof of this proposition is a serious and interesting task.
We leave the proof as a PhD topic. The proposition justifies the name ‘unstaging translation’: translating
staged OCaml code to plain OCaml. Our translation is remarkably simple because of the novel imple-
mentation oflam in CodeReal. The earlier translations had to explicitly represent and translate the typing
and the value environments of an expression.DynBind lets us piggy-back on the typing environment of
OCaml.

One can also intuitively see thatCodeString andCodeReal correspond: the behavior of the code
produced byCodeString is the same as the behavior of running the thunk ofCodeReal (modulo the
difference in the copying/sharing semantics of CSP). The OCaml type-checker ensures that any thunk
built by CodeReal combinators is well-typed; therefore, it “will not go wrong” thanks to the soundness
of OCaml. Hence the code generated byCodeString will also be well-typed and will not go wrong
either. The existence of theCodeReal implementation is thus crucial to assuring the soundness ofcode
generation. Yet another proof of soundness is obtained through another implementation ofCode, back
into MetaOCaml:

(7) module CodeCode = struct
type α cod = α code

let int (x: int ) = .<x>.
let str (x: string ) = .<x>.
let add x y = .<.˜x + .˜y>.
let lam body = .<fun x → .˜(body .<x>.)>.
let app x y = .<.˜x .˜y>.
. . .
let csp x = .<x>.

end
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Proposition 3 If e : t code is a program in our subset of MetaOCaml, then⌊ e ⌋ : t code is the equiv-
alent MetaOCaml program (assuming theCode interface is implemented byCodeCode): that is, e and
⌊ e ⌋ have the same side effects and either both diverge, or returnidentical (moduloα-conversion) code
values.

The proof is left as another PhD topic.
Implementing staging by the translation into code combinators works surprisingly well: Scala’s

Lightweight Modular Staging (LMS) is based on similar ideas[22]. Scheme’s implementation of quasi-
quote is also quite alike; only it pays no attention to quotedbindings and is hence non-hygienic. The
translation becomes more complex as we add to the target language more special forms such as loops,
pattern matching, type annotations, etc. They pose problems, but they can and have been dealt with, e.g.,
in [22]. What could not be dealt with is let-polymorphism.

3.2 The Let-Polymorphism Problem

The staging translation runs into the roadblock once we add polymorphic let-bindings, to handle expres-
sions such as those shown in§2.3, repeated for reference below.

(1) .<let x = [] in (2:: x,”3”::x)>.

(2) .<let f = fun x → x in ( f 2, f ”3”)>.

It may seem we merely need to add to theCode signature the combinator that combinesapp andlam:
(3) val let : α cod → (α cod →β cod) → β cod

and the corresponding translation rule

⌈ let x = e1 in e2 ⌉ 7→ let ⌈ e1 ⌉ (fun x → ⌈ e2 ⌉)
analogous tolam. Then (1) is translated to

(4) let nil (fun x → pair (cons ( int 2) x) (cons ( str ”3”) x))

which, unfortunately, does not type-check.
Recall that our unstaging translation maps bindings in the quoted code to ordinary lambda-bindings.

This exactly is the problem: unlike let-bindings, lambda-bindings in ML are not generalizable. First-
class polymorphism, if available, does not help since it requires type annotations, which preclude the
source-to-source translation, done before type checking.

Let-polymorphism hence is the show-stopper for the unstaging translation. However attractive, we
cannot use the translation for implementing MetaOCaml (unless we give up on polymorphic let within
brackets, which is unpalatable). Therefore, MetaOCaml currently takes the steep implementation route:
modifying the OCaml front-end to account for brackets and escapes, and the painful patching of the type-
checker to implement the staged type system of Figure 1. After the type-checking, the staging constructs
are eliminated by a variant of the unstaging translation [14]. That translation manipulates OCaml’s
Typedtree, which represents the AST after type-checking. Although the tree bears OCaml types, it
is ‘untyped’: it is the ordinary data structure that does notenforce any typing or scoping invariants.
Manipulating the tree is error-prone, with no (mechanically checked) assurances of correctness.

4 A New Translation of Quoted let-expressions

We now present the new translation for quoted let-expressions, which works even with polymorphic let-
bindings. We attempt at the ‘rational derivation’ of the translation, with our constant refrain of copying
vs. sharing.
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The previous§3.2 showed a straightforward translation for quoted let-expressions, which converts

(1) .<let x = 1::[] in
(2:: x ,3:: x)>

(the quoted version of the first example of§2.1) to the following code-combinator based code

(2) let (cons ( int 1) nil ) @@ fun x →
pair (cons ( int 2) x) (cons ( int 3) x)

This example does not have let-polymorphism. But if it did, we are in trouble: thex let-binding of
(1) is converted to thex lambda-binding of (2). In the Hindley-Milner type-system lambda-bindings,
unlike let-bindings, are not generalizable. We see the deadend, regardless of how thelet combinator is
implemented.

To have any hope of generalization, we need a translation that could map a let-binding in the quoted
code to a let-binding. The putative translation should convert (1) into something like

(3) comb1 (let x = comb2 (cons (int 1) nil) in
comb3 (pair (cons ( int 2) x) (cons ( int 3) x)))

wherecomb1, comb2, andcomb3 are yet to be determined combinators. This proposal seems tobe the
most general compositional, syntax-directed translationthat has the desired let-binding. It fits within the
unstaging translation of§3.1 in other ways: the future-stage variablex in (1) of the typeint list is mapped
in (3) to the present-stage variable of the expected (see Figure 4) typeint list cod. After all, this the only
type that makes, say,cons (int 2) x well-typed.

All is left is to appropriately implementcomb1, comb2 andcomb3, for all realizations of theCode
interface. Proposition 3 imposes a constraint: Evaluating(3) with theCodeCode implementation should
give back (1). And here we notice something odd. The expression(cons (int 1) nil) evaluates to.<[1]>.,
according to the existing code-combinators ofCodeCode. The result ofcomb2 (cons (int 1) nil) should
hence be or contain that singleton list; let us write it as.<. . . [1]. . .>.. The let-expression in (3) then
producescomb3 .<(2::(. . . [1]. . . )),(3::(. . . [1]. . . ))>.. Code-generating combinators may only com-
bine pieces of code received as arguments but can never deconstruct or examine them. Therefore, it does
not seem possible that our result can lead to (1), regardlessof whatcomb1 or comb3 might do. We have
already inlined.<[1]>., which we should have let-bound and shared instead.

The only way forward is to havecomb1 .<[1]>. to somehow generate something like.<let y = [1]
in body>. and return the let-bound variable as a code value, that is.<y>.. That does not seem possible
either. To build code for a let-expression we need the code for the RHS of the binding, and the code for
the body. The combinatorcomb1 does get the RHS code as the argument; but where is the body?

Fortunately we are stuck at the opportune place: the problemwe are facing is real – but it has been
solved long time ago in the partial-evaluation community. The solution is called ‘let-insertion’ [2, 17]
and requires access to continuations. Thedelimcc library of OCaml [12] has exactly the control operators
needed to implement the let-insertion interface7:

(4) type α scope
val new scope: (ω scope → ω cod) → ω cod
val genlet : ω scope → α cod → α cod

These combinators can be used as follows:

(5) new scope @@ fun p →
lam (fun x→ add x (genlet p (add ( int 1) ( int 2))))

7This let-insertion interface is introduced here for the sake of translating quoted expressions and hence the pattern ofuse for
genlet andnew scope is determined by the translation.
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With the CodeCode implementation below it generates.<let y = 1+2 in fun x → x + y>., which
sharesthe result of the subexpression1+2 across all invocations of the function. In other words,
genlet p e inserts, at the place marked by the correspondingnew scope, a let statement that bindse
to a fresh variable, and returns the code with the name of thatvariable. We can finally complete the
tentative translation (3):

(6) new scope @@ fun p →
let x = genlet p (cons ( int 1) nil ) in
pair (cons ( int 2) x) (cons ( int 3) x)

With theCodeCode implementation of the combinators that expression indeed evaluates to (1).
Formally, the new translation of let-expressions takes theform

(7) ⌈ let x = e1 in e2 ⌉ 7→
new scope (fun p → let x = genlet p ⌈ e1 ⌉ in ⌈ e2 ⌉)

Our running example with let-polymorphism, example (2) from §2.1 repeated below

(8) .<let x = [] in (2:: x,”3”::x)>.

is hence translated to

(9) new scope @@ fun p →
let x = genlet p nil in
pair (cons ( int 2) x)

(cons ( str ”3”) x)

which type-checks, and (with theCodeCode combinators) gives back (8). Incidentally, the combinator
code withoutgenlet

(10) new scope @@ fun p →
let x = nil in
pair (cons ( int 2) x)

(cons ( str ”3”) x)

also type-checks. However, it generates

(11) .< (2::[], ”3” ::[]) >.

where[] is inlined rather than shared. Thegenlet combinator hence implements the sharing in the gen-
erated code rather than in the generator. The fact that the let-variablex in (9) gets the polymorphic type
is the indication, and the vindication, of the equivalence of copying and sharing in this case. Although
the RHS of the let-binding in (9) is an expression – moreover,an effectful expression, as we are about
to see – the generalization happens anyway, thanks to the relaxed value restriction, recalled in§2.1. The
type variable inα list cod occurs in the covariant position: note the covariance annotation +α cod in the
Code signature.

The code that should not type check in MetaOCaml

(12) .<let x = ref [] in ( rset x 2, rset x ”3”)>. (∗ Does not type−check! ∗)

is translated to

(13) new scope @@ fun p →
let x = genlet p ( ref nil ) in
pair ( rset x ( int 2))

( rset x ( str ”3”))
(∗ Does not type−check! ∗)

and is rejected by OCaml as expected: the type variableα in the inferred typeα list ref cod for x is
non-variant and is not generalized;x does not get the polymorphic type and hence cannot be used in the
differently typed contexts.
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We implementedgenlet, directly based on [17], for all three realizations of theCode signature: not
just forCodeString but also forCodeReal andCodeCode, to demonstrate soundness:

(14) module CodeLetReal = struct
include CodeReal
open Delimcc type α scope = α cod prompt
let new scope body = let p = new prompt () in push prompt p (fun () → body p)
let genlet p e = shift0 p (fun k → let t = e () in k (fun () → t))

end

(15) module CodeLetString = struct
include CodeString
open Delimcc type α scope = α cod prompt
let new scope body = . . . the same
let genlet p e =
let tvar = gensym ”t” in
shift0 p (fun k → ” let ” ˆ tvar ˆ ” = ” ˆ e ˆ ” in ” ˆ k tvar)

end

(16) module CodeLetCode = struct
include CodeCode
open Delimcc type α scope = α code prompt
let new scope body = . . . the same . . .
let genlet p e = shift0 p (fun k → .<let t = .˜e in .˜(k .<t>.)>.)

end

(The code ofnew scope is identical in all three implementations, although the realizations of the abstract
typeα scope differ.) The typeα prompt and the delimited control operatorspush prompt andshift0 are
provided by thedelimcc library [12].

Thegenlet is so powerful that it easily moves bound variables
(17) new scope @@ fun p →

lam (fun x→ add x (genlet p (add x ( int 2))))

resulting in the generated codelet y = x + 2 in fun x → x + y with the unbound variablex. One may
prevent such undesirable behavior either with a complex type system (whose glimpse can be caught in
[11]) or with a dynamic test, as implemented in MetaOCaml [14]. In our case, however,genlet appears
in the code solely as the result of the translation of a quotedexpression. Fortunately, our translation of
let-expressions putsnew scope “right above”genlet, never letting them be separated by alam binding.
In this case, delimited control, which underliesgenlet, is safe (for proofs, see [10]).

4.1 Value Restriction at the Whole New Level

Alas, our new translation stumbles for the common case, of polymorphic function bindings such as the
following:

(1) .<let f = fun x → x in ( f 2, f ”3”)>.

The translation
(2) new scope @@ fun p →

let f = genlet p (lam (fun x → x)) in
pair (app f ( int 1)) (app f ( str ”3”))

(∗ Does not type−check! ∗)

is rejected by OCaml: thegenlet expression has the type(α→α) cod, which is not covariant inα .
Generalizing expressions of such types is unsound8: otherwise, we will have to accept the following

8However, if the target language of code generation has no ‘dangerous’ effects and does not need value restriction, we may
as well allow generalizing expressions of the typet cod regardless of the variance of type variables int.
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clearly undesirable code – the quoted version of our runningvillain, the bad example (10) of§2.1.

(3) .<let f = let r = ref [] in
fun x → rset r x

in ( f 1, f ”3”)>.
(∗ Does not type−check! ∗)

whose translation

(4) new scope @@ fun p1 →
let f = genlet p1
(new scope @@ fun p2 →

let r = genlet p2 (ref nil ) in
lam (fun x → rset r x)) in

pair (app f ( int 1)) (app f ( str ”3”))
(∗ Does not type−check! ∗)

would have type-checked had we allowed generalization for thegenlet p1 expression.
The problematic staged code (3) does not type-check according to the system of Figure 1 (and in

MetaOCaml): the (GenLet) rule does not apply because the RHSof the let-binding in (3) is not syntac-
tically a value. Hence we need something like the value restriction to likewise prevent generalization in
(4) while still allowing it in (2).

Therefore, we amend the translation of let-expressions, (7) in §4, with the following

(5) ⌈ let x = fun z → e1 in e2 ⌉ 7→
new scope (fun p → let x = genletfun p (fun z → ⌈ e1 ⌉) in ⌈ e2 ⌉)

where

(6) val genletfun : ω scope → (α cod → β cod) → (α→β ) cod
(∗ provisional ! ∗)

is a new code-combinator to be added to the let-insertion interface. In other words, our translation
should recognize when alet-bound expression is syntactically a function, and usegenletfun rather than
the generalgenlet combinator.

With the amended translation, the good example (1) is translated as

(7) new scope @@ fun p →
let f = genletfun p (fun x → x) in
pair (app f ( int 1))

(app f ( str ”3”))
(∗ See the refined version below! ∗)

and will type-check. The translation (4) of the bad example (3) will have to usegenlet rather than
genletfun since the RHS of the let-expression in (3) is not syntactically a function. As we said, (4) does
not actually type-check.

We have thus separated the let-insertion combinators into the generalgenlet and the specificgenletfun,
which applies only to the translation of what looks like a function. (We need similargenletX for other
polymorphic values of non-covariant types, which are rare.) For genlet, generalization occurs only for
covariant type variables; forgenletfun, the generalization should occur always.

There remains a question how to make the generalization to always occur forgenletfun expressions
like those in (7), short of modifying the OCaml compiler. Incidentally, evenObj.magic does not seem to
help us with expressions that the relaxed value restrictioncannot generalize: an application ofObj.magic
is not syntactically a value. The answer is admittedly a hack; nevertheless, it gives us another standpoint,
however awkward, to hear the refrain of copying and sharing.And it also works with the extant OCaml
compiler.

Let us step back to look at the clearly flawed translation of (1)
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(8) let f = fun () → (lam (fun x → x)) in
pair (app (f ()) ( int 1))

(app (f ()) ( str ”3”))

and contemplate what is wrong with it. On the upside, the translated expression (8) does type-check:
f is bound to a thunk (syntactically a value) and its type is hence generalized through the ordinary
value restriction. Sincef is bound to a thunk we have to add explicit() applications at each place it is
used. Evaluating (8) with theCodeString implementation of code combinators shows the generated code
((fun x2 → x2 1), (fun x1 → x1 ”3”)), with the inlined rather than shared identity function. We had
rather the identity function be let-bound and shared. Having learned thatgenlet introduces let-bindings
into the generated code, the next attempt at the translationof (1) is

(9) new scope @@ fun p →
let f = fun () → genlet p (lam (fun x → x)) in
pair (app (f ()) ( int 1))

(app (f ()) ( str ”3”))

It also type-checks, sincef is still bound to a thunk. The generated code

(10) let t2 = fun x1 → x1 in
let t4 = fun x3 → x3 in
((t4 1), (t2 ”3”))

is still unsatisfactory: we had rather the two applicationsin the pair used the same binding of the identity
function. Whenf () in (9) is first evaluated, it generates a let-binding and returns the code with the bound
variable. We want the second invocation off () to return the code for the very same bound variable. In
other words, we would like to memoizef. Memoization [19] indeed was meant to make copying behave
like sharing.

The trick hence is introducing a thunk into the let-binding in the translation to get around the gener-
alization problem and introducing memoization to restore the sharing destroyed by thunking. In effect,
we do ‘double memoization’: usinggenlet to ‘memoize’ the identity function in the generated code and
memoize the invocation ofgenlet at the present stage. Once this is understood, the rest is straightforward.
To make the translation similar to (7), we combinegenlet with the memoization intogenletfun:

(11) type ω funscope
val new funscope : (ω funscope → ω cod) → ω cod
val genletfun : ω funscope → (α cod → β cod) → (α→β ) cod

The final translation of (1) then reads:

(12) new funscope @@ fun p →
let f = fun () → genletfun p (fun x → x) in
pair (app (f ()) ( int 1))

(app (f ()) ( str ”3”))

Unlike (7), we had to replace the occurrence off with f () – explicitly marking the type instantiation, so
to speak. This complication is still possible to implement with the source-to-source translation (call-by-
name let-binding of [18] would be really handy here).

The double-memoizinggenletfun can be easily and generically implemented, with a small bit of
magic

(13) type afun = | AFun : (α → β ) cod → afun
| ANone : afun

type ω funscope = ω scope ∗ afun ref
let new funscope body = new scope (fun p → body (p, ref ANone))
let genletfun : ω funscope → (α cod → β cod) → (α→β ) cod =
fun (p, r) body →
match !r with
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| ANone → let fn = lam body in
let x = genlet p fn in
r := AFun x; x

| AFun x → Obj.magic x

The code uncannily resembles (4) of§2.3.
One may wonder if it would be better to addgenletfun to the OCaml type-checker as an ad hoc,

always-generalize case. The answer at present should be “no”: genletfun is still unsound, in the edge
case of (4) of§2.3 – the example that is also unsound in the present MetaOCaml. Here is this example
again, for reference

(14) .<let f = fun () → .˜( lift (ref [])) in
( rset ( f ()) 2, rset ( f ()) ”3”)>.

Its translation

(15) new funscope @@ fun p →
let f = fun () → genletfun p (fun → csp (ref [])) in
pair ( rset (app (f ()) (csp ())) ( int 1))

( rset (app (f ()) (csp ())) ( str ”3”))

type-checks – and when run withCodeReal exhibits the same segmentation fault it does in the case of
the corresponding MetaOCaml code.

It seems our unstaging translation is just as sound – or unsound – as MetaOCaml. Solving the
soundness problem of MetaOCaml described in§2.3 will make, we conjecture, the unstaging translation
fully sound as well. Much work lies ahead.

5 Conclusions

We have presented a new, typing-preserving translation from a higher-order typed staged language, with
hygienic quotations and unquotations, to the language without quotations. Code-generation is accom-
plished through a library of code-generation combinators.Our translation is remarkably simpler than
other unstaging translations: it is not type-directed and can be accomplished as a source-to-source trans-
formation. Mainly, the translation works for polymorphic let: let-expressions within quotes are trans-
formed to also let-expressions, hence preserving generalization. All throughout the presentation we
emphasized deep connections, between polymorphism and sharing.

Our translation is already a viable method of implementing staged languages. Yet the theoretical
work has just began. Yet another feature of our translation is ‘bug-preservation’: the restrictions and
unsound edge cases of let-polymorphic expressions are preserved in the translation. The problems hence
can be investigated in a simpler setting, without staging.

We thus propose a research program:

1. Formally establishing the equivalence properties ofCodeReal, CodeCode andCodeString and
formally justifying the translation;

2. Generalizing from two-stage to multiple-stages, that is, to multiple levels of quotations;

3. Proving that the edge case described in§2.3 is the only one wheregenletfun is unsound;

4. Relaxing the value restriction even more so thatgenletfun could be implemented without magic;

5. Investigating trade-offs of various solutions to the unsoundness problem in§2.3 and finding the
solution with the least loss in expressiveness and convenience.
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