
Sam Lindley and Gabriel Scherer (Eds.):
ML Family / OCaml Users and Developers workshops 2017
EPTCS 294, 2019, pp. 15–40, doi:10.4204/EPTCS.294.2

This work is licensed under the
Creative Commons Attribution License.

Effects Without Monads: Non-determinism
Back to the Meta Language

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

We reflect on programming with complicated effects, recalling an undeservingly forgotten alternative
to monadic programming and checking to see how well it can actually work in modern functional
languages.

We adopt and argue the position of factoring an effectful program into a first-order effectful
DSL with a rich, higher-order ‘macro’ system. Not all programs can be thus factored. Although the
approach is not general-purpose, it does admit interesting programs. The effectful DSL is likewise
rather problem-specific and lacks general-purpose monadic composition, or even functions. On the
upside, it expresses the problem elegantly, is simple to implement and reason about, and lends itself
to non-standard interpretations such as code generation (compilation) and abstract interpretation. A
specialized DSL is liable to be frequently extended; the experience with the tagless-final style of DSL
embedding shown that the DSL evolution can be made painless, with the maximum code reuse.

We illustrate the argument on a simple but representative example of a rather complicated ef-
fect – non-determinism, including committed choice. Unexpectedly, it turns out we can write inter-
esting non-deterministic programs in an ML-like language just as naturally and elegantly as in the
functional-logic language Curry – and not only run them but also statically analyze, optimize and
compile. The richness of the Meta Language does, in reality, compensate for the simplicity of the
effectful DSL.

The key idea goes back to the origins of ML as the Meta Language for the Edinburgh LCF
theorem prover. Instead of using ML to build theorems, we now build (DSL) programs.

1 Introduction

How to cope with the complexity of writing programs? How to structure computations? Many method-
ologies have been proposed over the decades: procedures, structured programming, OOP, AOP, algebraic
specifications and modules, higher-order functions, laziness – and, lately, monads and their many gen-
eralizations. Although monads are not the only way to organize (effectful) computations, they are by
all accounts receiving disproportionate attention (just do a quick Google search). In ML, monads have
been introduced more [38] or less [7] formally and underlie the widely used OCaml libraries Lwt1 and
Async.2

This position paper seeks to draw attention to a non-monadic alternative: Rather than structuring
(effectful) programs as monads – or applicatives, arrows, etc., – we approach programming as a (micro)
language design. We determine what data structures and (effectful) operations seem indispensable for the
problem at hand – and design a no-frills language with just these domain-specific features. We embed
this bare-bone DSL into OCaml, relying on OCaml’s extensive facilities for abstraction and program
composition (modules, objects, higher-order functions), as well as on its parsing and type checking.

1http://ocsigen.org/lwt/
2https://github.com/janestreet/async

http://dx.doi.org/10.4204/EPTCS.294.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://ocsigen.org/lwt/
https://github.com/janestreet/async

16 Effects Without Monads

We state the main points of our argument in §1.2. We hasten to say that the key insight is rather old
[41], quite resembling algebraic specifications (see Wirsing’s comprehensive survey [43]). In fact, it is
the insight behind the original ML, as a scripting language for the Edinburgh LCF theorem prover [14] –
only applied to programs rather than theorems. What has not been clear is how simple an effectful DSL
may be while remaining useful. How convenient is it, especially compared to the monadic encodings?
How viable is it to forsake the generality of first-class functions and monads and what benefits may
come? We report on an experiment set out to explore these questions.

The present paper follows the style of Hughes [20], Hudak [18] and Goguen [13] – or, for mathe-
matically inclined, Pólya [32] – arguing from examples. Just like those arguments, it is indeed hard to
grasp the limitations and applicability, and it is hard to formalize. Problem solving in general is a skill
to learn rather than an algorithm to implement; it is inherently informal. Even in mathematics, how to
prove theorems is an art and a judgement; one acquires it not by following rigorous descriptions but by
reading existing proofs and doing exercises. This is the format we follow in the paper.

1.1 Motivation

This present paper comes as the result of decade-long long experience with the tagless-final style of DSL
embedding [24] and the re-discovering3 and polishing of extensible effects ([26, 25]). It was prompted
however by the following message, posted on the Caml-list by Christoph Höger in March 2017:4

“Assume a simple OCaml program with two primitives that can cause side-effects:

let counter = ref 0
let incr x = counter := !counter + x ; !counter
let put n = counter := n; !counter
put (5 + let f x = incr x in f 3)

This example can be transformed into a pure program using a counter monad (using
ppx monadic syntax):

do ;
i ←− let f x = incr x in f 3 ;
p ←− put (5 + i)
return p

For a suitable definition of bind and return, both programs behave equivalently. My question
is: How can one automatically translate a program of the former kind to the latter?”

The message left me puzzled about its author’s goals and motivations. It is hard to imagine he
preferred the monadic program for its verbose notation, replete with irrelevant names like i and p. Was
the author after purity? That is a mirage we lay bare in §6. Was he attracted to the separation of effectful
and non-effectful code and the possibility of multiple interpretations of effects (‘the overriding of the
semicolon’)? These good properties are not unique to monads. The other, often forgotten, ways of
dealing with side-effects ought to be more widely known.

The second cue came about a month later, observing students solving an exercise to compute all
permutations of a given list of integers. The reader may want to try doing that in their favorite language.
Albeit a simple exercise, the code is often rather messy and not obviously correct. In the functional-logic

3http://okmij.org/ftp/Computation/having-effect.html
4Christoph Höger: Transforming side-effects to a monad. Posted to caml-list@inria.fr on Thu, 23 Mar 2017 20:56:16

+0100

http://okmij.org/ftp/Computation/having-effect.html
caml-list@inria.fr

Oleg Kiselyov 17

language Curry [15] built around non-determinism, computing a permutation is strikingly elegant: mere
foldr insert []. It is the re-statement of the specification: a permutation is moving the elements of the
source list one-by-one into some position in the initially empty list. The code immediately tells that the
number of possible permutations (possible choices of permutations) of n elements is n!. From its very
conception in the 1950s [33], non-determinism was called for to write clear specifications – and then to
make them executable. Can we write the list permutation code just as elegantly in a language that was
not designed with non-determinism in mind and offers no support for it? How far can we extend it?

1.2 Points to Argue

The primary goal for the paper is to report on the experiment set out to explore the viability and con-
sequences of a particular method of writing effectful programs. Although all the ingredients have been
known (some of them for so long that they are almost forgotten), how well the approach actually works
for interesting problems can only be determined empirically.

Along with the describing the experiment and its ramifications, we also offer an argument: why this
approach is worth exploring in the first place. The points of the argument, reverberating throughout the
paper, are collected below:

Effects are not married to monads The discussion after the first presentation of this paper, at the ML
Family workshop 2017, was one of many indications that monads have a special, almost cult status
in the minds of functional programmers. There is no doubt that monads clearly delineate effectful
computations, in syntax and in types, and offer the reasoning principles (equational laws) about
effectful programs. What many do not seem to realize is that these benefits are not unique to
monads, or that not all effects are expressible with monads,5 or that the flexibility of the monadic
encoding (‘overriding semicolon’) is limited. Code generation and abstract interpretation, for
example, do not fit the monadic framework (see §5).
Although this point may be obvious to some, the caml-list (as noted in §1.1), Reddit, Stack Over-
flow, etc. discussion places are awash with misunderstandings and irrational exuberance towards
monads.6 The argument pointing out their proper place and limitations is worth repeating.

Separate rather than combine higher-order and effects The present paper is an exploration of a less
common approach to writing reusable, properly abstracted effectful programs. Rather than com-
bining effectful operations with modules, objects, higher-order functions, we separate them. First
we determine the data types and operations needed for the problem at hand, and define the cor-
responding domain-specific language (DSL). The language is often first-order, and its operations
have a number of domain-specific effects (such as references to application-specific context, com-
munication, logging, etc).
Since the DSL is intentionally without abstraction or syntactic sugar – just enough to express the
problem at hand, however ungainly – programming in it directly is a chore. That is why we endow
it with a very expressive ‘preprocessor’, by embedding into a metalanguage with rich abstractions
like functions, definitions, modules, etc.

5The fact that not all effects are expressible as monads was noted already by Wadler [40]. That fact has motivated the
development of various monad-like (relative monads [2], parameterized monads [3]) and unlike interfaces (applicatives [27]
and arrows [19]).

6Here is a small sample of links https://stackoverflow.com/questions/44965/what-is-a-monad https://

news.ycombinator.com/item?id=16422452 https://news.ycombinator.com/item?id=17645277 https://news.

ycombinator.com/item?id=16419877

https://stackoverflow.com/questions/44965/what-is-a-monad
https://news.ycombinator.com/item?id=16422452
https://news.ycombinator.com/item?id=16422452
https://news.ycombinator.com/item?id=17645277
https://news.ycombinator.com/item?id=16419877
https://news.ycombinator.com/item?id=16419877

18 Effects Without Monads

Not all problems can be thus factored into a first-order DSL and a higher-order metalanguage (e.g.,
the factoring does not support arbitrary higher-order effectful functions). Therefore, how well the
factoring works in practice and if it is worth paying attention to become empirical questions. The
paper describes one case study, exploring how far we can push this approach.

General vs. specific: it is a trade-off The approach to be evaluated in the present paper – the factoring
of an effectful program into a simple DSL and a rich preprocessor – is not general purpose. The
non-deterministic DSL is not general purpose either: we introduce only those data types and op-
erations that are needed for the problem at hand and its close variations. Domain-specific, narrow
solutions should not be always looked down upon, we argue.

The compelling case for (embedded) DSLs has been already made, by Hudak [18]. The present
paper is another case study. We also demonstrate, in §5, one more advantage of an embedded DSL:
the ability to evaluate the same DSL code in several ways. We can not only (slowly) interpret the
code, but also perform static analyses such as abstract interpretation, and generate (faster) code.

The advantages of the domain-specific approach have to be balanced against the applicability (how
wide is the domain, does it let us do something interesting or practically significant) and extensi-
bility (how easy it is to extend the program and the domain and reuse the existing code). This is a
trade-off, which the case study in the present paper is to help evaluate.

Thus we do not argue that the domain-specific approach is ‘better’. We do argue, however, against
the presumption (evidenced in the received comments on the drafts of this paper) that one always
has to strive for the general solution. Premature generalization and abstraction, like premature
optimization, is not a virtue.

Try domain-specific first When deciding which approach to effects fits the problem at hand, we advo-
cate trying a specialized solution (such as the DSL factoring) first. Typically, whether it works out
or not becomes clear very soon; if it does not, little effort is wasted because the approach is so
simple.

The structure of the paper is as follows. §2 describes the main experiment: can we write the list per-
mutation in OCaml as elegantly as in Curry. Specifically, §2.1 introduces the intentionally very simple,
essentially first-order, DSL for the specific domain of non-deterministic computations on integer lists,
and §2.2 uses it to express the list permutation. The readers can see for themselves how good (simple,
understandable, close to Curry) it looks. A way to make the DSL embedding seamless is described in
§2.3. Several ‘standard’ implementations of the DSL are discussed in §3, whereas §4 extends the DSL
and its implementation with the committed choice and presents another classical Curry example: slow
sort. Thus the factoring of an effectful computation into a first-order DSL and a powerful metalanguage
turns out to be viable – an outcome that was not at all clear at the beginning.

Our language is truly domain-specific: for example, it offers no abstraction mechanism of its own and
no general monadic interface for writing effectful computations. As an upside, the DSL admits useful
non-standard implementations. §5 shows three. In particular, §5.2 describes an abstract interpretation, to
statically estimate the degree of non-determinism of a DSL term. The code-generation interpretation –
the DSL compiler – is presented in §5.3.
§6 discusses the presented factoring approach, answering several commonly heard objections. The

main theoretical ideas have all been known in isolation, often for many decades, as we review in §7.
The source code of all our examples is available at http://okmij.org/ftp/tagless-final/

nondet/.

http://okmij.org/ftp/tagless-final/nondet/
http://okmij.org/ftp/tagless-final/nondet/

Oleg Kiselyov 19

2 Non-determinism through a DSL

This section introduces the DSL that lets us program all permutations of a given list of integers in the
same starkly elegant way it is done in Curry:

perm = foldr insert []

This running example, although rather simple (and hence easy to explain and thoroughly examine),
distills large, practical projects such as machine-learning [36] or the conduct of clinical trials [29]. The
example is also interesting because it deals with a rather complex effect – non-determinism, which is
rarely supported natively. Yet we are able to use non-determinism just as easily as in the language Curry,
specifically designed for non-determinism. We manage with only OCaml at our disposal, which may
seem unsuitable since it is call-by-value and has no monadic sugar.
§2.1 defines the DSL, §2.2 writes our example in it, and §2.3 polishes the DSL embedding by over-

coming the ungainly (and objectionable, to some) functors. The (standard) implementations of the DSL
are discussed in §3 – and three non-standard ones in §5.

2.1 DSL Definition

We start by designing a language just expressive enough for our problem of computing a list permutation
using non-determinism. We embed this “domain-specific” language (DSL) into OCaml in the tagless-
final style. (Instead of OCaml, we could have used any other ML or ML-like language – or Scala or
Haskell or Rust.) Recall, in the tagless-final style a DSL is defined by specifying how to compute the
meaning of its expressions [24]. The meaning is represented by an OCaml value of some abstract type
(such as the types int t and ilist t below, the semantic domains of integer and integer list expressions).
The meaning of a complex expression is computed by combining the meanings of its immediate sub-
expressions, that is, compositionally. A language is thus defined by specifying the semantic domain
types and the meaning computations for its syntactic forms. These definitions are typically collected into
a signature, such as:

module type NDet = sig
type int t
val int: int → int t

type ilist t
val nil: ilist t
val cons: int t → ilist t → ilist t
val list: int list → ilist t

val recur: (∗ recur c n lst: see text for the explanation ∗)
(int t ∗ ilist t → (unit → ilist t) → ilist t) → ilist t → ilist t →
ilist t

val fail: ilist t
val (|||): ilist t → ilist t → ilist t

end

Since we will be talking about integer lists, we need the integer type int t and at least the integer lit-
erals. Whereas 1 is an OCaml integer literal, the OCaml expression int 1 represents a DSL integer literal.
We do not define any operations on integers, since they are not needed for the problem at hand. They can

20 Effects Without Monads

always be added later. After all, the ease of extending the language with new types and operations is the
strong suit of the tagless-final embedding.

We also need integer lists, with the familiar constructors nil and cons. The list operation turns an
OCaml list into a list in our DSL: list [1;2;3] (compare with int 1 example above). Although every DSL
list can be expressed through nil and cons, the special notation for literal DSL lists is convenient.

We also need a way to recursively analyze/deconstruct lists. For that purpose, we introduce the
recursor recur, inspired by the recursor R for natural numbers in Gödel’s System T (see Tait [39] for the
modern exposition; Tait calls R an iteration). Similarly to R, the meaning of our recur is specified by the
following equalities (or, algebraic identities):

recur c n nil ≡ n

recur c n (cons h t) ≡ c (h,t) (fun () → recur c n t)
(1)

As in high-school algebra, an identity states that the two terms connected by the ≡ sign are to be consid-
ered ‘the same’. If an identity contains variables (such as c, n, etc. above – typeset in the mathematical
font), it should hold for all instantiations, i.e., replacements of a variable with a term of a suitable type.
One may bet that the thunk fun () → . . . visible in (1) was not present in Gödel’s formulation of R.
Why we have introduced it in our recur will become clear in the next section.

Finally, the NDet signature defines the operations for non-determinism: failure and the binary choice.
Specifically, l1 ||| l2 denotes a non-deterministic choice among two lists, l1 and l2. To make sure the
operations l1 ||| l2 and fail, however they may end up being implemented, agree with the intuitions about
the non-deterministic choice and failure, we impose the following identities:

cons x fail ≡ fail

cons x (l1 ||| l2) ≡ cons x l1 ||| cons x l2
recur c n fail ≡ fail

recur c n (l1 ||| l2) ≡ recur c n l1 ||| recur c n l2
(x ||| y) ||| z ≡ x ||| (y ||| z)

(2)

Any implementation of NDet is supposed to verify that the above identities hold for that implemen-
tation. In OCaml, we cannot check the satisfaction mechanically; we cannot even attach these identities
to the signature except in comments. Wirsing’s survey [43] cites many systems which do verify the
satisfaction of equational specifications.

An attentive reader may get the feeling that something is amiss: the NDet DSL does not look at all
like a functional language. There are no function types (only integers and integer lists) and hence no
operations to construct, or even apply, functions. NDet is not a lambda-calculus. How useful can such a
trivial language be? On the other hand, isn’t recur a higher-order function, from the look of the type of
its first argument? Please hold your wonder.

Exercise 1 When one hears about recursively deconstructing a list, what is likely to spring to mind is
foldr. Yet for some reason we introduced the relatively obscure recur instead. Can you venture a guess
why we did that? How does recur relate to foldr?

Exercise 2 Does it make sense to define separate types for values and expressions of our DSL? What
benefits may come from this separation?

Exercise 3 The signature NDet is not algebraic (why?). How would you characterize it?

Exercise 4 The identities (2) are by no means the complete equational specification of non-determinism.
What other identities with fail and ||| could be added to (2)?

Oleg Kiselyov 21

2.2 List permutation, Non-deterministically

However feeble our NDet DSL may be, it is enough for the task at hand. We now use it to write the
list permutation as elegantly as in Curry. For reference, here is the permutation code as it appears in the
Curry standard library:

insert x [] = [x]
insert x (y:ys) = (x:y:ys) ? (y:insert x ys)

perm = foldr insert []

To realize this code in the NDet DSL, we first tackle the non-deterministic list insertion: insert x lst
is to insert the element x somewhere in lst, returning the extended list. That is, it inserts x at the front
of lst, or after the first element of lst, or after the second element of lst, etc. The algorithm can be
formulated, and hence implemented, inductively: insert x lst either inserts x at the front of lst or within
lst, i.e., somewhere in its tail. Computing the list permutation is now accomplished. The following is the
complete code written in the NDet DSL, which also includes a simple test.7

module Perm(S:NDet) = struct
open S

(∗ val foldr: (int t → ilist t → ilist t) → ilist t → ilist t → ilist t ∗)
let foldr c = recur (fun (h,) r → c h (r ()))

let insert x =
recur (fun (h,t) inserted → cons x (cons h t) ||| cons h (inserted ()))

(cons x nil)

let perm = foldr insert nil
let test1 = perm (list [1;2;3])
end

The DSL primitives such as recur, cons, nil etc. are all defined in the implementation S of the signature
NDet. The code does not depend on any particular implementation, which is hence abstracted over as
an argument S. Therefore, the DSL code is typically represented as an OCaml functor, parameterized by
the DSL implementation (there are nicer-looking representations, please wait till §2.3). Since NDet only
provides recur but no foldr, first we have to implement the latter (with the expected inferred type shown
in the comment). The implementation is straightforward. The insert is straightforward as well, mirroring
the Curry code (keeping in mind that the nondeterministic-choice operator is spelled ? in Curry and |||
in our code). The code keeps the invariant that inserted (), denoting the recursive invocation of insert, is
the expression returning the list with exactly one x inserted somewhere. The same invariant is true of the
Curry code.

Although our code looks like the Curry code and is exceedingly simple, there is something odd about
it. We have said that NDet has no functions: no function types, no way to create or apply functions. What
is insert then? Isn’t foldr a higher-order function? They are functions – in the metalanguage, rather than
in NDet. We use the higher-order facilities of OCaml to construct first-order DSL expressions. OCaml
truly acts as a preprocessor for the DSL; insert is hence a ‘macro’. Our code then is a combination of

7The accompanying code includes many more (regression) tests.

22 Effects Without Monads

a trivial, non-deterministic DSL with a very expressive, higher-order ‘macro’ system.8 Moreover, the
DSL evaluation and the ‘macro-expansion’ run like coroutines. It is not unheard of: after all, coroutines
were invented as a communication mechanism among phases of a Cobol compiler [9]. The coroutining
between a lambda-calculus–based ‘metalanguage’ and the embedded ‘effectful’ language is the essence
of Reynolds’ Idealized Algol [34] and Moggi’s computational calculus [28].

To get a better feeling for the “macro-expansion” and also the confidence in the DSL, it is worth
doing a simple exercise: determine the DSL terms that should be identical to perm (list [1;2;3]). Below
we do a part of the exercise, working out the identities of insert (int 1) (list [2;3]). For the sake of
readability, we write DSL terms like int 1 as 1 and DSL list literals like cons (int 2) (cons (int 3) nil)
as [2;3].

insert 1 [2;3]
≡ (∗ inlining definitions: ‘‘macro−expansion’’ ∗)
recur (fun (h,t) inserted → cons 1 (cons h t) ||| cons h (inserted ())) [1] [2;3]
≡ (∗ identities (1) ∗)
(fun (h,t) inserted → cons 1 (cons h t) ||| cons h (inserted ())) (2,[3])

(fun () → recur (fun (h,t) inserted → . . .) [1] [3])
≡ (∗ substitution of values ∗)
cons 1 (cons 2 [3]) ||| cons 2 (recur (fun (h,t) inserted → . . .) [1] [3])
≡ (∗ convention for the literal lists ∗)
[1;2;3] ||| cons 2 (recur (fun (h,t) inserted → . . .) [1] [3])
≡ (∗ once again identities (1) ∗)
[1;2;3] ||| cons 2 (cons 1 (cons 3 []) ||| cons 3 (recur (fun (h,t) inserted → . . .) [1] []))
≡ (∗ and again ∗)
[1;2;3] ||| cons 2 ([1;3] ||| [3;1])
≡ (∗ identities (2) ∗)
[1;2;3] ||| ([2;1;3] ||| [2;3;1])

The identities ought to hold in any implementation of NDet. Thus, whatever the implementation,
insert 1 [2;3] should amount to the choice among [1;2;3], [2;1;3] and [2;3;1], in full agreement with
our intuitions.

We have used ≡ to mean the least equivalence relation that contains the identities (1) and (2),
and is closed under substitutions of OCaml values into OCaml lambda-terms. In other words, ≡ in-
cludes the “macro-expansion” performed as the ordinary OCaml call-by-value evaluation. The thunk
fun () → recur c n t in (1) was needed precisely for the sake of this value substitution.
Exercise 5 Complete the exercise and work out perm (list [1;2;3]).

2.3 Smoother DSL Embedding

One often hears the complaint that writing DSL expressions as functors is cumbersome. But there are
other ways, blending the DSL code into the regular OCaml. The result looks quite like the Lightweight
Modular Staging (LMS) in Scala [35] – the metaprogramming, DSL-embedding framework which has
been used for ‘industrial-strength’ DSLs.

As a warm-up, let us take one particular DSL implementation, such as NDetL to be described in §3.
Let us write perm without any functors this time, as an ordinary OCaml function:

8An old joke comes to mind: “Much of the power of C comes from having a powerful preprocessor. The preprocessor is
called a programmer.” [30].

Oleg Kiselyov 23

let perm : int list → int list list = fun l →
let open NDetL in
let foldr c = recur (fun (h,) r → c h (r ())) in
let insert x =
recur (fun (h,t) r → cons x (cons h t) ||| cons h (r ())) (cons x nil)
in foldr insert nil (list l)

This perm is truly an ordinary OCaml function, to be applied as perm [1;2;3].
We now abstract over the DSL implementation. First, we add to NDet the observation operation, so

we may generically extract the the list of permutation choices from the result of the perm computation.
(One may argue that such a run operation should have been a part of NDet. On the other hand, we shall
demonstrate non-standard interpretations of NDet, whose results are not permutation lists but rather static
analyses of the generated code.)

module type NDetO = sig
include NDet
val run : ilist t → int list list

end

The permutation function will receive the DSL implementation as the (first-class) module argument:9

let perm : (module NDetO) → int list → int list list = fun (module S:NDetO) l →
let open S in
let foldr c = recur (fun (h,) r → c h (r ())) in
let insert x =
recur (fun (h,t) r → cons x (cons h t) ||| cons h (r ())) (cons x nil)
in run @@ foldr insert nil (list l)

Modular implicits [42] can even save us the trouble of passing the NDet implementation explicitly. DSLs
become convenient: DSL primitives look like the ordinary OCaml operations, but can be distinguished
by their types. Instead of first-class modules we could have used plain records. Our approach therefore
easily applies to other ML(-like) languages.

3 Implementing Non-determinism

To run the Perm code we need an implementation of the NDet signature. There are many of them, even
in this paper (see the exercises at the end of the section, and §5). We start with the ‘list of successes’, the
most familiar model of non-determinism, envisioned already by Rabin and Scott in the 1950s [33]. This
model is also called ‘list monad’; our code, however, does not use the monad in its full generality, as
we shall see soon. The realizations of NDet in §5 cannot be expressed as monads at all, to be explained
there.

In this list implementation, to be called NDetL, ilist t is the list of all choices that a list DSL expres-
sion may produce:

type int t = int
type ilist t = int list list

9The right-associative infix operator @@ of low precedence is application: f @@ x + 1 is the same as f (x + 1) but avoids
the parentheses. The operator is the analogue of $ in Haskell.

24 Effects Without Monads

We are talking about OCaml lists, which are finite and ‘eager’. Generally, this is not the best choice for
performance; however, this realization fits very well our running example, which is to compute the list
of all possible permutation choices. (We shall encounter this interplay of generality and specialization
many more times.) Again, we are interested in non-deterministic computations on integer lists only; DSL
integers are always deterministic and therefore, can be represented as plain OCaml int. All in all, the
NDetL implementation is as follows:

module NDetL = struct
type int t = int
let int x = x

let concatmap: (α → β list) → α list → β list =
fun f l → List.concat @@ List.map f l

type ilist t = int list list
let nil = [[]]
let cons: int t → ilist t → ilist t =
fun x → List.map (fun l → x::l)

let list x = [x]

let rec recur: (int t ∗ ilist t → (unit → ilist t) → ilist t) → ilist t → ilist t → ilist t =
fun f z → concatmap @@ function
| [] → z
| h::t → f (int h, list t) (fun () → recur f z (list t))

let fail: ilist t = []
let (|||): ilist t → ilist t → ilist t = (@)

end

As expected, literal list expressions such as list and nil are deterministic: have exactly one choice of
value. On the other hand, fail has none; (|||) adds up the choices. As was said already, integer expressions
are deterministic by design. Although we have introduced concatmap (the ‘bind’ of the list monad) and
could have likewise introduced ‘return’, we do not export them. In the code they are used only at specific
types (namely, integer lists). It is this property that will let us later write other implementations of NDetL,
which are not at all monadic.

With this NDetL implementation of NDet, the sample test – all permutations of [1;2;3] – is run as:

let module M = Perm(NDetL) in M.test1
 [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]

Exercise 6 Check that the identities (1) and (2) hold in this implementation.

Exercise 7 Consider other implementations of NDet, in terms of delimited continuations, the delimcc
library, or operating system threads.

Exercise 8 Add yet another implementation of NDet: e.g., using the free(r) monad. Besides the depth-
first search (underlying the list implementation), try to implement complete search strategies such as
breadth-first search or iterative deepening.

Exercise 9 Typically, a tagless-final presentation features the type α repr, a set of OCaml values that
represent DSL expressions of the type α . We have managed to do without α repr. What have we lost?

Exercise 10 Generalize the NDet signature introducing α repr and implement this language.

Oleg Kiselyov 25

4 Advanced non-determinism: Sorting

An immediate application of list permutation is sorting: sorting, by definition, is obtaining a sorted
permutation. This definition, as is, can be written down in our DSL, giving us the sorting function sort.
It is called ‘slow sort’ – one of the benchmarks of functional-logic programming. Although not usually
fast, it is correct by definition. The actual performance depends on the implementation and could be
quite good (that is, not requiring exponential time and space, in the length of the list).

To express sorting we need two more non-deterministic primitives. Extending a language defined in
the tagless-final style is easy, by adding new definitions and reusing the old ones:

module type NDetComm = sig
include NDet
val rId : (int list → bool) → ilist t → ilist t
val once : ilist t → ilist t

end

The operation rId is a form of a logical conditional: it imposes a guard (a predicate constraint) on
a non-deterministic expression. It is hence akin to List.filter. The name is chosen to match the Curry
standard library. The primitive once (called head in Curry) expresses the so-called don’t care non-
determinism: if an expression has several latent choices, once picks one of them.

The sorting is written literally as “a sorted permutation”:

module Sort(Nd:NDetComm) = struct
open Nd
include Perm(Nd)
let rec sorted = function
| [] → true
| [] → true
| h1 :: h2 :: t → h1 ≥ h2 && sorted (h2::t)

let sort l = once @@ rId sorted @@ perm l
let tests = sort (list [3;1;4;1;5;9;2])

Exercise 11 One may say that the sortedness is expressed ‘meta-theoretically’. What makes one say
that?

Extending a DSL implementation is just as easy as extending the language definition: we just add
the code for the new primitives, which are indeed primitive:

module NDetLComm = struct
include NDetL
let rId = List.filter
let once = function [] → [] | h:: → [h]

end

We can really sort: let module M = Sort(NDetLComm) in M.tests

Exercise 12 The slow sort is particularly slow in the shown list implementation of NDet. Why? How to
speed it up?

Exercise 13 Implement other classical non-deterministic puzzles from the Curry example library http:
// www. informatik. uni-kiel. de/ ~ mh/ curry/ examples/

http://www.informatik.uni-kiel.de/~mh/curry/examples/
http://www.informatik.uni-kiel.de/~mh/curry/examples/

26 Effects Without Monads

5 When Monads will not do

Although the NDet DSL is meant for non-deterministic computations, it is not as generic and expressive
as it could be. For example, the NDet signature does not define the general monadic ‘bind’ and ‘return’
operations (they were not needed for the task at hand). Implementations of NDet, such as NDetL in §3,
may support these operations and even use them internally – yet not offer them to the DSL programmer.
The lack of generality has an upside: the NDet DSL admits implementations that do not support ‘bind’
and ‘return’ at all. This section presents three non-monadic interpretations of NDet, and explains why
they are interesting and why they fall outside the conventional monadic framework.

5.1 More efficient representation

The NDet signature in §2.1 flaunts the extreme specialization: the DSL has only integers and integer lists
as data types. The conspicuous lack of general lists admits however an efficient representation. Rather
than the familiar linked list of cons cells (with each cell holding one list element), we may group elements
in tightly packed chunks, e.g., like in Bagwell’s VList [4]. A chunk can be represented as an array, or
even OCaml’s Bigarray.10 The latter is particularly efficient, e.g., in avoiding GC marking. However,
Bigarrays are not polymorphic: they are restricted to integers and floating-point numbers. It so happens
our integer lists fit the restriction. The accompanying code shows an implementation of NDet where
integer lists are (very naively, at present) represented with int Bigarray chunks. It is now an advantage
that the NDet signature fails to define return and bind, because we would not have been able to support
them: the present implementation deals with non-deterministic computations on integer lists only.

Again we see the general/specific trade-off: restricting the expressivity (the set of data types to
operate upon) may gain a more efficient data representation.

5.2 Abstract Interpretation

The NDet DSL signature admits truly non-standard interpretations. This section describes one such
example: instead of actually performing a non-deterministic computation, we estimate the number of its
non-deterministic choices and the possibility of failure. This is an example of the static analysis known
as abstract interpretation [10, 22]. Our example is realistic: the Kiel Curry compiler, for one, performs a
similar determinism analysis in order to produce efficient code [5].

Recall, the tagless-final DSL is defined by specifying how to compositionally compute the mean-
ing of its expressions. The ‘standard’ interpreter such as NDetL in §3 takes the meaning of a non-
deterministic expression to be the set (to be more precise, the OCaml list) of possible values. The non-
standard interpreter to be developed in this section uses a coarse, ‘abstract’, semantic domain, merely ap-
proximating that set. Namely, our abstraction domain here is the expression’s degree of non-determinism:

type ndet deg = {can fail: bool; choices: Iint.t}

It records the possibility of failure and the upper bound on the number of possible values: one, two, three,
etc., or many. (See Fig.1 for one implementation of integers with ‘many’.) An expression of degree d1
is at least as non-deterministic as an expression of degree d2 (written as d2 ≤ d1) iff

d2.choices ≤ d1.choices ∧ d2.can fail ≤ d1.can fail

10https://caml.inria.fr/pub/docs/manual-ocaml/libref/Bigarray.html

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Bigarray.html

Oleg Kiselyov 27

module Iint = struct
type t = Int of int | Inf (∗ integers with infinity ∗)

let one : t = Int 1
let zero : t = Int 0
let inf : t = Inf

let (+) : t → t → t = fun x y →
match (x,y) with
| (Int x, Int y) → Int (x+y)
| → Inf

let (∗) : t → t → t = fun x y →
match (x,y) with
| (Int x, Int y) → Int (x∗y)
| → Inf

let (≤) : t → t → bool = fun x y → (∗ partial order ∗)
match (x,y) with
| (,Inf) → true
| (Inf,) → false
| (Int x, Int y) → x ≤ y

let max : t → t → t = fun x y → (∗ join of the semilattice ∗)
match (x,y) with
| (Int x, Int y) → Int (if x > y then x else y)
| → Inf

end

Figure 1: A semiring/join semilattice with ‘many’ (inf)

In fact, our domain is not just a partial order but a join semi-lattice (common in abstract interpretation),
so that we can compute the least-upper bound on the non-determinism degree for any set of expressions
(for binary joins, see join in Fig.2).

Since the degree of non-determinism is estimated statically, before evaluating an expression, it is an
approximation. It is an over-approximation: an expression with the estimated degree {can fail=true;
choices=Int 5} may in reality finish without failure, with only two possible values. Our interpreter
however guarantees that the over-approximation is sound: the expression in question may have fewer
than 5 possible values, but not more than 5. An expression with the (smallest) degree:

let det = {can fail=false; choices=Iint.one}

is therefore certainly deterministic. The largest degree (the maximal element of the domain) is

let top = {can fail=true; choices=Iint.inf}

It is the least informative estimate of the actual degree of non-determinism.
The abstraction domain has more structure than a mere join semi-lattice. If e1 is the non-deterministic

list (expression) with at most 2 choices and e2 is the expression with at most 3 choices, we would like to

28 Effects Without Monads

estimate that e1 ||| e2 has at most 5 choices. On the other hand, concatenating the lists e1 and e2 should
have at most 6 choices of the result. We thus need additive and multiplicative operations. Whereas the
former is used only in interpreting (|||), the multiplicative operation is more common. It is called merge
in the code in Fig.2; incidentally, det is its unit: merge det d ≡ d for any degree d.

Figure 2 shows the complete code of the abstract interpreter, most of which has already been ex-
plained. As any other DSL interpreter, the abstract interpreter also implements the signature NDet. The
meaning of an ilist t expression is its degree of non-determinism; int t expressions, which are always
deterministic, are represented by an abstract integer AInt. The interpretation of the recursor deserves a
few words. Since our abstraction domain keeps track only of the degree of nondeterminism for a list
expression but not of the length of the list, the best we can do to approximate recur c n l is to find the
upper bound for recur c n when applied to lists of every possible length:⊔

i=0 recur c n [AInt]i

where [AInt]i is the list of length i made of abstract integers. The recursive equations defining recur make
it easy to compute recur c n [AInt]i+1 if recur c n [AInt]i is known. All that remains is to keep joining
until the result ‘stabilizes’. Since we are computing an approximation of the degree of nondeterminism,
we would be satisfied with an upper bound, not necessarily the least one. Therefore, we can stop the
joining iteration after some number of steps, returning top if the convergence has not been achieved by
then. One may organize the fixpoint computation differently: Abstract Interpretation is a vast area. The
presented tagless-final framework helps us experiment with such static analyses.

Let’s take a few examples of the non-determinism analyses:

let open NDetAbsND in cons (int 20) (nil ||| cons (int 10) nil) ||| fail
 − : NDetAbsND.ilist t =
NDetAbsND.AList {NDetAbsND.can fail = false; choices = NDetAbsND.Int 3}

The result tells that the given non-deterministic list computation, if evaluated, will have at most three
possible values, and it will not fail. The result of evaluating

let open NDetAbsND in foldr cons nil (list [1;2;3])

shows that the foldr expression is deterministic. The first argument of foldr (or recur) may ignore its
arguments:

let open NDetAbsND in recur (fun → fail) (list [1] ||| list [2]) nil
 − : NDetAbsND.ilist t =
NDetAbsND.AList {NDetAbsND.can fail = true; choices = Iint.Int 2}

It is easy to see from the abstract interpreter code that we never underestimate the degree of non-
determinism. Thus the analysis is sound. As an example:

let open NDetAbsND in
foldr (fun x l → l ||| cons x l) nil (list [1;2;3])
 − : NDetAbsND.ilist t =
NDetAbsND.AList {NDetAbsND.can fail = true; choices = NDetAbsND.Inf}

We can even analyze the permutation code (see §2.2)

let module M = Perm(NDetAbsND) in NDetAbsND.observe M.test1

(with the same outcome).
Finally, we should stress that we would not have been able to abstractly interpret the DSL code, had

the NDet signature required the monadic operation bind, whose general signature, recall, is

Oleg Kiselyov 29

module NDetAbsND = struct
type ndet deg = {can fail: bool; choices: Iint.t}

let det = {can fail=false; choices=Iint.one} (∗ deterministic computations ∗)
let top = {can fail=true; choices=Iint.inf}

let merge : ndet deg → ndet deg → ndet deg = fun d1 d2 →
{can fail = d1.can fail || d2.can fail;
choices = Iint.(d1.choices ∗ d2.choices)}

let join : ndet deg → ndet deg → ndet deg = fun d1 d2 →
{can fail = d1.can fail || d2.can fail;
choices = Iint.(max d1.choices d2.choices)}

type int t = AInt (∗ An abstract integer ∗)
let int: int → int t = fun → AInt

type ilist t = AList of ndet deg
let nil: ilist t = AList det
let cons: int t → ilist t → ilist t = fun x → x
let list: int list → ilist t = fun → AList det

let merge lst : ilist t → ilist t → ilist t = fun (AList d1) (AList d2) →
AList (merge d1 d2)

let join lst : ilist t → ilist t → ilist t = fun (AList d1) (AList d2) →
AList (join d1 d2)

let recur:
(int t ∗ ilist t → (unit → ilist t) → ilist t) → ilist t → ilist t →
ilist t = fun f z l →

let rec loop acc res i i =
let res i’ = f (AInt, AList det) (fun () → res i) in
let acc’ = join lst acc res i’ in
if acc = acc’ then acc
else if i > 5 then AList top
else loop acc’ res i’ (i+1)

in merge lst l (loop z z 0)

let fail: ilist t = AList {can fail=true; choices=Iint.one}
let (|||): ilist t → ilist t → ilist t = fun (AList d1) (AList d2) →

AList {can fail = d1.can fail && d2.can fail;
choices = Iint.(d1.choices + d2.choices)}

end

Figure 2: Abstract interpreter to estimate the degree of non-determinism

30 Effects Without Monads

val bind : α m → (α → β m) → β m

for some parameterized type m. The second argument to bind, the continuation, is to receive the value
α produced by the computation of the first bind argument. If α m is realized as ndet deg, it can never
produce any concrete α value. Therefore, when abstractly interpreting the bind expression, we cannot
ever invoke, and hence analyze, its continuation. That monadic programs cannot be statically analyzed
by choosing a suitable abstract monad interpretation was the main motivation for applicative functors
[27] and arrows [19]. We refer to that literature for more discussion.

Exercise 14 The recur code in Fig.2 stops the joining after 5 iterations. Explain why stopping after the
first iteration would have sufficed.

Exercise 15 Make the analysis more precise by also tracking the size of the integer list, if known stati-
cally.

5.3 Code Generation

This section describes yet another interpreter for the NDet DSL, which is non-standard in a different
way. Rather than evaluating a DSL expression, it generates code for it. The code can be saved into a file,
and then compiled and linked as any other OCaml code. The interpreter in this section is thus a DSL
compiler, turning DSL expressions into ordinary OCaml code and libraries.

For code generation we rely on MetaOCaml [23], which is a superset of OCaml that adds the type
α code denoting so-called code values: (fragments of) the generated code. MetaOCaml provides two
primitives to build such code values. Brackets quote an OCaml expression

let c = .<5 + 7>.
 val c : int code = .<5 + 7>.

turning it, without evaluating, into a fragment of the generated code. The escape, or splice, is a form of
antiquotation, in Lisp terminology. It lets us build code templates with holes in them, to be later filled
with other fragments, for example:

let template x y = .<if .˜x>1 then .˜y else .˜y∗2>. (∗ the template with two holes, x and y ∗)
 val template : int code → int code → int code = <fun>

template .<read int ()>. c (∗ c was defined in the previous example ∗)
 − : int code = .<if (Stdlib.read int ()) > 1 then 5 + 7 else (5 + 7) ∗ 2>.

Clearly, the code value (the generated code it contains) can be printed. It can also be saved into a file.
The MetaOCaml home page [23] has more examples and explanations, with pointers to various tutorials.

The DSL compiler code in Fig. 3 interprets DSL expressions as code values: the fragments of code,
which, when compiled and executed as part of the complete program will compute the expression values.
For example, for integer DSL expressions we have:

type int t = int code
let int x = .<x>.

We could have represented list DSL expressions likewise, as the code to compute the list of all choices:

type ilist t = int list list code

The experience with abstract interpretation has taught us to analyze, to find out what we can say about
the program before running it. We therefore incorporate some analysis (typically called ‘binding-time

Oleg Kiselyov 31

analysis’ [21]) into the DSL compiler, which calls for the more elaborate semantic domain for non-
deterministic list expressions:

type ilist t =
| K of int list code list
| U of int list list code

It distinguishes the case of statically knowing the number of non-deterministic choices – in particular,
knowing that a list expression is in fact deterministic. The literal list expression such as list [1;2;3] is
clearly deterministic. We note that fact (by representing it with the K variant) and use later on in code
generation (see Fig.3). The U variant of ilist t corresponds to the statically unknown degree of non-
determinism. It contains the code computing the choices at run-time. In contrast, in the K variant the
choices are known statically, although the content of each choice is generally not and is to be computed
at run-time. U and K hence act as annotations on the generated code – so-called binding-time annota-
tions. The annotations can be erased: one may always forget the static knowledge and return the opaque
int list list code value. That is the purpose of the function dyn in Fig.3. Among other uses, it extracts
the result of compiling the DSL expression.

Most of the DSL compiler is derived from the list monad implementation NDetL in §3 by placing
brackets and escapes at appropriate places. (The module type lift and its implementations in Lifts are
provided by MetaOCaml to ‘lift’ OCaml values to the code that, when later run, will produce that value.
Lifting is possible only for selected OCaml types.)

The recursor again needs a bit of explaining. Recall that in an expression recur c n l, l is a non-
deterministic list computation. Therefore, the recur compiler in Fig.3 starts by checking what is already
known about l: if it is definitely the failed computation (in which case the whole recur expression is
also a failure), or if it is deterministic. In the latter case, we get recur1 to handle its only choice. In the
general case, we build the code to process (again, using recur1) all the choices that l could produce, when
evaluated.

For the sample Perm.test1 in §2.2 we generate the following code

val pcode : int list list code = .<
let lv 10 = [1; 2; 3] in
let rec go 11 = function
| [] → [[]]
| h 12::t 13 →

Stdlib.List.concat @@
(Stdlib.List.map

(fun l 14 →
let rec go 15 = function
| [] → [[h 12]]
| h 16::t 17 → (h 12 :: h 16 :: t 17) ::

(Stdlib.List.map (fun l 18 → h 16 :: l 18)
(go 15 t 17)) in

go 15 l 14) (go 11 t 13)) in
go 11 lv 10>.

When compiled and run, it produces the list of all permutations of the given sample list [1;2;3]. The code
is surprisingly clear; one could have written something like it by hand.

Exercise 16 Check that the identities (1) and (2) hold in this implementation as well.

32 Effects Without Monads

module NDetLCode = struct
type int t = int code
let int x = .<x>.

(∗ Utilities ∗)
let scons : α code → α list code → α list code = fun x l →

.<.˜x :: .˜l>.
let concatmap: (α → β list) code → α list code → β list code =
fun f l → .<List.concat (List.map .˜f .˜l)>.

type ilist t =
| K of int list code list
| U of int list list code

let dyn : ilist t → int list list code = function
| K ls → List.fold right scons ls .<[]>.
| U ll → ll

let nil = K [.<[]>.]
let cons: int t → ilist t → ilist t =
fun x → let x = genlet x in function
| K ll → K (List.map (scons x) ll)
| U ll → U .<List.map (fun l → .˜(scons x .<l>.)) .˜ll>.

let list x = (∗ Lifts is part of MetaOCaml ∗)
let open Lifts in let module M = Lift list(Lift int) in
K [M.lift x]

let recur1: (int t ∗ ilist t → (unit → ilist t) → ilist t) →
ilist t → int list code → ilist t = fun f z l →

U .<let rec go = function
| [] → .˜(dyn z)
| h::t → .˜(dyn @@ f (.<h>.,K [.<t>.]) (fun () → U .<go t>.))
in go .˜l>.

let recur: (int t ∗ ilist t → (unit → ilist t) → ilist t) → ilist t → ilist t → ilist t =
fun f z → function
| K [] → K []
| K [l] → recur1 f z l
| ls → U (concatmap .<fun l → .˜(dyn @@ recur1 f z .<l>.)>. (dyn ls))

let fail: ilist t = K []
let (|||): ilist t → ilist t → ilist t = fun l1 l2 → match (l1,l2) with
| (K l1, K l2) → K (l1 @ l2)
| (K ls, U ll)
| (U ll, K ls) → U (List.fold right scons ls ll)
| (U l1, U l2) → U .<.˜l1 @ .˜l2>.

let obs : ilist t → int list list code = dyn (∗ Finally, the observation function ∗)
end

Figure 3: The staged DSL interpreter: the DSL compiler

Oleg Kiselyov 33

Exercise 17 Think about the ways to improve the binding-time analysis. For example, how to represent
the choices that are only partially statically known? The list to process may also be (fully or partially)
known statically. When unrolling recursive calls, beware of code explosion.

Exercise 18 How would you extend the DSL compiler to generate slowsort code, explained in §4?

This DSL compiler would not have been possible had the NDet DSL required the monadic interface.
Indeed, if it were, it would have had to support the following operations:

val return : α → α code
val bind : α code → (α → β code) → β code

Both of them are deeply problematic. First, not every OCaml value is convertible to the code that can be
saved into a file and, when run, reproduces the value. Think of closures, reference cells and I/O channels:
which code to write into a file to represent the currently open I/O channel in its current state? We are not
saying that the types (int→int) code, int ref code, in channel code, etc. are unpopulated. They clearly
are, for example .<ref 1>. : int ref code. What we cannot do is to take an int ref value (a location in
the current program heap) and convert it to code to save into a file, which, when compiled and run will
yield the same location. After all, by the time the generated code is run the current program along with
its heap may be long gone. The purpose of the lift module briefly mentioned earlier is to delineate the
types of those values that can be converted to the corresponding code (i.e., liftable). The operation bind
is likewise problematic for code values. Its second argument is a function that takes the value meant to
be produced by the code supplied as the first argument to bind. The generated code, generally, cannot be
run until the generation process is finished: for example, because the code may contain free variables,
to be bound later in the process. Therefore, bind cannot in general apply its second argument. To put it
another way, code generation cannot, generally, be influenced by the result of the already built code. All
in all, bind and return with the above interface and satisfying the familiar monad laws are inexpressible.

6 Objections and Discussion

Having presented the experiment of writing effectful programs as a combination of a simple DSL em-
bedded into a powerful metalanguage, we now discuss the results. This section concentrates on the
comparison to monads and answering the commonly heard objections. §7 discusses the history and the
origins of the underlying theoretical ideas.

6.1 Do we still clearly separate effectful computations?

One of the deservingly appreciated benefits of monadic programs is the clear separation of effectful
computations in types and syntax. Our DSL is meant to be simple and first-order, and hence does not
support the monadic interface. Yet, NDet exhibits an equally clear separation of effectful computations.
Anything of the type ilist t is potentially non-deterministic; everything else is deterministic. Thus from
the type of insert : int t → ilist t → ilist t we immediately tell that insert deterministically transforms
non-deterministic computations.

6.2 It is not generic

Another benefit of monads is the uniformity of representing many (although not all) sorts of effectful
computations and especially effectful abstractions: higher-order effectful functions. Our factoring ap-
proach is not generic. An anonymous reviewer of an early version of this paper (the extended abstract

34 Effects Without Monads

submitted to the ML Family Workshop 2017) well described the situation and voiced the objection as
follows:

This style of programming with non-determinism seems both obvious and awkward. Ev-
erything has to be explicitly lifted and insofar as the approach is different from the traditional
monadic way of structuring this kind of code, it seems less generic and less uniform (there’s
no guiding structure to say how higher-order functions should be lifted, for example).

If so, this caveat should be pointed out, as it stands in contrast to the situation with the
monadic approach, where a single definition of the monad suffices for all types.

One may quibble with the negative tone of “everything has to be explicitly lifted” assessment: after
all, in the monadic approach one also has to lift all literals and the results of any pure computation.
Monadic return is ubiquitous. As far as the facts of the matter are concerned, the reviewer’s description
is accurate. The factoring approach is not generic, is not generally applicable, and is not uniform.

Our experiment has demonstrated, however, that we did not need higher-order domain-specific func-
tions to successfully solve the problems at hand. The experience with LMS [35] likewise shows that
for many practical problems (including machine learning and data base queries), a first-order DSL is
sufficient. We are not the first to observe that many typical functional programs can be written without
higher-order functions (we discuss this point in more detail in §7). The first-order nature of the DSL
greatly simplifies its implementation and reasoning. As to generality, even in Haskell community one
begins to hear the advice “don’t generalize until you use it twice” and “strive for meaningful rather than
generic interfaces”.

The lack of uniformity and of genericity has an upside: efficient and non-standard interpretations,
as we described in §5. In particular, code generation also lacks a uniform way to lift a value to the
corresponding code, see §5.3. That does not pose a problem for our approach but does for the monadic
one.

6.3 But monads are ‘pure’!

Finally, we cannot pass on the commonly heard slogan that the monadic code is ‘pure’ (and, by implica-
tion, is ‘better’). Purity appeared in the Christoph Höger’s message, quoted in §1.1, that prompted this
paper. Purity is often used as a political slogan and rallying cry.11 If we do look at the purity of monadic
code rationally, we see nothing but confusion.

Indeed, let’s look again at Christoph Höger’s example, extended with an extra line for illustration:

do ;
i ←− let f x = incr x in f 3 ;
p ←− put (5 + i) ;
j ←− let f x = incr x in f 3 ;
return p

It may make sense to abstract the pattern:

let putp m = do ;
i ←− m ;
p ←− put (5 + i) ;
j ←− m ;

11It is worth pointing out that Hughes [20, §1] noted that the standard advantages of functional programming – referential
transparency, absence of side effects, no explicit control flow – is something that outsiders do not take too seriously. “Even a
functional programmer should be dissatisfied with these so-called advantages,” he wrote.

Oleg Kiselyov 35

return p

The original code is recovered by the instantiation putp (let f x = incr x in f 3). Suppose putp is used
as a part of a bigger computation:

let big m = do ;
i ←− m;
j ←− putp m;
return (i+1,j)

Since big has to evaluate its argument m anyway, one may be very tempted to ‘optimize’ big as

let bigO m = do ;
i ←− m;
j ←− putp (return i);
return (i+1,j)

That is, we share the result of the computation rather than the computation m itself – and, inadvertently,
change the behavior of our program. In this simple example, the problem is rather apparent. On one
hand, one should not be too surprised: higher-order facility – just like the C preprocessor – gave us the
ability to abstract computations rather than values. Functions such as big, like C macros, can be rather
subtle: their seemingly straightforward refactoring often leads to subtle bugs. To be sure, this is not
the problem created by monads – yet monads do little to ameliorate it. When we write effectful code –
monads or no monads – we have to constantly keep in mind the context of expressions we pass around.

The fact that monadic code ‘desugars’ (is implementable in terms of) side-effect-free code is irrel-
evant. When we use monadic notation, we program within that notation – without considering what
this notation desugars into. Thinking of the desugared code breaks the monadic abstraction. A side-
effect-free, applicative code is normally compiled to (that is, desugars into) C or machine code. If the
desugaring argument has any force, it may be applied just as well to the applicative code, leading to the
conclusion that it all boils down to the machine code and hence all programming is imperative.

Like Hughes [20, §1], I object to the purity argument also methodologically. A particular program-
ming style should be judged on its merits rather than on appeal to emotion. The merits (ease of writ-
ing, ease of implementing, code reuse among several implementations, extensibility) ideally should be
evaluated by observation and experiment. Unfortunately, (properly done) empirical studies of program-
ming styles are few and far between. From the personal experience, I have noticed that the mistakes I
make when writing monadic code are exactly the mistakes I made when programming in C.12 Actually,
monadic mistakes tend to be worse, because monadic notation (compared to that of a typical imperative
language) is ungainly and obscuring.

7 History and connections

We owe the main idea of the factoring approach – representing a program as a simple DSL with a
powerful macro system – to Milner and his Meta Language [14]. We use the metalanguage, however, to
build executable, effectful expressions rather than formulas and theorems. One may trace the origin of
the approach back to Church’s design of the typed lambda-calculus [8], meant to be the metalanguage
providing for abstraction, definition and naming – into which one may embed a logic DSL with constants

12In fact, the bigO example is a very simple version of an actual problem in one of my programs. That mistake has lead to
the redesign of the interface of enumerators, making it less elegant but also less error-prone.

36 Effects Without Monads

such as equality, ∨, ∀α , etc. This idea was further developed in the Logical Framework LF [17]. ML was
explicit, however, in letting programmers define their own interpretations of constants – what we have
demonstrated with several different implementations of the NDet signature.

That typical higher-order functional programs can be written in a first-order language enhanced with
parameterized modules (that is, endowed with a good ‘macro’ facility) was clearly enunciated by Goguen
[13].

“I do not consider higher order functions harmful, useless, or unbeautiful; but I do claim
significant advantages for avoiding higher order functions whenever possible, and I claim
they can be avoided quite systematically in functional programming, by using parameterized
programming instead.” [13, Sec. 1]

Avoiding higher-order functions, Goguen pointed out, brings simplicity and efficiency to interpreters
and compilers, and, mainly, the ease of reasoning: correctness proofs can be done entirely in first-order
logic. The tagless-final style we expound in the present paper may be considered an instance of Goguen’s
parameterized programming. We do not limit the signatures to (conventionally) algebraic (see Ex.3).

Moggi and Fagorzi [28] described monads as a tool for structuring – staging – of effectful compu-
tations. There are other ways to introduce sublanguages, such as the tagless-final style shown off in the
present paper.

Robert Atkey has pointed out Reynolds’ argument in [34] that Algol is the orthogonal combination
of lambda-calculus and imperative programming. (Later, Abramsky and McCusker [1] described the
‘imperative programming’ part as an interaction with a process that implements the behavior of a storage
cell.) Lambda-calculus can thus be thought of as a metalanguage, with the imperative part modeled as
the following DSL (of process-interaction combinators):

module type STATE = sig
type comm
type exp
type var

val skip : comm
val seq : comm → comm → comm

val const : int → exp
val add : exp → exp → exp
val (:=) : var → exp → comm
val read : var → exp
val while : exp → comm → comm
val new : (var → comm) → comm

end

(I am very grateful to Robert Atkey for this signature and example.) On this formulation, Algol also has
the ‘programmable semicolon’: the seq operation – as well as the programmable loop.

Harper [16, Sec.20. Modalities and Monads in Algol] argues that the distinction between ‘pure’
(context-independent) and effectful computations is modal but not monadic: specifically, in a so-called
lax modality [31, 11].

Oleg Kiselyov 37

8 Conclusions

We have described a direct alternative to the monadic encoding of effects: a bare-bone domain-specific
language with effectful operations. The DSL is blended into a metalanguage such as OCaml; therefore, it
can be kept tiny, with no abstraction facilities of its own, or even functions. The metalanguage, serving as
an inordinarily expressive macro system, compensates. We have also argued for the principle of avoiding
premature generalizations and abstractions.

We have reported only one experiment, which – combined with the related LMS experience – sug-
gests that the DSL-metalanguage factoring approach to effectful programming is viable. More experi-
ments are needed to better grasp its usefulness. Specifically we would like to try examples in the scope
of Async or Lwt libraries. A bigger exercise would be to re-implement the programming language Icon –
another language with built-in non-determinism.

One may wonder how the history of (meta) programming might have turned out if the ML evolution
had taken a different turn: kept using ML as the Meta Language as it was initially designed for, but
building objects other than formulas and theorems – in particular, programs.

Acknowledgments

Extensive comments and suggestions by anonymous reviewers are greatly appreciated. I am particularly
grateful to Robert Atkey for very many helpful suggestions, and for explanations of Idealized Algol.
I thank Robert Harper for pointing out the lax modality and its discussion. This work was partially
supported by JSPS KAKENHI Grant Number 17K00091.

References

[1] Samson Abramsky & Guy McCusker (1996): Linearity, Sharing and State: a fully abstract game semantics
for Idealized Algol with active expressions. Electr. Notes Theor. Comput. Sci 3, pp. 2–14, doi:10.1016/S1571-
0661(05)80398-6.

[2] Thorsten Altenkirch, James Chapman & Tarmo Uustalu (2015): Monads need not be endofunctors. Logical
Methods in Computer Science 11(1), doi:10.2168/LMCS-11(1:3)2015.

[3] Robert Atkey (2009): Parameterised Notions of Computation. J. Functional Programming 19(3–4), pp. 335–
376, doi:10.1145/158511.158524.

[4] Phil Bagwell (2002): Fast Functional Lists, Hash-Lists, Deques and Variable Length Arrays. Technical
Report, EPFL. Available at http://infoscience.epfl.ch/record/52465.

[5] Bernd Braßel, Michael Hanus, Björn Peemöller & Fabian Reck (2011): KiCS2: A New Compiler from Curry
to Haskell. In: Functional and Constraint Logic Programming - 20th International Workshop, WFLP 2011,
Odense, Denmark, July 19th, Proceedings, Lecture Notes in Computer Science 6816, Springer, pp. 1–18,
doi:10.1007/978-3-642-22531-4 1.

[6] Stanley Burris & H. P. Sankappanavar (1981): A Course in Universal Algebra. Graduate Texts in Mathemat-
ics 78, Springer, New York, doi:10.1007/978-1-4613-8130-3. Available at http://www.math.uwaterloo.
ca/~snburris/htdocs/UALG/univ-algebra2012.pdf.

[7] Jacques Carette & Oleg Kiselyov (2011): Multi-stage Programming with Functors and Monads: Elimi-
nating Abstraction Overhead from Generic Code. Science of Computer Programming 76(5), pp. 349–375,
doi:10.1016/j.scico.2008.09.008.

[8] Alonzo Church (1940): A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5(2), pp.
56–68, doi:10.2307/2267254.

http://dx.doi.org/10.1016/S1571-0661(05)80398-6
http://dx.doi.org/10.1016/S1571-0661(05)80398-6
http://dx.doi.org/10.2168/LMCS-11(1:3)2015
http://dx.doi.org/10.1145/158511.158524
http://infoscience.epfl.ch/record/52465
http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1007/978-1-4613-8130-3
http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra2012.pdf
http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra2012.pdf
http://dx.doi.org/10.1016/j.scico.2008.09.008
http://dx.doi.org/10.2307/2267254

38 Effects Without Monads

[9] Melvin E. Conway (1963): Design of a separable transition-diagram compiler. Commun. ACM 6(7), pp.
396–408, doi:10.1145/366663.366704.

[10] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In: Fourth ACM Symposium on Principles of
Programming Language, Los Angeles, ACM Press, New York, pp. 238–252.

[11] Matt Fairtlough & Michael Mendler (1997): Propositional Lax Logic. Information and Computation 137(1),
pp. 1–33, doi:10.1006/inco.1997.2627.

[12] Sebastian Fischer, Oleg Kiselyov & Chung-chieh Shan (2011): Purely Functional Lazy Nondetermin-
istic Programming. Journal of Functional Programming 21(4–5), pp. 413–465, doi:10.1016/S0049-
237X(08)72018-4.

[13] Joseph A. Goguen (1988): Higher Order Functions Considered Unnecessary for Higher Order Program-
ming. Technical Report SRI-CSL-88-1, Computer Science Laboratory, SRI International.

[14] M. Gordon, R. Milner, L. Morris, M. Newey & C. Wadsworth (1978): A Metalanguage for Interactive
Proof in LCF. In: Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, ACM SIGACT-SIGPLAN, Tucson, Arizona, pp. 119–130. Available at http://www-public.
tem-tsp.eu/~gibson/Teaching/CSC4504/ReadingMaterial/GordonMMNW78.pdf.

[15] Michael Hanus (2006): Curry: An Integrated Functional Logic Language (Vers. 0.8.2). http://www.

curry-language.org.

[16] Robert Harper (2017): Commentary on Practical Foundations for Programming Languages (Second Edition).
Available at http://www.cs.cmu.edu/~rwh/pfpl/commentary.pdf.

[17] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. Journal of the
ACM 40(1), pp. 143–184, doi:10.1145/138027.138060.

[18] Paul Hudak (1996): Building Domain-Specific Embedded Languages. ACM Computing Surveys 28(4es), p.
196, doi:10.1145/242224.242477.

[19] J. Hughes (2000): Generalising monads to arrows. Science of Computer Programming 37, pp. 67–111,
doi:10.1016/S0167-6423(99)00023-4.

[20] John Hughes (1989): Why Functional Programming Matters. The Computer Journal 32(2), pp. 98–107,
doi:10.1093/comjnl/32.2.98. Available at http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html.

[21] Neil D. Jones, Carsten K. Gomard & Peter Sestoft (1993): Partial Evaluation and Automatic Program Gen-
eration. Prentice-Hall, Englewood Cliffs, NJ.

[22] Neil D. Jones & Flemming Nielson (1995): Abstract Interpretation: Semantics-Based Tool for Program
Analysis. In Samson Abramsky, Dov M. Gabbay & Tom S. E. Maibaum, editors: Semantic Modelling,
Handbook of Logic in Computer Science 4, Clarendon Press, Oxford , UK, pp. 527–636.

[23] Oleg Kiselyov: BER MetaOCaml Home page. Available at http://okmij.org/ftp/ML/MetaOCaml.
html.

[24] Oleg Kiselyov (2012): Typed Tagless Final Interpreters. In: Proceedings of the 2010 International Spring
School Conference on Generic and Indexed Programming, SSGIP’10, Springer-Verlag, Berlin, Heidelberg,
pp. 130–174, doi:10.1007/978-3-642-32202-0 3.

[25] Oleg Kiselyov & Hiromi Ishii (2015): Freer monads, more extensible effects. In: Haskell, ACM, pp. 94–105,
doi:10.1145/2804302.2804319.

[26] Oleg Kiselyov, Amr Sabry & Cameron Swords (2013): Extensible effects: an alternative to monad trans-
formers. In: Haskell, ACM, pp. 59–70, doi:10.1145/2503778.2503791.

[27] Conor McBride & Ross Paterson (2008): Applicative Programming with Effects. J. Functional Programming
18(1), pp. 1–13, doi:10.1017/S0956796800003658.

[28] Eugenio Moggi & Sonia Fagorzi (2003): A Monadic Multi-stage Metalanguage. In Andrew D. Gordon,
editor: Proceedings of FoSSaCS 2003: Foundations of Software Science and Computational Structures, 6th

http://dx.doi.org/10.1145/366663.366704
http://dx.doi.org/10.1006/inco.1997.2627
http://dx.doi.org/10.1016/S0049-237X(08)72018-4
http://dx.doi.org/10.1016/S0049-237X(08)72018-4
http://www-public.tem-tsp.eu/~gibson/Teaching/CSC4504/ReadingMaterial/GordonMMNW78.pdf
http://www-public.tem-tsp.eu/~gibson/Teaching/CSC4504/ReadingMaterial/GordonMMNW78.pdf
http://www.curry-language.org
http://www.curry-language.org
http://www.cs.cmu.edu/~rwh/pfpl/commentary.pdf
http://dx.doi.org/10.1145/138027.138060
http://dx.doi.org/10.1145/242224.242477
http://dx.doi.org/10.1016/S0167-6423(99)00023-4
http://dx.doi.org/10.1093/comjnl/32.2.98
http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://okmij.org/ftp/ML/MetaOCaml.html
http://okmij.org/ftp/ML/MetaOCaml.html
http://dx.doi.org/10.1007/978-3-642-32202-0_3
http://dx.doi.org/10.1145/2804302.2804319
http://dx.doi.org/10.1145/2503778.2503791
http://dx.doi.org/10.1017/S0956796800003658

Oleg Kiselyov 39

International Conference, LNCS 2620, Springer, pp. 358–374. Available at http://www.disi.unige.it/
person/MoggiE/ftp/fossacs03.pdf.

[29] Sebastien Mondet (2017): Bioinformatics, The Typed Tagless Final Way. Available at https://icfp17.
sigplan.org/event/ocaml-2017-papers-bioinformatics-the-typed-tagless-final-way.

[30] P. J. Moylan (1992): The Case against C. Technical Report TR–EE9240, Centre for Industrial Control
Science, Department of Electrical and Computer Engineering, University of Newcastle, Australia.

[31] Frank Pfenning & Rowan Davies (2001): A judgmental reconstruction of modal logic. Mathematical Struc-
tures in Computer Science 11(4), pp. 511–540, doi:10.1017/S0960129501003322.

[32] George Pólya (1945): How to Solve It. Princeton University Press, Princeton, NJ.

[33] Michael O. Rabin & Dana Scott (1959): Finite Automata and Their Decision Problems. IBM Journal of
Research and Development 3, pp. 114–125, doi:10.1147/rd.32.0114.

[34] John C. Reynolds (1981): The Essence of Algol. In Jacobus Willem de Bakker & J. C. van Vliet, editors:
Algorithmic Languages, North-Holland, Amsterdam, pp. 345–372.

[35] Tiark Rompf & Martin Odersky (2012): Lightweight modular staging: a pragmatic approach to runtime
code generation and compiled DSLs. Commun. ACM 55(6), pp. 121–130, doi:10.1145/2184319.2184345.

[36] Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Martin Odersky
& Kunle Olukotun (2011): Building-Blocks for Performance Oriented DSLs. In: DSL, pp. 93–117,
doi:10.4204/EPTCS.66.5.

[37] Sam Staton (2013): Instances of Computational Effects: An Algebraic Perspective. In: LICS, IEEE Computer
Society, p. 519, doi:10.1109/LICS.2013.58.

[38] Nikhil Swamy, Nataliya Guts, Daan Leijen & Michael Hicks (2011): Lightweight Monadic Programming in
ML. In: ICFP’11, pp. 15–27, doi:10.1145/2034773.2034778.

[39] William W. Tait (1967): Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic
Logic 32(2), pp. 198–212, doi:10.1007/BF01447860.

[40] Philip Wadler (1994): Monads and Composable Continuations. Lisp and Symbolic Computation 7(1), pp.
39–56, doi:10.1007/BF01019944.

[41] Mitchell Wand (1982): Specifications, Models, and Implementations of Data Abstractions. Theoretical Com-
puter Science 20(1), pp. 3–32, doi:10.1016/0304-3975(82)90097-4.

[42] Leo White, Frédéric Bour & Jeremy Yallop (2014): Modular implicits. In Oleg Kiselyov & Jacques Garrigue,
editors: ML/OCaml, EPTCS 198, pp. 22–63, doi:10.4204/EPTCS.198.2.

[43] Martin Wirsing (1990): Algebraic specifications. In J. van Leeuwen, editor: Handbook of Theoretical Com-
puter Science B, Elsevier, pp. 675–788.

A Hints to selected exercises

List recursors (Ex. 1) Please try to write the function tail (obtaining the tail of a list) in terms of foldr
and recur.

For more discussion of Gödel recursor and its connection with the fold on natural numbers (i.e.,
Church numerals) see http://okmij.org/ftp/Computation/lambda-calc.html#p-numerals.

Algebraic specifications (Ex. 3) To answer the question if NDet is algebraic we need the definition of
algebraic specification. For ease of reference, we quote the definition from Wirsing’s reference article
[43, §2.1] (see also Burris and Sankappanavar’s detailed course [6]). Formally, a (multi-sorted algebraic)
signature Σ is a pair 〈S,F〉 where S is a set (of sorts) and F is a set (of function symbols) such that F is
equipped with the mapping type : F → Sn× S for some n ≥ 0. The mapping, for a particular f of F is

http://www.disi.unige.it/person/MoggiE/ftp/fossacs03.pdf
http://www.disi.unige.it/person/MoggiE/ftp/fossacs03.pdf
https://icfp17.sigplan.org/event/ocaml-2017-papers-bioinformatics-the-typed-tagless-final-way
https://icfp17.sigplan.org/event/ocaml-2017-papers-bioinformatics-the-typed-tagless-final-way
http://dx.doi.org/10.1017/S0960129501003322
http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1145/2184319.2184345
http://dx.doi.org/10.4204/EPTCS.66.5
http://dx.doi.org/10.1109/LICS.2013.58
http://dx.doi.org/10.1145/2034773.2034778
http://dx.doi.org/10.1007/BF01447860
http://dx.doi.org/10.1007/BF01019944
http://dx.doi.org/10.1016/0304-3975(82)90097-4
http://dx.doi.org/10.4204/EPTCS.198.2
http://okmij.org/ftp/Computation/lambda-calc.html#p-numerals

40 Effects Without Monads

often denoted as f : s1, . . . ,sn→ s where {s,s1, . . . ,sn}⊂ S. A Σ-Algebra consists of an S-sorted family of
non-empty (carrier) sets {As}s∈S and a total function f A : As1 , . . . ,Asn→ As for each f : s1, . . . ,sn→ s∈ F .
For example, in the following OCaml code

module type NAT = sig
type nat
val zero : nat
val succ : nat → nat
val plus : nat → nat → nat

end
module Nat : NAT = struct
type nat = int
let zero = 0
let succ x = x + 1
let plus x y = x + y

end

NAT is the signature, whose set of sorts is the singleton {nat} and function symbols are {zero,succ,plus}.
In Wirsing’s notation, one would write the type of plus as plus : nat,nat→ nat. Nat is a NAT-algebra,
whose carrier is the set of OCaml integers. See also Staton’s extension of algebra formalism [37], per-
mitting ‘richer’ signatures.

Laws of non-determinism (Ex. 4) Which equational laws should hold for non-deterministic com-
putations is a rather complicated and controversial question, with no single answer. The web page
http://okmij.org/ftp/Computation/monads.html#monadplus discusses some of the complexi-
ties.

Sortedness, meta-theoretically (Ex. 11) The exercise is an invitation to contemplate once again how
the overall (sorting) computation is spread across the DSL and the metalanguage. The type of rId is
particularly worth examining closely, asking oneself what do int list and ilist t represent and what is the
difference between them. See also Ex.18.

How to speed up the slowsort (Ex. 12) There is a paper about that: [12].

http://okmij.org/ftp/Computation/monads.html#monadplus

	1 Introduction
	1.1 Motivation
	1.2 Points to Argue

	2 Non-determinism through a DSL
	2.1 DSL Definition
	2.2 List permutation, Non-deterministically
	2.3 Smoother DSL Embedding

	3 Implementing Non-determinism
	4 Advanced non-determinism: Sorting
	5 When Monads will not do
	5.1 More efficient representation
	5.2 Abstract Interpretation
	5.3 Code Generation

	6 Objections and Discussion
	6.1 Do we still clearly separate effectful computations?
	6.2 It is not generic
	6.3 But monads are `pure'!

	7 History and connections
	8 Conclusions
	A Hints to selected exercises

