
M. M. Bersani, D. Bresolin, L. Ferrucci and M. Mazzara (Eds.):
First Workshop on Logics and MODel-checking for self-* systems (MOD*)
EPTCS 168, 2014, pp. 45–58, doi:10.4204/EPTCS.168.4

c© M. Suzuki and T. Watanabe

A Language Support for Exhaustive Fault-Injection in
Message-Passing System Models

Masaya Suzuki Takuo Watanabe
Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan

draftcode@psg.cs.titech.ac.jp takuo@acm.org

This paper presents an approach towards specifying and verifying adaptive distributed systems. We
here take fault-handling as an example of adaptive behaviorand propose a modeling language Sandal
for describing fault-prone message-passing systems. One of the unique mechanisms of the language
is a linguistic support for abstracting typical faults suchas unexpected termination of processes and
random loss of messages. The Sandal compiler translates a model into a set of NuSMV modules.
During the compilation process, faults specified in the model will be woven into the output. One can
thus enjoy full-automatic exhaustive fault-injection without writing faulty behaviors explicitly. We
demonstrate the advantage of the language by verifying a model of the two-phase commit protocol
under faulty environment.

1 Introduction

As large-scale computing is more prevalent than ever, adaptability in software systems gains increasing
importance. In particular, context-awareness and dynamicself adaptability in changing environment
is crucial for developing sustainable systems. In this paper, we take fault-handling as an example of
dynamic adaptive behavior in faulty circumstances and propose a method for describing formal models of
fault-prone message-passing systems. The proposal is a linguistic approach; we designed and developed
a modeling language Sandal that provides abstractions of typical faults such as unexpected termination
of processes and random loss of messages.

The Sandal compiler translates a model into a set of NuSMV[4]modules. During the translation
process, faults specified in the model will be woven into the output; in other words, the compiler performs
a sort of software fault-injection (SFI). SFI and model checking are both fundamental techniques for
developing reliable software. The combination of the both is a promising formal approach for verifying
software systems in unreliable environments.

To model check a system, we usually describe the model of the system with a modeling language.
According to the levels of abstraction, we categorize modeling languages into low-level and high-level
languages. The former provides primitives for describing amodel as a system of automata while the latter
provides abstraction mechanisms for representing processes, channels, etc. NuSMV[4] and LOTOS[1]
are examples of low-level languages, and Promela[6] and Rebeca[8] are categorized as high-level lan-
guages.

Both types of languages have their advantages and are used for modeling various systems. However,
they too have difficulties in describing fault-prone systems due to the lack of proper mechanisms for
expressing faulty behaviors. For example, injecting a fault to a message reception part in a model may
affect not only the part itself and its nearby parts but also other modules of the model. These unwanted
effects result in low modularity and maintainability of themodel.

Automating fault-injection solves the above problem to some extent. For this purpose, some au-
tomation tools such as MODIFI[10] and FSAP/NuSMV-SA[2] have been developed. As these tools are

http://dx.doi.org/10.4204/EPTCS.168.4

46 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

designed to treat hardware faults, they are not suitable forour purpose. In addition, the above-mentioned
modularity problem cannot be solved by these automation tools.

We adopt a linguistic approach to this problem and propose a high-level modeling language Sandal
targeted to message-passing systems. Sandal provides language constructs for specifying typical faults
including timeout, unexpected termination of processes, random loss of messages. The main advantage
of this approach is the increased modularity of model descriptions owing to the language constructs.
Another advantage is that the injection of faults does not affect the original fault-free behaviors of the
model in an unexpected way.

We give the semantics of Sandal as a translation to automata.According to the semantics, we imple-
mented a Sandal compiler that generates a set of NuSMV modules. Every fault specified in the model is
injected automatically by the compiler in a non-deterministic way so that all possible fault scenarios are
generated on the fly by the method referred asexhaustive fault-injection[9].

To demonstrate the advantage of our approach, we present a case study of two-phase commit pro-
tocol. In the case study, we compare the models written in Sandal and Promela from the viewpoint of
modularity and verification performance. From a modularityviewpoint, Sandal achieves better perfor-
mance with both the simplicity of specifying faults and the maintainability of models than Promela. The
verification result shows that Sandal can properly inject faults into the model and can verify the proper-
ties regarding the faults as expected. The overhead of the verification speed of Sandal is in an acceptable
range.

The rest of this paper is organized as follows. The next section gives a detailed discussion of the
problem. Section 3 presents the overview of our modeling language Sandal, and Section 4 demonstrates
its application to the two-phase commit protocol as a case study. Section 5 mentions some future work
and Section 6 concludes with a summary.

2 Fault-Injection for Software Models

Injecting faults into a complex software model is sometimesa complicated process and requires manual
instrumentation of the model. Part of the reason is that software models are not the target of current
automatic fault-injection tools. They usually support thefaults in a single variable like bit-flip or value-
stuck, which are suitable for hardware models. In contrast,typical fault in software systems involves
multiple actions and/or variables; hence it cannot be expressed in an error of a single variable.

The cost of the manual instrumentation depends on the language used to describe the model. If the
model is constructed in a low-level modeling language that only provides the basic constructs represent-
ing state transitions in automata, users should describe the foundation layerof a system as well as the
system behaviors. Here, the foundation layer means the partof the model that thehigh-levelsystem
model is built onto it. For example, to describe a system thatuses message-passing communication,
we need to model the messaging mechanism and the scheduler using the basic language primitives. On
the other hand, if the model is constructed in a high-level modeling language that has the constructs
corresponding to the foundation layer, we can easily build asystem model on top of them.

Unfortunately, the both approaches incur some problems in modeling faults. In the low-level lan-
guage approach, the distinction between the foundation layer and the system model is vague. This
decreases the modularity of the model. To make things worse,the foundation and the injected faults
sometimes affect the system model in an unexpected way. It isalso the case that the primitives provided
by the language is so inexpressive that faults cannot be implemented within the foundation layer. In this
case, the fault descriptions ooze into the system model. Thesame problem may happen even if we use

M. Suzuki and T. Watanabe 47

Figure 1: Implementing Fault-Injection in a Promela Model

high-level languages. This kind of languages provide constructs regarding a foundation layer, but we
cannot change its behavior. This means that it is hard to implement the fault happened in the function-
ality provided by the foundation layer. It might be possibleto overcome this restriction by adding an
abstraction between a system model and the foundation, but it leads the same problem as the approach
of the low-level languages.

To illustrate the problems regarding fault-injection, we show two simple example models written in
Promela. The first example is a timeout action in receiving messages. Due to the overload of network
traffic, operations over the network sometimes take longer time than expected, and the system should
give up the operation. Figure 1 shows an example of a timeout action implemented as fault-injection.
The original fault-free process receives a message from thechannelch and does some computation
based on the received value. In the fault-injected version of the model, the receive operation has a chance
to timeout. The fault is implemented in the part (a). In this part, the timeout action is implemented as
skipping the message reception.

Unlike other kinds of faults dealt with in this paper (randomloss of messages and unexpected termi-
nation of processes), timeout faults are often explicitly handled in the models. This means that the part
(b) of the model may treats the case in which the process failsto receive a message within an expected
time.

Another example is the injection of unexpected terminationfaults. This fault emulates unexpected
shutdown or failure of machines. It can be described in the way that processes have a chance to stop its
execution. For example a simple Promela sentence

if :: true; false :: true fi

can model such behavior. The problem is that the above sentence should be inserted into the place where
each observable action happen. Figure 2 shows the model after the fault-injection. The highlighted parts
are the implementation of this fault. They are scattered in the model, and this may doubles the size of
the resulting model and decrease the maintainability.

48 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

proctype Arbiter() {
 mtype resp;
 if :: true; false :: true fi;
 worker1_recv ! Ready;
 if :: true; false :: true fi;
 worker2_recv ! Ready;
 if :: true; false :: true fi;
 worker1_send ? resp;
 if :: true; false :: true fi;
 if
 :: resp == NotReady ->
 if :: true; false :: true fi;
 all_ready = false
 :: else
 fi;
 if :: true; false :: true fi;
 worker2_send ? resp;
 if :: true; false :: true fi;
 if
 :: resp == NotReady ->

 if :: true; false :: true fi;
 all_ready = false
 :: else
 fi;
 determined = true;
 if :: true; false :: true fi;
 if
 :: all_ready ->
 if :: true; false :: true fi;
 worker1_recv ! Commit;
 if :: true; false :: true fi;
 woeker2_recv ! Commit
 :: else ->
 if :: true; false :: true fi;
 worker1_recv ! Abort;
 if :: true; false :: true fi;
 worker2_recv ! Abort
 fi
}

proctype Worker1() {
 mtype resp;
 if :: true; false :: true fi;
 worker1_recv ? resp;
 if :: true; false :: true fi;
 if
 :: worker1_ready = true;
 if :: true; false :: true fi;
 worker1_send ! Ready
 :: worker1_ready = false;
 if :: true; false :: true fi;
 worker1_send ! NotReady
 fi;
 if :: true; false :: true fi;
 worker1_recv ? worker1_resp
}

proctype Worker2() {
 ...
}

Figure 2: A Promela model with unexpected termination of processes

3 The Modeling Language Sandal

3.1 The Overview of the Language

Sandal is designed to describe message passing systems. Message passing systems have processes com-
municating with each other only by message passing. In Sandal, a system consists of processes and
channels. A process consists of a thread of execution and variables. Unlike the counterpart of real oper-
ating systems, it does not contain many threads. It has only one thread of execution. Sandal employs the
shared-nothing model so processes cannot communicate via shared variables.

There are two types of channels in Sandal: rendezvous channels and buffered channels. With ren-
dezvous channels, two processes can communicate in a synchronous way; both a sender and a receiver
should be ready on the same channel to communicate. With buffered channels, two processes can com-
municate in an asynchronous way. The values sent are saved inthe buffer of a channel. If a receiver
wants to receive a value, it tries to pop out from the buffer.

To achieve fully automatic exhaustive fault-injection, Sandal is aware of the faults. Although there
are many faults that can be considered, Sandal treats three types of faults: unexpected termination of
processes, random loss of messages, and timeout in receiving a message.

Unexpected termination of processes is a fault that processes are unintentionally shut down in ar-
bitrary timing. This is intended to emulate the real situation that one of the machines in a distributed
system is crashed. Hardwares will, sooner or later, be broken. Even if one single computer has a low
failure rate, the accumulated failure rate of the machines will be unignorable. If such faults are recovered
and abstracted away by hardware, it is all right with software. Unfortunately, there is the case that cannot
be recovered by hardware; therefore, a system’s state should be recovered by software. Thus, the fault
tolerance property for unexpected termination of processes is one of the basic requirement for distributed
systems.

Random loss of messages is a fault that some messages are randomly dropped when sending them.
This occurs when a message is sent by an unreliable way like UDP. Timeout in receiving a message
is a fault that a transmission is not completed in some time window. They occur for various reasons:
network overload, sending messages to the machine that is turned off, misconfiguration or maintenance

M. Suzuki and T. Watanabe 49

proc Starter(recv_ch channel { bool }, send_ch channel { bool }) {
var v bool
send(send_ch, true); recv(recv_ch, v)

}
proc Receiver(recv_ch channel { bool }, send_ch channel { bool }) {

var v bool
recv(recv_ch, v); send(send_ch, true)

}
init {

P0: Starter(receiver_to_starter, starter_to_receiver),
P1: Receiver(starter_to_receiver, receiver_to_starter),
receiver_to_starter: channel { bool },
starter_to_receiver: channel { bool },

}

Figure 3: An Example Model in Sandal

of a router, and so on. Such network unresponsiveness can be atemporary matter, so these faults may
repeatedly appear. A possible solution is to send multiple copies of a message until the sender process
receives the ACK for it. However this protocol can not guarantee the reception of the message.

We implemented an experimental compiler that generates a set of NuSMV modules from a Sandal
model. The reason for employing NuSMV as the compilation target is that the semantics of a Sandal
model can be expressed as a set of NuSVM modules in a straightforward manner. The source code of
the compiler (including some sample models) is available atthe first author’s GitHub repository1.

3.2 Syntax

The syntax of Sandal is similar to that of the programming language Go[5], which loosely follows the
tradition of the programming language C. Figure 3 shows a simple model in Sandal that describes a
system in which two processes exchange messages.

3.2.1 Process Templates

A process definition, a construct starting with the keywordproc, defines a template of processes. The
identifier afterproc is the name of the definition. In Figure 3, two templates namedStarter and
Receiver are defined. A list of parameters follows after the template name. The both template in the
example have two parametersrecv_ch andsend_ch of typechannel { bool }, a channel type
whose message contents are boolean values. The last part of the template definition is a block (one or
more statements wrapped in braces).

3.2.2 Init-Blocks

A block preceded by the keywordinit is called aninit-block. It describes the configuration of processes
and channels in the system to be defined.

An init-block contains entries (called init-block entries) separated by commas. Each entry must be
an instantiation of either a process or a channel. It starts with the name of the instance followed by a

1https://github.com/draftcode/sandal

50 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

Figure 4: Two Types of Init-Block Entries

colon and the rest part depends on what it represents (Figure4). If it is an instantiation of a process, the
name of a process definition and its arguments follow. If it isan instantiation of a channel, a channel type
follows.

Fault markerscan be attached to init-block entries. A fault marker attached to a process (or a channel)
states that the specified fault may occur in the process (or channel). They are added to the last part of
the entries in init-blocks. The current version of Sandal provides two fault markers@shutdown and
@drop.

3.2.3 Messaging Statements

Because the statement and expression syntax of Sandal closely matches that of traditional programming
languages, we only mention messaging statements in this subsection for brevity. Statementsrecv and
peek are used for receiving values from a channel. The differenceis thatrecv statements pop the
values out from a channel whilepeek statements just copy them. These operations have non-blocking
and timeout variants.

The arguments to these messaging statements are treated specially. The first argument should be a
channel. This is a channel that is used to communicate. The rest of the arguments should be variable
names. After the statement is executed, the received valuesare stored to these variables.

3.3 Semantics

3.3.1 Processes

A process in a Sandal model can be seen as a state machine. Eachtransition in the machine may have a
condition (calledguard) and side-effects (called actions). For example, a guard may be“a value is ready
to be received in the channel named c”and an action may be“receive a value in the channel and store
it in the variable named v.”

A process is a graph of statements that are executed in order.For example, Figure 5 shows a com-
posite (if) statement and its semantics. There are two branches based on theif statement. They
are merged into one branch after executing assignment statements. Every statement has semantics like
this. The whole process can be expressed in an automaton thatis a concatenation of the automata of its
statements.

M. Suzuki and T. Watanabe 51

Figure 5: A Simple Statement and its Semantics

Figure 6: Two Processes Exchanging a Value

3.3.2 send and recv

A pair of send andrecv statements cooperate to exchange messages. Figure 6 shows the semantics of
them. To show the process of this exchange, consider two processes trying to send and receive a value via
a rendezvous channel. Sending a value via a rendezvous channel has been done by using three internal
variables in a channel: a ready flag, a received flag and a valuebuffer. The initial states of flags are false.
The procedure follows.

1. In the initial setting, two processes are at the state 1 andthe state 4 (in Figure 6). The initial value
of the ready flag is false. Thus the sender process can proceedto the state 2 while the receiver
process cannot proceed to the state 5.

2. After the sender process steps to the state 2, the ready flagis true and the value to be sent is set
to the buffer. At this point, the sender process is blocked because the received flag is false and
the receiver process can make a step to the state 5. The receiver process receives a value from the
buffer and set the received flag.

3. The sender process can proceed to state3, and the whole exchange process has been completed.

With this process, only one sender and receiver can communicate in a channel at once, and, even if
one process tries to communicate, it blocks until the other process comes to communicate with it.

52 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

Figure 7:timeout_recv andnonblock_recv

3.3.3 timeout_recv and nonblock_recv

Sandal provides two variants ofrecv statement:timeout_recv andnonblock_recv. Unlike
recv statement, they are provided as functions because they should return boolean values that express
the status of timeout.

A timeout_recv expression receives a value from a specified channel asrecv statement. In
addition, it may perform a timeout action modeled as the right branch shown in Figure 7 (a). If a value
is successfully received (in Figure 7), the expression evaluates to true. Otherwise, it evaluates to false.

The expression may perform timeout action even if the corresponding sender process is ready to
send a value. This is an intended behavior. Since network delay is unbound, the communication al-
ways has a chance to unable to complete a transmission in a specific time window. The behavior of
timeout_recv expressions reflects these cases.

A nonblock_recv expression is another variant ofrecv statement. It receives a value only if it
is ready. The behavior is modeled with two branches as shown in Figure 7 (b). Only one branch can be
chosen since the guard of one branch is the negation of the other. If a value is ready and is successfully
received, the expression itself evaluates to true. Otherwise, the expression evaluates to false.

The difference betweentimeout_recv andnonblock_recv is that the former is categorized
as a fault. As Sandal injects faults in a non-deterministic manner, the timeout fault will be injected non-
deterministically. On the other hand,nonblock_recv is not a fault and the additional behavior is not
added in a non-deterministic manner.

3.3.4 Unexpected Termination of Processes

Unexpected termination of processes is a fault that a process is unintentionally shutdown. Using this
fault, we can express machine crashes or process crashes. This type of faults will be injected to processes

M. Suzuki and T. Watanabe 53

Figure 8: Unexpected Terminations of Processes

Figure 9: Random Loss of Messages

that have@shutdown fault markers.

To implement this fault, a shutdown state is introduced and transitions to the state are added in the
target process (Figure 8). These newly added transitions have no guard conditions nor actions. The
transitions are injected before and after the execution of statements. This means that each statement is
an atomic action, and the termination fault does not interfere with their execution.

This type of fault are also implemented in non-deterministic way; the chance to execute a statement
normally and the chance to go to the shutdown state are even. Model checker tries both choices and tries
all combination of these choices. By harnessing non-determinism, model checker can simulate arbitrary
shutdown scenarios.

3.3.5 Random Loss of Messages

Random loss of messages is a fault that some messages are dropped. Thus no receiver will be able to
receive them. This type of faults will be injected to channels that have@drop fault markers, and all
send statements over those channels start to drop a message occasionally.

The implementation of this fault is done by modifying the semantics ofsend statements of those
faulty channels. The modifiedsend statements may skip their normal behavior occasionally (Figure 9).

54 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

Figure 10: Two-Phase Commit Protocol

4 Case study

As a case study of this work, this section show the modeling and verification of two-phase commit
protocol that is an algorithm to solve a consensus problem. It provides a way to determine a value which
is acknowledged by all of the machine participated. It is used in major database systems such as MySQL
to realize a transaction over multiple nodes.

The algorithm is performed by a single process called an arbiter and two or more processes called
workers (Figure 10). The arbiter initiates the protocol andproposes a value. The workers receive requests
from the arbiter and send replies to it. In the first phase of the protocol, the arbiter sends a proposal to
the workers. Each worker checks the proposed value and replies whether it is acceptable or not. In the
second phase, the arbiter aggregates the replies from the workers and see if all of the workers can accept
the proposed value. If the value is acceptable, the arbiter sends a commit message to the workers. The
workers received a commit message should accept the proposed value. If one worker replies the value
is not acceptable in the first phase, the proposal fails, and the arbiter sends abort messages to the other
workers.

In this case study, several models are written in Sandal and Promela. One is the model of two-phase
commit protocol without any fault, and the rest is ones with faults. The injected faults are random loss of
messages, unexpected termination of processes, and timeout in receiving messages. In each model, the
safety property of two-phase commit is verified. A Sandal model with these faults is shown in Figure 11.
Random loss of messages and unexpected termination of processes are injected by adding fault markers
and timeout in receiving messages is injected by replacing recv statements of the arbiter with timeout
recv statements.

The verification results show both the Sandal models and the Promela models that produce the valid
results; the safety property holds for the model without faults and the model with timeout faults. The
reason that the property holds with timeout faults is because the models fallback to the abort behavior if

M. Suzuki and T. Watanabe 55

data Response { Ready, NotReady, Commit, Abort }
proc Arbiter(chRecvs []channel { Response },

chSends []channel { Response }) {
var determined bool = false
for ch in chSends {
send(ch, Ready)

}
var all_ready bool = true
for ch in chRecvs {
var resp Response
var recved bool = timeout_recv(ch, resp)
if !recved || (recved && resp != Ready) {

all_ready = false
}

}
determined = true
if all_ready {
for ch in chSends {

send(ch, Commit)
}

} else {
for ch in chSends {

send(ch, Abort)
}

}
}
proc Worker(chRecv channel { Response }, chSend channel { Response }) {

var resp Response
recv(chRecv, resp)
choice { send(chSend, NotReady) }, { send(chSend, Ready) }
recv(chRecv, resp)

}
init {

chWorker1Send : channel { Response } @drop,
chWorker1Recv : channel { Response } @drop,
chWorker2Send : channel { Response } @drop,
chWorker2Recv : channel { Response } @drop,
arbiter : Arbiter([chWorker1Send, chWorker2Send],

[chWorker1Recv, chWorker2Recv]) @shutdown,
worker1 : Worker(chWorker1Recv, chWorker1Send) @shutdown,
worker2 : Worker(chWorker2Recv, chWorker2Send) @shutdown,

}
ltl {

F (G (arbiter.determined &&
((!arbiter.all_ready) ->

(!(worker1.resp == Commit) && !(worker2.resp == Commit)))))
}

Figure 11: A Two-Phase Commit Model in Sandal

56 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

Table 1: Sizes of 2PC Models
Sandal Promela

No fault 51 lines 66 lines
With Timeout 51 lines 74 lines
With Message loss 51 lines 70 lines
With Termination 51 lines 98 lines

Table 2: Verification Speeds of 2PC Models
Sandal Spin

No fault 0.96 sec 1.01 sec
With Timeout 2.88 sec 1.02 sec
With Message loss 2.11 sec 1.06 sec
With Termination 0.51 sec 1.17 sec

Table 3: Allocated BDD Nodes
No fault 925483
With Timeout 261547
With Message loss 369272
With Termination 588751

Table 4: States Stored
No fault 110 states
With Timeout 305 states
With Message loss 11 states
With Termination 7 states

the arbiter cannot receive workers’ replies. The safety property does not hold for the model with random
loss of messages and the model with unexpected termination of processes.

The sizes of the models are measured by lines. Table 1 shows lines of the eight models. Since Sandal
has a built-in fault support, the sizes of the models do not grow even if some faults are injected, and the
models do not lose their maintainability. The injected faults are well controlled by the language so that
unwanted side-effects do not occur. The Promela models increase their sizes as some faults are injected.
To overcome this issue, an automatic fault-injection tool is needed, but avoiding unwanted side-effects is
still hard to accomplish.

Aside from the validity of the verification, the verificationspeed is also a matter of concern. The
benchmark is taken using Linux 3.12.9 running on top of a PC with Intel Core i7-3770K 3.50GHz and
16GB memory. For model checking, we use NuSMV 2.5.4 (as the backend of Sandal) and Spin 6.2.5.
The execution times needed to verify the models are shown in Table 2. It shows the verification speed
of Sandal is still acceptable even if some faults are injected. It is interesting that the speed is increased
or decreased when injecting faults in Sandal while there areno differences among the speeds of the Spin
models. The reason for this is considered to be the difference of the model checking algorithms. NuSMV,
the backend of Sandal, does symbolic model checking while Spin does explicit model checking.

The resources consumed in the verifications are shown in Table 3 and Table 4. They show the number
of the BDD nodes allocated by NuSMV and the number of the states stored by Spin respectively.

No significant relationships between the BDD node sizes and the verification speeds can be observed.
The number of states in some Promela models are very small. This is because Spin stops verification
when it find the first counter-example.

5 Future Work

The result reported in this paper is a part of our ongoing worktowards the verifiable framework for
self-adaptable distributed systems based on a reflective architecture proposed by the second author[11].
To achieve the goal, we need to establish a modeling framework for general adaptable (or reflective)
behaviors The current version of Sandal only provides limited features for modeling adaptable behaviors
(a fixed set of fault-handling actions) as its language constructs. Based on this work, future work is
discussed as follows.

M. Suzuki and T. Watanabe 57

Fault as a Cross-Cutting Concern A cross-cutting concern is a feature that affects multiple parts of
the program. These concerns include authentication and logging. Because they are difficult to compose
in a modular way in many cases, their implementation is scattered in the source code of the program.
Therefore, separation of concerns principle is often violated.

Aspect-oriented programming (AOP) [7] is one of the approaches for this problem. AOP is motivated
to increase modularity by enforcing separation of concern principle.

In the fault-injection approach proposed in this paper, faults can be captured as a cross-cutting con-
cern. It affects multiple parts of a system, and the realization of a fault is scattered in a model. If the
modeling language employ AOP, faults as well as other adaptable behaviors can be organized into aspects
and incorporated into the model by a similar mechanism to aspect weaving. Actually aspect-oriented ap-
proach is proven to be effective not only in programming languages but also in modeling languages[12].

Feedback of Failure Detectors Failure detector is a mechanism that enables a machine to estimate
failures in a system [3]. The failure it can treat varies. Most simple one is estimating other machine’s
crashes. The timeout feature of Sandal is also one of failuredetection. It can detect a message cannot
be sent in some time window and can feedback to the system. Failure detectors do only estimation due
to the limitation of the reliability of themselves. Besidesthis limitation, they contribute constructing
fault-tolerant distributed systems.

Giving feedback from failure-detection mechanisms to system models is one of the future work.
The mechanism itself is sometimes unrelated to a system. It can be abstracted away from the system
model specification, and, thus, modeling languages can provide a way to describe those mechanisms
with modularity.

6 Concluding Remark

We propose a linguistic approach to reducing the cost of modeling fault-prone distributed systems. The
key technology is a variation of software fault injection (SFI) applied to process models used for model
checking. We designed and implemented a modeling language Sandal that supports the specification of
typical faults in message-passing systems. Using the Sandal compiler, all possible faults specified in a
model is automatically injected into the result that can be model checked by NuSMV. The advantage of
the method is demonstrated by specifying and verifying models of the two-phase commit protocol.

Acknowledgments

This work is partly supported by JSPS KAKENHI Grant No. 24500033.

References

[1] Tommaso Bolognesi & Ed Brinksma (1987):Introduction to the ISO specification language LOTOS. Com-
puter Networks and ISDN Systems14(1), pp. 25–59,DOI: 10.1016/0169-7552(87)90085-7.

[2] Marco Bozzano & Adolfo Villafiorita (2003): Improving System Reliability via Model Checking:
The FSAP/NuSMV-SA Safety Analysis Platform. In: Computer Safety, Reliability, and Security
(SAFECOMP 2003), Lecture Notes in Computer Science2788, Springer-Verlag, pp. 49–62,DOI:
10.1007/978-3-540-39878-3_5.

http://dx.doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1007/978-3-540-39878-3_5

58 A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

[3] Tushar Deepak Chandra & Sam Toueg (1996):Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM43(2), pp. 225–267,DOI: 10.1145/226643.226647.

[4] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani & Armando Tacchella (2002):NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Computer Aided Verification, Lecture Notes in Computer Science2404, Springer-Verlag, pp.
359–364,DOI: 10.1007/3-540-45657-0_29.

[5] The Go Programming Language. Available athttp://golang.org.

[6] Gerard J. Holzmann (1997):The Model Checker Spin. IEEE Transactions on Software Engineering23(5),
pp. 279–295,DOI: 10.1109/32.588521.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, ChrisMaeda, Cristina Lopes, Jean-Marc Loingtier &
John Irwin (1997):Aspect-Oriented Programming. In: ECOOP ’97 – Object-Oriented Programming, Lecture
Notes in Computer Science1241, Springer-Verlag, pp. 220–242,DOI: 10.1007/BFb0053381.

[8] Marjan Sirjani, Ali Movaghar, Amin Shali & Frank S. de Boer (2004):Modeling and Verification of Reactive
Systems using Rebeca. Fundamenta Informaticae63(4), pp. 385–410. Available athttp://iospress.
metapress.com/content/wg947keu129prhbd/.

[9] Wilfried Steiner, John Rushby, Maria Sorea & Holger Pfeifer (2004): Model Checking a Fault-Tolerant
Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation. In: International Conference
on Dependable Systems and Networks (DSN ’04), pp. 189–198,DOI: 10.1109/DSN.2004.1311889.

[10] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson &Martin Törngren (2010):MODIFI: A MODel-
Implemented Fault Injection Tool. In: Computer Safety, Reliability, and Security, Lecture Notes in Computer
Science6351, Springer-Verlag, pp. 210–222,DOI: 10.1007/978-3-642-15651-9_16.

[11] Takuo Watanabe (2013):Towards a Compositional Reflective Architecture for Actor-Based Systems. In:
Workshop on Programming based on Actors, Agents, and Decentralized Control (AGERE!@SPLASH 2013),
ACM, pp. 19–24,DOI: 10.1145/2541329.2541341.

[12] Kiyoshi Yamada & Takuo Watanabe (2006):An Aspect-Oriented Approach to Modular Behavioral Speci-
fication. In: Proceedings of 1st Workshop on Aspect-Based and Model-Based Separation of Concerns in
Software Systems (ABMB 2005), Electronic Notes in Theoretical Computer Science163(1), Elsevier, pp.
45–56,DOI: 10.1016/j.entcs.2006.07.002.

http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1007/3-540-45657-0_29
http://golang.org
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/BFb0053381
http://iospress.metapress.com/content/wg947keu129prhbd/
http://iospress.metapress.com/content/wg947keu129prhbd/
http://dx.doi.org/10.1109/DSN.2004.1311889
http://dx.doi.org/10.1007/978-3-642-15651-9_16
http://dx.doi.org/10.1145/2541329.2541341
http://dx.doi.org/10.1016/j.entcs.2006.07.002

	1 Introduction
	2 Fault-Injection for Software Models
	3 The Modeling Language Sandal
	3.1 The Overview of the Language
	3.2 Syntax
	3.2.1 Process Templates
	3.2.2 Init-Blocks
	3.2.3 Messaging Statements

	3.3 Semantics
	3.3.1 Processes
	3.3.2 send and recv
	3.3.3 timeoutrecv and nonblockrecv
	3.3.4 Unexpected Termination of Processes
	3.3.5 Random Loss of Messages

	4 Case study
	5 Future Work
	6 Concluding Remark

