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In previous work we have illustrated the benefits that compositional data types (CDTs) offer for im-
plementing languages and in general for dealing with abstract syntax trees (ASTs). Based on Swier-
stra’s data types à la carte, CDTs are implemented as a Haskell library that enables the definition
of recursive data types and functions on them in a modular and extendable fashion. Although CDTs
provide a powerful tool for analysing and manipulating ASTs, they lack a convenient representation
of variable binders. In this paper we remedy this deficiency by combining the framework of CDTs
with Chlipala’s parametric higher-order abstract syntax (PHOAS). We show how a generalisation
from functors to difunctors enables us to capture PHOAS while still maintaining the features of the
original implementation of CDTs, in particular its modularity. Unlike previous approaches, we avoid
so-called exotic terms without resorting to abstract types: this is crucial when we want to perform
transformations on CDTs that inspect the recursively computed CDTs, e.g. constant folding.

1 Introduction

When implementing domain-specific languages (DSLs)—either as embedded languages or stand-alone
languages—the abstract syntax trees (ASTs) of programs are usually represented as elements of a recur-
sive algebraic data type. These ASTs typically undergo various transformation steps, such as desugaring
from a full language to a core language. But reflecting the invariants of these transformations in the type
system of the host language can be problematic. For instance, in order to reflect a desugaring transforma-
tion in the type system, we must define a separate data type for ASTs of the core language. Unfortunately,
this has the side effect that common functionality, such as pretty printing, has to be duplicated.

Wadler identified the essence of this issue as the Expression Problem, i.e. “the goal [. . . ] to define
a datatype by cases, where one can add new cases to the datatype and new functions over the datatype,
without recompiling existing code, and while retaining static type safety” [24]. Swierstra [22] elegantly
addressed this problem using Haskell and its type classes machinery. While Swierstra’s approach exhibits
invaluable simplicity and clarity, it lacks features necessary to apply it in a practical setting beyond the
confined simplicity of the expression problem. To this end, the framework of compositional data types
(CDTs) [4] provides a rich library for implementing practical functionality on highly modular data types.
This includes support of a wide array of recursion schemes in both pure and monadic forms, as well as
mutually recursive data types and generalised algebraic data types (GADTs) [18].

What CDTs fail to address, however, is a transparent representation of variable binders that frees the
programmer’s mind from common issues like computations modulo α-equivalence and capture-avoiding
substitutions. The work we present in this paper fills that gap by adopting (a restricted form of) higher-
order abstract syntax (HOAS) [15], which uses the host language’s variable binding mechanism to rep-
resent binders in the object language. Since implementing efficient recursion schemes in the presence of
HOAS is challenging [8, 13, 19, 25], integrating this technique with CDTs is a non-trivial task.

Following a brief introduction to CDTs in Section 2, we describe how to achieve this integration as
follows:
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• We adopt parametric higher-order abstract syntax (PHOAS) [6], and we show how to capture this
restricted form of HOAS via difunctors. The thus obtained parametric compositional data types
(PCDTs) allow for the definition of modular catamorphisms à la Fegaras and Sheard [8] in the
presence of binders. Unlike previous approaches, our technique does not rely on abstract types,
which is crucial for modular computations that are also modular in their result type (Section 3).

• We illustrate why monadic computations constitute a challenge in the parametric setting and we
show how monadic catamorphisms can still be defined for a restricted class of PCDTs (Section 4).

• We show how to transfer the restricted recursion scheme of term homomorphisms [4] to PCDTs.
Term homomorphisms enable the same flexibility for reuse and opportunity for deforestation [23]
that we know from CDTs (Section 5).

• We show how to represent mutually recursive data types and GADTs by generalising PCDTs in
the style of Johann and Ghani [10] (Section 6).

• We illustrate the practical applicability of our framework by means of a complete library example,
and we show how to automatically derive functionality for deciding equality (Section 7).

Parametric compositional data types are available as a Haskell library1, including numerous examples
that are not included in this paper. All code fragments presented throughout the paper are written in
(literate) Haskell [11], and the library relies on several language extensions that are currently only known
to be supported by the Glasgow Haskell Compiler (GHC).

2 Compositional Data Types

Based on Swierstra’s data types à la carte [22], compositional data types (CDTs) [4] provide a framework
for manipulating recursive data structures in a type-safe, modular manner. The prime application of
CDTs is within language implementation and AST manipulation, and we present the basic concepts of
CDTs in this section. More advanced concepts are introduced in Sections 4, 5, and 6.

2.1 Motivating Example

Consider an extension of the lambda calculus with integers, addition, let expressions, and error signalling:

e ::= λx.e | x | e1 e2 | n | e1 + e2 | let x = e1 in e2 | error

Our goal is to implement a pretty printer, a desugaring transformation, constant folding, and a call-by-
value interpreter for the simple language above. The desugaring transformation will turn let expressions
let x = e1 in e2 into (λx.e2) e1. Constant folding and evaluation will take place after desugaring, i.e. both
computations are only defined for the core language without let expressions.

The standard approach to representing the language above is in terms of an algebraic data type:

type Var = String

data Exp = Lam Var Exp | Var Var | App Exp Exp | Lit Int | Plus Exp Exp | Let Var Exp Exp | Err

We may then straightforwardly define the pretty printer pretty :: Exp→ String. However, when we want
to implement the desugaring transformation, we need a new algebraic data type:

data Exp′ = Lam′ Var Exp′ | Var′ Var | App′ Exp′ Exp′ | Lit′ Int | Plus′ Exp′ Exp′ | Err′

1See http://hackage.haskell.org/package/compdata.
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That is, we need to replicate all constructors of Exp—except Let—into a new type Exp′ of core expres-
sions, in order to obtain a properly typed desugaring function desug :: Exp→ Exp′. Not only does this
mean that we have to replicate the constructors, we also need to replicate common functionality, e.g. in
order to obtain a pretty printer for Exp′ we must either write a new function, or write an injection function
Exp′→ Exp.

CDTs provide a solution that allows us to define the ASTs for (core) expressions without having to
duplicate common constructors, and without having to give up on statically guaranteed invariants about
the structure of the ASTs. CDTs take the viewpoint of data types as fixed points of functors [12], i.e. the
definition of the AST data type is separated into non-recursive signatures (functors) on the one hand and
the recursive structure on the other hand. For our example, we define the following signatures (omitting
the straightforward Functor instance declarations):

data Lam a = Lam Var a data Lit a = Lit Int data Let a = Let Var a a

data Var a = Var Var data Plus a = Plus a a data Err a = Err

data App a = App a a

Signatures can then be combined in a modular fashion by means of a formal sum of functors:

data (f :+: g) a = Inl (f a) | Inr (g a)

instance (Functor f ,Functor g)⇒ Functor (f :+: g) where
fmap f (Inl x) = Inl (fmap f x)
fmap f (Inr x) = Inr (fmap f x)

type Sig = Lam :+: Var :+: App :+: Lit :+: Plus :+: Err :+: Let

type Sig′ = Lam :+: Var :+: App :+: Lit :+: Plus :+: Err

Finally, the type of terms over a (potentially compound) signature f can be constructed as the (least)
fixed point of the signature f :

data Term f = In {out :: f (Term f )}

Modulo strictness, Term Sig is isomorphic to Exp, and Term Sig′ is isomorphic to Exp′.
The use of formal sums entails that each (sub)term has to be explicitly tagged with zero or more Inl

or Inr tags. In order to add the right tags automatically, injections are derived using a type class:

class sub :≺: sup where
inj :: sub a→ sup a
proj :: sup a→Maybe (sub a)

Using overlapping instance declarations, the subsignature relation :≺: can be constructively defined [22].
However, due to the limitations of Haskell’s type class system, instances are restricted to the form f :≺: g
where f is atomic, i.e. not a sum, and g is a right-associated sum, e.g. g1 :+: (g2 :+: g3) but not (g1 :+:
g2) :+: g3. With the carefully defined instances for :≺:, injection and projection functions for terms can
then be defined as follows:

inject :: (g :≺: f )⇒ g (Term f )→ Term f
inject = In . inj

project :: (g :≺: f )⇒ Term f →Maybe (g (Term f ))
project = proj .out

Additionally, in order to reduce the syntactic overhead, the CDTs library can automatically derive
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smart constructors that comprise the injections [4], e.g.

iPlus :: (Plus :≺: f )⇒ Term f → Term f → Term f
iPlus x y = inject (Plus x y)

Using the derived smart constructors, we can then write expressions such as let x = 2 in (λy.y+ x) 3
without syntactic overhead:

e :: Term Sig
e = iLet "x" (iLit 2) ((iLam "y" (Var "y" ‘iPlus‘ Var "x")) ‘iApp‘ iLit 3)

In fact, the principal type of e is the open type:

(Lam :≺: f ,Var :≺: f ,App :≺: f ,Lit :≺: f ,Plus :≺: f ,Let :≺: f )⇒ Term f

which means that e can be used as a term over any signature containing at least these six signatures!

Next, we want to define the pretty printer, i.e. a function of type Term Sig→ String. In order to make
a recursive function definition modular too, it is defined as the catamorphism of an algebra [12]:

type Alg f a = f a→ a

cata :: Functor f ⇒ Alg f a→ Term f → a
cata φ = φ . fmap (cata φ) .out

The advantage of this approach is that algebras can be easily combined over formal sums. A modular
algebra definition is obtained by an open family of algebras indexed by the signature and closed under
forming formal sums. This is achieved as a type class:

class Pretty f where
φPretty :: Alg f String

instance (Pretty f ,Pretty g)⇒ Pretty (f :+: g) where
φPretty (Inl x) = φPretty x
φPretty (Inr x) = φPretty x

pretty :: (Functor f ,Pretty f )⇒ Term f → String
pretty = cata φPretty

The instance declaration that lifts Pretty instances to sums is crucial. Yet, the structure of its decla-
ration is independent from the particular algebra class, and the CDTs library provides a mechanism for
automatically deriving such instances [4]. What remains in order to implement the pretty printer is to
define instances of the Pretty algebra class for the six signatures:

instance Pretty Lam where
φPretty (Lam x e) = "(\\"++ x++". "++ e++")"

instance Pretty Var where
φPretty (Var x) = x

instance Pretty App where
φPretty (App e1 e2) = "("++ e1 ++" "++ e2 ++")"

instance Pretty Lit where
φPretty (Lit n) = show n

instance Pretty Plus where
φPretty (Plus e1 e2) = "("++ e1 ++" + "++ e2 ++")"
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instance Pretty Let where
φPretty (Let x e1 e2) = "(let "++ x++" = "++ e1 ++" in "++ e2 ++")"

instance Pretty Err where
φPretty Err = "error"

With these definitions we then have that pretty e evaluates to the string (let x = 2 in ((\y. (y +

x)) 3)). Moreover, we automatically obtain a pretty printer for the core language as well, cf. the type
of pretty.

3 Parametric Compositional Data Types

In the previous section we considered a first-order encoding of the language, which means that we have
to be careful to ensure that computations are invariant under α-equivalence, e.g. when implementing
capture-avoiding substitutions. Higher-order abstract syntax (HOAS) [15] remedies this issue, by repre-
senting binders and variables of the object language in terms of those of the meta language.

3.1 Higher-Order Abstract Syntax

In a standard Haskell HOAS encoding we replace the signatures Var and Lam by a revised Lam signature:

data Lam a = Lam (a→ a)

Now, however, Lam is no longer an instance of Functor, because a occurs both in a contravariant po-
sition and a covariant position. We therefore need to generalise functors in order to allow for negative
occurrences of the recursive parameter. Difunctors [13] provide such a generalisation:

class Difunctor f where
dimap :: (a→ b)→ (c→ d)→ f b c→ f a d

instance Difunctor (→) where
dimap f g h = g .h . f

instance Difunctor f ⇒ Functor (f a) where
fmap = dimap id

A difunctor must preserve the identity function and distribute over function composition:

dimap id id = id and dimap (f .g) (h . i) = dimap g h .dimap f i

The derived Functor instance obtained by fixing the contravariant argument will hence satisfy the functor
laws, provided that the difunctor laws are satisfied.

Meijer and Hutton [13] showed that it is possible to perform recursion over difunctor terms:

data TermMH f = InMH {outMH :: f (TermMH f ) (TermMH f )}
cataMH :: Difunctor f ⇒ (f b a→ a)→ (b→ f a b)→ TermMH f → a
cataMH φ ψ = φ .dimap (anaMH φ ψ) (cataMH φ ψ) .outMH

anaMH :: Difunctor f ⇒ (f b a→ a)→ (b→ f a b)→ b→ TermMH f
anaMH φ ψ = InMH .dimap (cataMH φ ψ) (anaMH φ ψ) .ψ

With Meijer and Hutton’s approach, however, in order to lift an algebra φ :: f b a→ a to a catamorphism,
we also need to supply the inverse coalgebra ψ :: b→ f b a. That is, in order to write a pretty printer we
must supply a parser, which is not feasible—or perhaps even possible—in practice.
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Fortunately, Fegaras and Sheard [8] realised that if the embedded functions within terms are para-
metric, then the inverse coalgebra is only used in order to undo computations performed by the algebra,
since parametric functions can only “push around their arguments” without examining them. The solu-
tion proposed by Fegaras and Sheard is to add a placeholder to the structure of terms, which acts as a
right-inverse of the catamorphism:2

data TermFS f a = InFS (f (TermFS f a) (TermFS f a)) | Place a

cataFS :: Difunctor f ⇒ (f a a→ a)→ TermFS f a→ a
cataFS φ (InFS t) = φ (dimap Place (cataFS φ) t)
cataFS φ (Place x) = x

We can then define e.g. a signature for lambda terms, and a function that calculates the number of bound
variables occurring in a term, as follows (the example is adopted from Washburn and Weirich [25]):

data T a b = Lam (a→ b) | App b b -- T is a difunctor, we omit the instance declaration

φ :: T Int Int→ Int
φ (Lam f ) = f 1
φ (App x y) = x+ y

countVar :: TermFS T Int→ Int
countVar = cataFS φ

In the TermFS encoding above, however, parametricity of the embedded functions is not guaranteed.
More specifically, the type allows for three kinds of exotic terms [25], i.e. values in the meta language
that do not correspond to terms in the object language:

badPlace :: TermFS T Bool
badPlace = InFS (Place True)

badCata :: TermFS T Int
badCata = InFS (Lam (λx→ if countVar x≡ 0 then x else Place 0))

badCase :: TermFS T a
badCase = InFS (Lam (λx→ case x of TermFS (App )→ TermFS (App x x); → x))

Fegaras and Sheard showed how to avoid exotic terms by means of a custom type system. Washburn and
Weirich [25] later showed that exotic terms can be avoided in a Haskell encoding via type parametricity
and an abstract type of terms: terms are restricted to the type ∀ a .TermFS f a, and the constructors of
TermFS are hidden. Parametricity rules out badPlace and badCata, while the use of an abstract type
rules out badCase.

3.2 Parametric Higher-Order Abstract Syntax

While the approach of Washburn and Weirich effectively rules out exotic terms in Haskell, we prefer a
different encoding that relies on type parametricity only, and not an abstract type of terms. Our solution
is inspired by Chlipala’s parametric higher-order abstract syntax (PHOAS) [6]. PHOAS is similar to
the restricted form of HOAS that we saw above; however, Chlipala makes the parametricity explicit in
the definition of terms by distinguishing between the type of bound variables and the type of recursive
terms. In Chlipala’s approach, an algebraic data type encoding of lambda terms LTerm can effectively be
defined via an auxiliary data type LTrm of “preterms” as follows:

2Actually, Fegaras and Sheard do not use difunctors, but the given definition corresponds to their encoding.
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type LTerm = ∀ a .LTrm a

data LTrm a = Lam (a→ LTrm a) | Var a | App (LTrm a) (LTrm a)

The definition of LTerm guarantees that all functions embedded via Lam are parametric, and likewise
that Var—Fegaras and Sheard’s Place—can only be applied to variables bound by an embedded func-
tion. Atkey [2] showed that the encoding above adequately captures closed lambda terms modulo α-
equivalence, assuming that there is no infinite data and that all embedded functions are total.

3.2.1 Parametric Terms

In order to transfer Chlipala’s idea to non-recursive signatures and catamorphisms, we need to distinguish
between covariant and contravariant uses of the recursive parameter. But this is exactly what difunctors
do! We therefore arrive at the following definition of terms over difunctors:

newtype Term f = Term {unTerm ::∀ a .Trm f a}
data Trm f a = In (f a (Trm f a)) | Var a -- “preterm”

Note the difference in Trm compared to TermFS (besides using the name Var rather than Place): the
contravariant argument to the difunctor f is not the type of terms Trm f a, but rather a parametrised type a,
which we quantify over at top-level to ensure parametricity. Hence, the only way to use a bound variable
is to wrap it in a Var constructor—it is not possible to inspect the parameter. This representation more
faithfully captures—we believe—the restricted form of HOAS than the representation of Washburn and
Weirich: in our encoding it is explicit that bound variables are merely placeholders, and not the same as
terms. Moreover, in some cases we actually need to inspect the structure of terms in order to define term
transformations—we will see such an example in Section 3.2.3. With an abstract type of terms, this is
not possible as Washburn and Weirich note [25].

Before we define algebras and catamorphisms, we lift the ideas underlying CDTs to parametric com-
positional data types (PCDTs), namely coproducts and implicit injections. Fortunately, the constructions
of Section 2 are straightforwardly generalised (the instance declarations for :≺: are exactly as in data
types à la carte [22], so we omit them here):

data (f :+: g) a b = Inl (f a b) | Inr (g a b)

instance (Difunctor f ,Difunctor g)⇒ Difunctor (f :+: g) where
dimap f g (Inl x) = Inl (dimap f g x)
dimap f g (Inr x) = Inr (dimap f g x)

class sub :≺: sup where
inj :: sub a b→ sup a b
proj :: sup a b→Maybe (sub a b)

inject :: (g :≺: f )⇒ g a (Trm f a)→ Trm f a
inject = In . inj

project :: (g :≺: f )⇒ Trm f a→Maybe (g a (Trm f a))
project (Term t) = proj t
project (Var ) = Nothing

We can then recast our previous signatures from Section 2.1 as difunctors:

data Lam a b = Lam (a→ b) data Lit a b = Lit Int data Let a b = Let b (a→ b)

data App a b = App b b data Plus a b = Plus b b data Err a b = Err
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type Sig = Lam :+: App :+: Lit :+: Plus :+: Err :+: Let

type Sig′ = Lam :+: App :+: Lit :+: Plus :+: Err

Finally, we can automatically derive instance declarations for Difunctor as well as smart constructor
definitions that comprise the injections as for CDTs [4]. However, in order to avoid the explicit Var
constructor, we insert dimap Var id into the declarations, e.g.

iLam :: (Lam :≺: f )⇒ (Trm f a→ Trm f a)→ Trm f a
iLam f = inject (dimap Var id (Lam f )) -- (= inject (Lam (f .Var)))

Using iLam we then need to be aware, though, that even if it takes a function Trm f a→ Trm f a as
argument, the input to that function will always be of the form Var x by construction. We can now again
represent terms such as let x = 2 in (λy.y+ x) 3 compactly as follows:

e :: Term Sig
e = Term (iLet (iLit 2) (λx→ (iLam (λy→ y ‘iPlus‘ x) ‘iApp‘ iLit 3)))

3.2.2 Algebras and Catamorphisms

Given the representation of terms as fixed points of difunctors, we can now define algebras and catamor-
phisms:

type Alg f a = f a a→ a

cata :: Difunctor f ⇒ Alg f a→ Term f → a
cata φ (Term t) = cat t

where cat (In t) = φ (fmap cat t) -- recall: fmap = dimap id
cat (Var x) = x

The definition of cata above is essentially the same as cataFS. The only difference is that bound
variables within terms are already wrapped in a Var constructor. Therefore, the contravariant argument
to dimap is the identity function, and we consequently use the derived function fmap instead.

With these definitions in place, we can now recast the modular pretty printer from Section 2.1 to
the new difunctor signatures. However, since we now use a higher-order encoding, we need to generate
variable names for printing. We therefore arrive at the following definition (the example is adopted from
Washburn and Weirich [25], but we use streams rather than lists to represent the sequence of available
variable names):

data Stream a = Cons a (Stream a)

class Pretty f where
φPretty :: Alg f (Stream String→ String)

-- instance declaration that lifts Pretty to coproducts omitted

pretty :: (Difunctor f ,Pretty f )⇒ Term f → String
pretty t = cata φPretty t (names 1)

where names n = Cons (’x’ : show n) (names (n+1))

instance Pretty Lam where
φPretty (Lam f ) (Cons x xs) = "(\\"++ x++". "++ f (const x) xs++")"

instance Pretty App where
φPretty (App e1 e2) xs = "("++ e1 xs++" "++ e2 xs++")"
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instance Pretty Lit where
φPretty (Lit n) = show n

instance Pretty Plus where
φPretty (Plus e1 e2) xs = "("++ e1 xs++" + "++ e2 xs++")"

instance Pretty Let where
φPretty (Let e1 e2) (Cons x xs) = "(let "++ x++" = "++ e1 xs++

" in "++ e2 (const x) xs++")"

instance Pretty Err where
φPretty Err = "error"

With this implementation of pretty we then have that pretty e evaluates to the string (let x1 = 2 in

((\x2. (x2 + x1)) 3)).

3.2.3 Term Transformations

The pretty printer is an example of a modular computation over a PCDT. However, we also want to
define computations over PCDTs that construct PCDTs, e.g. the desugaring transformation. That is, we
want to construct functions of type Term f → Term g, which means that we must construct functions
of type (∀ a . Trm f a)→ (∀ a . Trm g a). Following the approach of Section 3.2.2, we construct such
functions by forming the catamorphisms of algebras of type Alg f (∀ a .Trm g a), i.e. functions of type
f (∀ a .Trm g a) (∀ a .Trm g a)→ ∀ a .Trm g a. However, in order to avoid the nested quantifiers, we
instead use parametric term algebras of type ∀ a .Alg f (Trm g a). From such algebras we then obtain
functions of the type ∀ a .(Trm f a→ Trm g a) as catamorphisms, which finally yield the desired functions
of type (∀ a .Trm f a)→ (∀ a .Trm g a). With these considerations in mind, we arrive at the following
definition of the desugaring algebra type class:

class Desug f g where
φDesug ::∀ a .Alg f (Trm g a) -- not Alg f (Term g) !

-- instance declaration that lifts Desug to coproducts omitted

desug :: (Difunctor f ,Desug f g)⇒ Term f → Term g
desug t = Term (cata φDesug t)

The algebra type class above is a multi-parameter type class: it is parametrised both by the domain
signature f and the codomain signature g. We do this in order to obtain a desugaring function that is also
modular in the codomain, similar to the evaluation function for vanilla CDTs [4].

We can now define the instances of Desug for the six signatures in order to obtain the desugaring
function. However, by utilising overlapping instances we can make do with just two instance declara-
tions:

instance (Difunctor f , f :≺: g)⇒ Desug f g where
φDesug = inject .dimap Var id -- default instance for core signatures

instance (App :≺: f ,Lam :≺: f )⇒ Desug Let f where
φDesug (Let e1 e2) = iLam e2 ‘iApp‘ e1

Given a term e :: Term Sig, we then have that desug e :: Term Sig′, i.e. the type shows that indeed all
syntactic sugar has been removed.

Whereas the desugaring transformation shows that we can construct PCDTs from PCDTs in a mod-
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ular fashion, we did not make use of the fact that PCDTs can be inspected. That is, the desugaring
transformation does not inspect the recursively computed values, cf. the instance declaration for Let.
However, in order to implement the constant folding transformation, we actually need to inspect recur-
sively computed PCDTs. We again utilise overlapping instances:

class Constf f g where
φConstf ::∀ a .Alg f (Trm g a)

-- instance declaration that lifts Constf to coproducts omitted

constf :: (Difunctor f ,Constf f g)⇒ Term f → Term g
constf t = Term (cata φConstf t)

instance (Difunctor f , f :≺: g)⇒ Constf f g where
φConstf = inject .dimap Var id -- default instance

instance (Plus :≺: f ,Lit :≺: f )⇒ Constf Plus f where
φConstf (Plus e1 e2) = case (project e1,project e2) of

(Just (Lit n),Just (Lit m))→ iLit (n+m)
→ e1 ‘iPlus‘ e2

Since we provide a default instance, we not only obtain constant folding for the core language, but also
for the full language, i.e. constf has both the types Term Sig′→ Term Sig′ and Term Sig→ Term Sig.

4 Monadic Computations

In the last section we demonstrated how to extend CDTs with parametric higher-order abstract syntax,
and how to perform modular, recursive computations over terms containing binders. In this section we
investigate monadic computations over PCDTs.

4.1 Monadic Interpretation

While the previous examples of modular computations did not require effects, the call-by-value inter-
preter prompts the need for monadic computations: both in order to handle errors as well as controlling
the evaluation order. Ultimately, we want to obtain a function of the type Term Sig′→m (Sem m), where
the semantic domain Sem is defined as follows (we use an ordinary algebraic data type for simplicity):

data Sem m = Fun (Sem m→ m (Sem m)) | Int Int

Note that the monad only occurs in the codomain of Fun—if we want call-by-name semantics rather than
call-by-value semantics, we simply add m also to the domain.

We can now implement the modular call-by-value interpreter similar to the previous modular com-
putations, but using the monadic algebra carrier m (Sem m):

class Monad m⇒ Eval m f where
φEval :: Alg f (m (Sem m))

-- instance declaration that lifts Eval to coproducts omitted

eval :: (Difunctor f ,Eval m f )⇒ Term f → m (Sem m)
eval = cata φEval

instance Monad m⇒ Eval m Lam where
φEval (Lam f ) = return (Fun (f . return))
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instance MonadError String m⇒ Eval m App where
φEval (App mx my) = do x← mx

case x of Fun f → my>>= f
→ throwError "stuck"

instance Monad m⇒ Eval m Lit where
φEval (Lit n) = return (Int n)

instance MonadError String m⇒ Eval m Plus where
φEval (Plus mx my) = do x← mx

y← my
case (x,y) of (Int n, Int m)→ return (Int (n+m))

→ throwError "stuck"

instance MonadError String m⇒ Eval m Err where
φEval Err = throwError "error"

In order to indicate errors in the course of the evaluation, we require the monad to provide a method
to throw an error. To this end, we use the type class MonadError. Note how the modular design allows
us to require the stricter constraint MonadError String m only for the cases where it is needed. This
modularity of effects will become quite useful when we will rule out "stuck" errors in Section 6.

With the interpreter definition above we have that eval (desug e) evaluates to the value Right (Int 5)
as expected, where e is as of page 10 and m is the Either String monad. Moreover, we also have that
0+ error and 0+λx.x evaluate to Left "error" and Left "stuck", respectively.

4.2 Monadic Computations with Implicit Sequencing

In the example above we use a monadic algebra carrier for monadic computations. For vanilla CDTs [4],
however, we have previously shown how to perform monadic computations with implicit sequencing, by
utilising the standard type class Traversable3:

type AlgM m f a = f a→ m a

class Functor f ⇒ Traversable f where
sequence :: Monad m⇒ f (m a)→ m (f a)

cataM :: (Traversable f ,Monad m)⇒ AlgM m f a→ Term f → m a
cataM φ = φ <=< sequence . fmap (cataM φ) .out

AlgM m f a represents the type of monadic algebras [9] over f and m, with carrier a, which is different
from Alg f (m a) since the monad only occurs in the codomain of the monadic algebra. cataM is obtained
from cata in Section 2 by performing sequence after applying fmap and replacing function composition
with monadic function composition <=<. That is, the recursion scheme takes care of sequencing the
monadic subcomputations. Monadic algebras are useful for instance if we want to recursively project a
term over a compound signature to a smaller signature:

deepProject :: (Traversable g, f :≺: g)⇒ Term f →Maybe (Term g)
deepProject = cataM (liftM In .proj)

Moreover, in a call-by-value setting we may use a monadic algebra Alg f m a rather than an ordinary
algebra with a monadic carrier Alg f (m a) in order to avoid the explicit sequencing of effects.

3We have omitted methods from the definition of Traversable that are not necessary for our purposes.
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Turning back to parametric terms, we can apply the same idea to difunctors yielding the following
definition of monadic algebras:

type AlgM m f a = f a a→ m a

Similarly, we can easily generalise Traversable and cataM to difunctors:

class Difunctor f ⇒ Ditraversable f where
disequence :: Monad m⇒ f a (m b)→ m (f a b)

cataM :: (Ditraversable f ,Monad m)⇒ AlgM m f a→ Term f → m a
cataM φ (Term t) = cat t where cat (In t) = disequence (fmap cat t)>>=φ

cat (Var x) = return x

Unfortunately, cataM only works for difunctors that do not use the contravariant argument. To see
why this is the case, reconsider the Lam constructor; in order to define an instance of Ditraversable for
Lam we must write a function of the type:

disequence :: Monad m⇒ Lam a (m b)→ m (Lam a b)

Since Lam is isomorphic to the function type constructor→, this is equivalent to a function of the type:

∀ a b m .Monad m⇒ (a→ m b)→ m (a→ b)

We cannot hope to be able to construct a meaningful combinator of that type. Intuitively, in a function
of type a→ m b, the monadic effect of the result can depend on the input of type a. The monadic
effect of a monadic value of type m (a→ b) is not dependent on such input. For example, think of a state
transformer monad ST with state S and its put function put ::S→ ST (). What would be the corresponding
transformation to a monadic value of type ST (S→ ())?

Hence, cataM does not extend to terms with binders, but it still works for terms without binders
as in vanilla CDTs [4]. In particular, we cannot use cataM to define the call-by-value interpreter from
Section 4.1.

5 Contexts and Term Homomorphisms

While the generality of catamorphisms makes them a powerful tool for modular function definitions,
their generality at the same time inhibits flexibility and reusability. However, the full generality of cata-
morphisms is not always needed in the case of term transformations, which we discussed in Section 3.2.3.
To this end, we have previously studied term homomorphisms [4] as a restricted form of term algebras.
In this section we redevelop term homomorphisms for PCDTs.

5.1 From Terms to Contexts and back

The crucial idea behind term homomorphisms is to generalise terms to contexts, i.e. terms with holes.
Following previous work [4] we define the generalisation of terms with holes as a generalised algebraic
data type (GADT) [18] with phantom types Hole and NoHole:

data Cxt ::∗→ (∗→ ∗→ ∗)→∗→ ∗→ ∗ where
In :: f a (Cxt h f a b)→ Cxt h f a b
Var :: a → Cxt h f a b
Hole :: b → Cxt Hole f a b
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data Hole
data NoHole

The first argument to Cxt is a phantom type indicating whether the term contains holes or not. A
context can thus be defined as:

type Context = Cxt Hole

That is, contexts may contain holes. On the other hand, terms must not contain holes, so we can recover
our previous definition of preterms Trm as follows:

type Trm f a = Cxt NoHole f a ()

The definition of Term remains unchanged. This representation of contexts and preterms allows us to
uniformly define functions that work on both types. For example, the function inject now has the type:

inject :: (g :≺: f )⇒ g a (Cxt h f a b)→ Cxt h f a b

5.2 Term Homomorphisms

In Section 3.2.3 we have shown that term transformations, i.e. functions of type Term f → Term g, are
obtained as catamorphisms of parametric term algebras of type ∀ a .Alg f (Trm g a). Spelling out the
definition of Alg, such algebras are functions of type:

∀ a . f (Trm g a) (Trm g a)→ Trm g a

As we have argued previously [4], the fact that the target signature g occurs in both the domain and
codomain in the above type prevents us from making use of the structure of the algebra’s carrier type
Trm g a. In particular, the constructions that we show in Section 5.3 are not possible with the above type.

In order to circumvent this restriction, we remove the occurrences of the algebra’s carrier type Trm g a
in the domain by replacing them with type variables:

∀ a b . f a b→ Trm g a

However, since we introduce a fresh variable b, functions of the above type are not able to use the
corresponding parts of the argument for constructing the result. A value of type b cannot be injected into
the type Trm g a.

This is where contexts come into the picture: we enable the use of values of type b in the result
by replacing the codomain type Trm g a with Context g a b. The result is the following type of term
homomorphisms:

type Hom f g = ∀ a b . f a b→ Context g a b

A function ρ :: Hom f g is a transformation of constructors from f into a context over g, i.e. a term over g
that may embed values taken from the arguments of the f -constructor. The parametric polymorphism of
the type guarantees that the arguments of the f -constructor cannot be inspected but only embedded into
the result context. In order to apply term homomorphisms to terms, we need an auxiliary function that
merges nested contexts:

appCxt :: Difunctor f ⇒ Context f a (Cxt h f a b)→ Cxt h f a b
appCxt (In t) = In (fmap appCxt t)
appCxt (Var x) = Var x
appCxt (Hole h) = h
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Given a context that has terms embedded in its holes, we obtain a term as a result; given a context with
embedded contexts, the result is again a context.

Using the combinator above we can now apply a term homomorphism to a preterm—or more gener-
ally, to a context:

appHom :: (Difunctor f ,Difunctor g)⇒ Hom f g→ Cxt h f a b→ Cxt h g a b
appHom ρ (In t) = appCxt (ρ (fmap (appHom ρ) t))
appHom ρ (Var x) = Var x
appHom ρ (Hole h) = Hole h

From appHom we can then obtain the actual transformation on terms as follows:

appTHom :: (Difunctor f ,Difunctor g)⇒ Hom f g→ Term f → Term g
appTHom ρ (Term t) = Term (appHom ρ t)

Before we describe the benefits of term homomorphisms over term algebras, we reconsider the desug-
aring transformation from Section 3.2.3, but as a term homomorphism rather than a term algebra:

class Desug f g where
ρDesug :: Hom f g

-- instance declaration that lifts Desug to coproducts omitted

desug :: (Difunctor f ,Difunctor g,Desug f g)⇒ Term f → Term g
desug = appTHom ρDesug

instance (Difunctor f ,Difunctor g, f :≺: g)⇒ Desug f g where
ρDesug = In . fmap Hole . inj -- default instance for core signatures

instance (App :≺: f ,Lam :≺: f )⇒ Desug Let f where
ρDesug (Let e1 e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole e1

Note how, in the instance declaration for Let, the constructor Hole is used to embed arguments of the
constructor Let, viz. e1 and e2, into the context that is constructed as the result.

As for the desugaring function in Section 3.2.3, we utilise overlapping instances to provide a de-
fault translation for the signatures that need not be translated. The definitions above yield the desired
desugaring function desug :: Term Sig→ Term Sig′.

5.3 Transforming and Combining Term Homomorphisms

In the following we shall shortly describe what we actually gain by adopting the term homomorphism
approach. First, term homomorphisms enable automatic propagation of annotations, where annotations
are added via a restricted difunctor product, namely a product of a difunctor f and a constant c:

data (f :&: c) a b = f a b :&: c

For instance, the type of ASTs of our language where each node is annotated with source positions is
captured by the type Term (Sig :&: SrcPos). With a term homomorphism Hom f g we automatically get a
lifted version Hom (f :&: c) (g :&: c), which propagates annotations from the input to the output. Hence,
from our desugaring function in the previous section we automatically get a lifted function on parse trees
Term (Sig :&: SrcPos)→ Term (Sig′ :&: SrcPos), which propagates source positions from the syntactic
sugar to the core constructs. We omit the details here, but note that the constructions for CDTs [4] carry
over straightforwardly to PCDTs.
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The second motivation for introducing term homomorphisms is deforestation [23]. As we have
shown previously [4], it is not possible to fuse two term algebras in order to traverse the term only once.
That is, we do not find a composition operator } on algebras that satisfies the following equation:

cata φ1 . cata φ2 = cata (φ1 }φ2) for all φ1 :: Alg g a and φ2 ::∀ a .Alg f (Trm g a)

With term homomorphism, however, we do have such a composition operator }:

(}) :: (Difunctor g,Difunctor h)⇒ Hom g h→ Hom f g→ Hom f h
ρ1 }ρ2 = appHom ρ1 .ρ2

For this composition, we then obtain the desired equation:

appHom ρ1 .appHom ρ2 = appHom (ρ1 }ρ2) for all ρ1 :: Hom g h and ρ2 :: Hom f g

In fact, we can also compose an arbitrary algebra with a term homomorphism:

(�) :: Difunctor g⇒ Alg g a→ Hom f g→ Alg f a
φ �ρ = free φ id .ρ

where

free :: Difunctor f ⇒ Alg f a→ (b→ a)→ Cxt h f a b→ a
free φ f (In t) = φ (fmap (free φ f ) t)
free (Var x) = x
free f (Hole h) = f h

The composition of algebras and homomorphisms satisfies the following equation:

cata φ .appHom ρ = cata (φ �ρ) for all φ :: Alg g a and ρ :: Hom f g

For example, in order to evaluate a term with syntactic sugar, rather than composing eval and desug,
we can use the function cata (φEval � ρDesug), which only traverses the term once. This transformation
can be automated using GHC’s rewrite mechanism [14] and our experimental results for CDTs show that
the thus obtained speedup is significant [4].

6 Generalised Parametric Compositional Data Types

In this section we briefly describe how to lift the construction of mutually recursive data types and—
more generally—GADTs from CDTs to PCDTs. The construction is based on the work of Johann and
Ghani [10]. For CDTs the generalisation, roughly speaking, amounts to lifting functors to (generalised)
higher-order functors [10], and functions on terms to natural transformations, as shown earlier [4]:

type a .→b = ∀ i .a i→ b i

class HFunctor f where
hfmap :: a .→b→ f a .→ f b

Now, signatures are of the kind (∗→∗)→∗→∗, rather than ∗→∗, which reflects the fact that signatures
are now indexed types, and so are terms (or contexts in general). Consequently, the carrier of an algebra
is a type constructor of kind ∗→ ∗:

type Alg f a = f a .→a

Since signatures will be defined as GADTs, we effectively deal with many-sorted algebras. If a subterm
has the type index i, then the value computed recursively by a catamorphism will have the type a i. The
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coproduct :+: and the automatic injections :≺: carry over straightforwardly from functors to higher-order
functors [4].

In order to lift the ideas from CDTs to PCDTs, we need to consider indexed difunctors. This prompts
the notion of higher-order difunctors:

class HDifunctor f where
hdimap :: (a .→b)→ (c .→d)→ f b c .→ f a d

instance HDifunctor f ⇒ HFunctor (f a) where
hfmap = hdimap id

Note the familiar pattern from ordinary PCDTs: a higher-order difunctor gives rise to a higher-order
functor when the contravariant argument is fixed.

To illustrate higher-order difunctors, consider a modular GADT encoding of our core language:

data TArrow i j

data TInt

data Lam :: (∗→ ∗)→ (∗→ ∗)→∗→ ∗ where
Lam :: (a i→ b j)→ Lam a b (i ‘TArrow‘ j)

data App :: (∗→ ∗)→ (∗→ ∗)→∗→ ∗ where
App :: b (i ‘TArrow‘ j)→ b i→ App a b j

data Lit :: (∗→ ∗)→ (∗→ ∗)→∗→ ∗ where
Lit :: Int→ Lit a b TInt

data Plus :: (∗→ ∗)→ (∗→ ∗)→∗→ ∗ where
Plus :: b TInt→ b TInt→ Plus a b TInt

data Err :: (∗→ ∗)→ (∗→ ∗)→∗→ ∗ where
Err :: Err a b i

type Sig′ = Lam :+: App :+: Lit :+: Plus :+: Err

Note, in particular, the type of Lam: now the bound variable is typed!
We use TArrow and TInt as type indices for the GADT definitions above. The preference of these

fresh types over Haskell’s→ and Int is meant to emphasise that these phantom types are only labels that
represent the type constructors of our object language.

We use the coproduct :+: of higher-order difunctors above to combine signatures, which is easily
defined, and as for CDTs it is straightforward to lift instances of HDifunctor for f and g to an instance
for f :+: g. Similarly, we can generalise the relation :≺: from difunctors to higher-order difunctors, so we
omit its definition here.

The type of generalised parametric (pre)terms can now be constructed as an indexed type:

newtype Term f i = Term {unTerm ::∀ a .Trm f a i}
data Trm f a i = In (f a (Trm f a) i) | Var (a i)

Moreover, we use smart constructors as for PCDTs to compactly construct terms, for instance:

e :: Term Sig′ TInt
e = Term (iLam (λx→ x ‘iPlus‘ x) ‘iApp‘ iLit 2)

Finally, we can lift algebras and their induced catamorphisms by lifting the definitions in Sec-
tion 3.2.2 via natural transformations and higher-order difunctors:
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type Alg f a = f a a .→a

cata :: HDifunctor f ⇒ Alg f a→ Term f .→a
cata φ (Term t) = cat t

where cat (In t) = φ (hfmap cat t) -- recall: hfmap = hdimap id
cat (Var x) = x

With the definitions above we can now define a call-by-value interpreter for our typed example lan-
guage. To this end, we must provide a type-level function that, for a given object language type con-
structed from TArrow and TInt, selects the corresponding subset of the semantic domain Sem m from
Section 4.1. This can be achieved via Haskell’s type families [17]:

type family Sem (m ::∗→ ∗) i
type instance Sem m (i ‘TArrow‘ j) = Sem m i→ m (Sem m j)
type instance Sem m TInt = Int

The type Sem m t is obtained from an object language type t by replacing each function type t1 ‘TArrow‘ t2
occurring in t with Sem m t1→ m (Sem m t2) and each TInt with Int.

In order to make Sem into a proper type—as opposed to a mere type synonym—and simultaneously
add the monad m at the top level, we define a newtype M:

newtype M m i = M {unM :: m (Sem m i)}
class Monad m⇒ Eval m f where

φEval :: f (M m) (M m) i→ m (Sem m i) -- M .φEval :: Alg f (M m) is the actual algebra

eval :: (Monad m,HDifunctor f ,Eval m f )⇒ Term f i→ m (Sem m i)
eval = unM . cata (M .φEval)

We can then provide the instance declarations for the signatures of the core language, and effectively
obtain a tagless, modular, and extendable monadic interpreter:

instance Monad m⇒ Eval m Lam where
φEval (Lam f ) = return (unM . f .M . return)

instance Monad m⇒ Eval m App where
φEval (App (M mf ) (M mx)) = do f ← mf

mx>>= f

instance Monad m⇒ Eval m Lit where
φEval (Lit n) = return n

instance Monad m⇒ Eval m Plus where
φEval (Plus (M mx) (M my)) = do x← mx

y← my
return (x+ y)

instance MonadError String m⇒ Eval m Err where
φEval Err = throwError "error"

With the above definition of eval we have, for instance, that eval e ::Either String Int evaluates to the value
Right 4. Due to the fact that we now have a typed language, the Err constructor is the only source of
an erroneous computation—the interpreter cannot get stuck. Moreover, since the modular specification
of the interpreter only enforces the constraint MonadError String m for the signature Err, the term e can
in fact be interpreted in the identity monad, rather than the Either String monad, as it does not contain
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error. Consequently, we know statically that the evaluation of e cannot fail!
Note that computations over generalised PCDTs are not limited to the tagless approach that we have

illustrated above. We could have easily reformulated the semantic domain Sem m from Section 4.1 as a
GADT to use it as the carrier of a many-sorted algebra. Other natural carriers for many-sorted algebras
are the type families of terms Term f , of course.

Other concepts that we have introduced for vanilla PCDTs before can be transferred straightforwardly
to generalised PCDTs in the same fashion. This includes contexts and term homomorphisms.

7 Practical Considerations

The motivation for introducing CDTs was to make Swierstra’s data types à la carte [22] readily useful
in practice. Besides extending data types à la carte with various aspects, such as monadic computations
and term homomorphisms, the CDTs library provides all the generic functionality as well as automatic
derivation of boilerplate code. With (generalised) PCDTs we have followed that path. Our library pro-
vides Template Haskell [20] code to automatically derive instances of the required type classes, such as
Difunctor and Ditraversable, as well as smart constructors and lifting of algebra type classes to coprod-
ucts. Moreover, our library supports automatic derivation of standard type classes Show, Eq, and Ord for
terms, similar to Haskell’s deriving mechanism. We show how to derive instances of Eq in the following
subsection. Ord follows in the same fashion, and Show follows an approach similar to the pretty printer
in Section 3.2.2, but using the monad FreshM that is also used to determine equality, as we shall see
below.

Figure 1 provides the complete source code needed to implement our example language from Sec-
tion 2.1. Note that we have derived Show, Eq, and Ord instances for terms of the language—in particular
the term e is printed as Let (Lit 2) (\a -> App (Lam (\b -> Plus b a)) (Lit 3)).

7.1 Equality

A common pattern when programming in Haskell is to derive instances of the type class Eq, for in-
stance in order to test the desugaring transformation in Section 3.2.3. While the use of PHOAS ensures
that all functions are invariant under α-renaming, we still have to devise an algorithm that decides α-
equivalence. To this end, we will turn the rather elusive representation of bound variables via functions
into a concrete form.

In order to obtain concrete representations of bound variables, we provide a method for generating
fresh variable names. This is achieved via a monad FreshM offering the following operations:

withName :: (Name→ FreshM a)→ FreshM a

evalFreshM :: FreshM a→ a

FreshM is an abstraction of an infinite sequence of fresh names. The function withName provides a fresh
name. Names are represented by the abstract type Name, which implements instances of Show, Eq, and
Ord.

We first introduce a variant of the type class Eq that uses the FreshM monad:

class PEq a where
peq :: a→ a→ FreshM Bool

This type class is used to define the type class EqD of equatable difunctors, which lifts to coproducts:
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class EqD f where
eqD :: PEq a⇒ f Name a→ f Name a→ FreshM Bool

instance (EqD f ,EqD g)⇒ EqD (f :+: g) where
eqD (Inl x) (Inl y) = x ‘eqD‘ y
eqD (Inr x) (Inr y) = x ‘eqD‘ y
eqD = return False

We then obtain equality of terms as follows (we do not consider contexts here for simplicity):

instance EqD f ⇒ PEq (Trm f Name) where
peq (In t1) (In t2) = t1 ‘eqD‘ t2
peq (Var x1) (Var x2) = return (x1 ≡ x2)
peq = return False

instance (Difunctor f ,EqD f )⇒ Eq (Term f ) where
(≡) (Term x) (Term y) = evalFreshM ((x :: Trm f Name) ‘peq‘ y)

Note that we need to explicitly instantiate the parametric type in x to Name in the last instance declaration,
in order to trigger the instance for Trm f Name defined above.

Equality of terms, i.e. α-equivalence, has thus been reduced to providing instances of EqD for the
difunctors comprising the signature of the term, which for Lam can be defined as follows:

instance EqD Lam where
eqD (Lam f ) (Lam g) = withName (λx→ f x ‘peq‘ g x)

That is, f and g are considered equal if they are equal when applied to the same fresh name x.

8 Discussion and Related Work

Implementing languages with binders can be a difficult task. Using explicit variable names, we have to
be careful in order to make sure that functions on ASTs are invariant under α-renaming. HOAS [15] is
one way of tackling this problem, by reusing the binding mechanisms of the implementation language to
define those of the object language. The challenge with HOAS, however, is that it is difficult to perform
recursive computations over ASTs with binders [8, 13, 19, 25]. Besides what is documented in this paper,
we have also lifted (generalised) parametric compositional data types to other (co)recursion schemes,
such as anamorphisms and histomorphisms. Moreover, term homomorphisms can be straightforwardly
extended with a state space: depending on how the state is propagated, this yields bottom-up resp. top-
down tree transducers [7].

Our approach of using PHOAS [6] amounts to the same restriction on embedded functions as Fegeras
and Sheard [8], and Washburn and Weirich [25]. However, unlike Washburn and Weirich’s Haskell im-
plementation, our approach does not rely on making the type of terms abstract. Not only is it interesting
to see that we can do without type abstraction, in fact, we sometimes need to inspect terms in order to
write functions that produce terms, such as our constant folding algorithm. With Washburn and Weirich’s
encoding this is not possible.

Ahn and Sheard [1] recently showed how to generalise the recursion schemes of Washburn and
Weirich to Mendler-style recursion schemes, using the same representation for terms as Washburn and
Weirich. Hence their approach also suffers from the inability to inspect terms. Although we could easily
adopt Mendler-style recursion schemes in our setting, their generality does not make a difference in a
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non-strict language such as Haskell. Additionally, Ahn and Sheard pose the open question whether there
is a safe (i.e., terminating) way to apply histomorphisms to terms with negative recursive occurrences:
although we have not investigated termination properties of our histomorphisms, we conjecture that the
use of our parametric terms—which are purely inductive—may provide one solution.

The finally tagless approach of Carette et al. [5] has been proposed as an alternative solution to
the expression problem [24]. While the approach is very simple and elegant, and also supports (typed)
higher-order encodings, the approach falls short when we want to define recursive, modular computations
that construct modular terms too. Atkey et al. [3], for instance, use the finally tagless approach to build a
modular interpreter. However, the interpreter cannot be made modular in the return type, i.e. the language
defining values. Hence, when Atkey et al. extend their expression language they need to also change the
data type that represents values, which means that the approach is not fully modular. Although our
interpreter in Section 4.1 also uses a fixed domain of values Sem, we can make the interpreter fully
modular by also using a PCDT for the return type, and using a multi-parameter type class definition
similar to the desugaring transformation in Section 3.2.3.

Nominal sets [16] is another approach for dealing with binders, in which variables are explicit, but
recursively defined functions are guaranteed to be invariant with respect to α-equivalence of terms. Im-
plementations of this approach, however, require extensions of the metalanguage [21], and the approach
is therefore not immediately usable in Haskell.
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import Data.Comp.Param

import Data.Comp.Param.Show ()

import Data.Comp.Param.Equality ()

import Data.Comp.Param.Ordering ()

import Data.Comp.Param.Derive

import Control.Monad.Error (MonadError, throwError)

data Lam a b = Lam (a → b)

data App a b = App b b

data Lit a b = Lit Int

data Plus a b = Plus b b

data Let a b = Let b (a → b)

data Err a b = Err

$(derive [smartConstructors, makeDifunctor, makeShowD, makeEqD, makeOrdD]

[’’Lam, ’’App, ’’Lit, ’’Plus, ’’Let, ’’Err])

e :: Term (Lam :+: App :+: Lit :+: Plus :+: Let :+: Err)

e = Term (iLet (iLit 2) (λx → (iLam (λy → y ‘iPlus‘ x) ‘iApp‘ iLit 3)))

-- ∗ Desugaring

class Desug f g where

desugHom :: Hom f g

$(derive [liftSum] [’’Desug]) -- lift Desug to coproducts

desug :: (Difunctor f, Difunctor g, Desug f g) ⇒ Term f → Term g

desug (Term t) = Term (appHom desugHom t)

instance (Difunctor f, Difunctor g, f :<: g) ⇒ Desug f g where

desugHom = In . fmap Hole . inj -- default instance for core signatures

instance (App :<: f, Lam :<: f) ⇒ Desug Let f where

desugHom (Let e1 e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole e1

-- ∗ Constant folding

class Constf f g where

constfAlg :: forall a. Alg f (Trm g a)

$(derive [liftSum] [’’Constf]) -- lift Constf to coproducts

constf :: (Difunctor f, Constf f g) ⇒ Term f → Term g

constf t = Term (cata constfAlg t)

instance (Difunctor f, f :<: g) ⇒ Constf f g where

constfAlg = inject . dimap Var id -- default instance

instance (Plus :<: f, Lit :<: f) ⇒ Constf Plus f where

constfAlg (Plus e1 e2) = case (project e1, project e2) of

(Just (Lit n),Just (Lit m)) → iLit (n + m)

_ → e1 ‘iPlus‘ e2

-- ∗ Call-by-value evaluation

data Sem m = Fun (Sem m → m (Sem m)) | Int Int

class Monad m ⇒ Eval m f where

evalAlg :: Alg f (m (Sem m))

$(derive [liftSum] [’’Eval]) -- lift Eval to coproducts

eval :: (Difunctor f, Eval m f) ⇒ Term f → m (Sem m)

eval = cata evalAlg

instance Monad m ⇒ Eval m Lam where

evalAlg (Lam f) = return (Fun (f . return))

instance MonadError String m ⇒ Eval m App where

evalAlg (App mx my) = do x ← mx

case x of Fun f → my >>= f

_ → throwError "stuck"

instance Monad m ⇒ Eval m Lit where

evalAlg (Lit n) = return (Int n)

instance MonadError String m ⇒ Eval m Plus where

evalAlg (Plus mx my) = do x ← mx

y ← my

case (x,y) of (Int n,Int m) → return (Int (n + m))

_ → throwError "stuck"

instance MonadError String m ⇒ Eval m Err where

evalAlg Err = throwError "error"

Figure 1: Complete example using the parametric compositional data types library.
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