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In functional programming, monads are supposed to encapsulate computations, effectfully produc-
ing the final result, but keeping to themselves the means of acquiring it. For various reasons, we
sometimes want to reveal the internals of a computation. To make that possible, in this paper we in-
troduce monad transformers that add the ability to automatically accumulate observations about the
course of execution as an effect. We discover that if we treat the resulting trace as the actual result
of the computation, we can find new functionality in existing monads, notably when working with
non-terminating computations.

1 Introduction

Consider a simple database in which different users store data under keys. This can be represented in
Haskell as a data structure of type [(User, [(Key,Data)])]. We can define a function getData which looks
up a value for a specified user and a key.

getData :: [(User, [(Key,Data)])]→ User→ Key→Maybe Data
getData db u k = lookup u db>>= lookup k

If a user u has an entry d associated with a key k in the database, getData u k returns Just d; otherwise,
it returns Nothing. In the latter case we might want to inform the user ‘why’ the program is not able
to deliver data: they might have misspelled their username, which means that lookup u will fail, or they
might have tried to read from a missing key, which means that lookup k will fail. Unfortunately, the
Maybe monad does not allow one to observe at what point a failing program actually fails. We need to
structure our function using a more sophisticated monad.

What are the desired properties of such a monad? For sure, we want it to employ the same kind
of effects as Maybe, so that we do not have to alter the logic of our program. We would like to have
a lift operation, which allows us to automatically translate some operations from Maybe into the new
monad, so that it is not necessary to rewrite standard functions like lookup. But most importantly, it must
also reveal some observations about the course of execution (a trace), such as the number of successful
subcomputations, from which we can extract the desired information about the point of failure. One
possibility is to explicitly accumulate such observations inside the computation, using monads like Writer
or Exception. In this article, however, we take a different approach: we automate the accumulation inside
the monadic structure. The accumulation is transparent inside the computation; that is, it cannot affect
the course of execution, and is revealed only on the outside.

We aim for maximum genericity: we construct transformers that add traces to arbitrary monads. Our
main tools are free monads (Section 2), which have the ability to represent the very structure of monadic
computations. They provide, in a sense, the most informative traces possible. Then, we introduce a
transformer, called Nest, which allows one to mix the free and effectful computations provided by a
monad (Section 3). The genericity pays off, and we find a number of applications for tracing monads:
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• Traces of computations can be interpreted in different ways. In Section 4.3 we show an example
in which, by revealing the inner structure of a computation in the List monad, we can define the
Prolog cut operator.

• Computations encapsulated in monadic expressions are often monolithic. They are supposed to
produce final values only, so there is little space for non-termination. But, assuming non-strict
semantics, we can see computations as entities that lazily unfold a trace. So, even if a computation
is non-terminating, we can benefit from its infinite trace. If we interpret free parts of a Nest value
as terms, we discover that Nest is a generalisation of Capretta’s partiality monad (see Section 4.1).

• For the same reasons, traces are a useful tool for modelling impure interaction with the environ-
ment. In Section 6, we sketch out some future work on a novel, coinductive approach to the
functional semantics of effects.

2 Simple tracing with free monads

Moggi [19] called monads notions of computation, because they describe computational effects in a way
that abstracts from the type of values produced by a computation. In a sense, from the categorical point
of view, monads abstract even from the exact values produced by the computation, since return and join
are natural transformations. It is the bind operator (defined as m>>= f = join (fmap f m)) that mixes the
functorial (looking only at the values) fmap and parametric (looking only at the structure) join. The laws
for monads and functors entail the following equality, called naturality of join.

fmap f ◦ join≡ join◦ fmap (fmap f )

Read as a transformation from left to right, it allows one to move occurrences of join to the left of a
composition, and occurrences of fmap to the right. This way, we can split computations with multiple
steps into a “mapping” part and a “joining” part. For example, consider a computation m>>= f >>=g. It
can be split as follows.

m>>= f >>=g≡ (join◦ fmap g◦ join◦ fmap f ) m≡ (join◦ join◦ fmap (fmap g)◦ fmap f ) m

Intuitively, we can see the “mapping” part (that is, fmap (fmap g) ◦ fmap f ) as the construction of the
computation and the “joining” part (join◦ join) as the execution of effects.

Our first approach to tracing is to capture the mapping part of a computation. We suspend execution
of the join operators of the monad, so that we can isolate and examine the elements from which the
computation is composed.

2.1 Free monads

The type of the mapping part is different for different numbers of nested occurrences of the fmap function,
and so for computations consisting of different numbers of steps. For example,

Just ’a’ :: Maybe Char
fmap Just (Just ’a’) :: Maybe (Maybe Char)
fmap (fmap Just) (fmap Just (Just ’a’)) :: Maybe (Maybe (Maybe Char))

A reasonable class of datatypes in which to store such expressions are the free monads, also known as
f -generated trees. Allowing ourselves to define monads in terms of fmap, return, and join, rather than
the return and >>= required by Haskell, we can write:
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data Free f a = Wrap (f (Free f a)) | Return a

instance Functor f ⇒ Functor (Free f ) where
fmap g (Return a) = Return (g a)
fmap g (Wrap f ) = Wrap (fmap (fmap g) f )

instance Functor f ⇒Monad (Free f ) where
return = Return

join (Return f ) = f
join (Wrap f ) = Wrap (fmap join f )

Each level of the type constructor of a monad corresponds to a level in the Free data structure. We store
Just ’a’ :: Maybe Char as Wrap (Just (Return ’a’)), and Just (Just (’a’)) :: Maybe (Maybe Char) as
Wrap (Just (Wrap (Just (Return ’a’)))), and so on.

2.2 Monad transformers with drop

The type Free m a can be seen as a datatype of terms generated by the signature m (a functor) and a set of
variables a. Even if m is a monad, Free m cannot depend on any effects provided by m; the join operation
for Free m performs only substitution, and is independent of the join for m.

In order to couple a monad m and the m-generated free monad, we need the notion of monad trans-
formers [16]. A monad transformer with drop is a relation between two monads, m and t, characterised
by two functions, lift and drop, which translate computations in m into computations in t, and vice versa.
The relationship can be defined as the following two-parameter Haskell type class. Though in functional
programming drop is rarely considered to be a member of MonadTrans, it plays an important role here.
For the moment, we forget that we usually insist that monad transformers are subject to a certain set of
algebraic laws.

class (Monad m, Monad t)⇒MonadTrans m t | t→ m where
lift :: m a→ t a
drop :: t a → m a

For any monad m, we define an instance of MonadTrans m (Free m) as follows. The lift operation is
straightforward, as it only wraps the value and maps the Return constructor. The drop operation traverses
the structure and flattens each level, thus performing suspended binds of m.

instance (Functor m, Monad m)⇒MonadTrans m (Free m) where
lift = Wrap◦ fmap Return

drop (Return a) = return a
drop (Wrap m) = m>>=drop

2.3 Examples

Now, we can test our tracing free monad transformer on the Maybe monad. The lift function allows us to
translate any computation in m into a computation in Free m. To get the original, non-traced computation
back, we use the drop function.

We can see every composition Wrap◦ Just as a “tick”, given for each lifted successful subcomputa-
tion. The trace forms a unary counter, storing the number of ticks. The final value of the computation is
stored in the last Wrap. Consider the following conversation with the Haskell interactive shell.
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. do {lift (Just 2); lift (Just 4); lift Nothing}
Wrap (Just (Wrap (Just (Wrap Nothing))))

. drop (do {lift (Just 2); lift (Just 4); lift Nothing})
Nothing

Similarly, for the Writer monad, we can get a list of all the values appended to the monoid followed by
the final return value. (For brevity, we show Writer (a,Sum s) as (s,a).)

. do {lift (tell (Sum 2)); lift (tell (Sum 3)); lift (tell (Sum 7)); return ’a’}
Wrap (2,Wrap (3,Wrap (7,Return ’a’)))

. drop (do {lift (tell (Sum 2)); lift (tell (Sum 3)); lift (tell (Sum 7)); return ’a’})
(12,’a’)

An important thing to notice is that non-terminating computations in Writer do not make much sense.
For example, the following computation just diverges.

. let w n = do {tell (Sum n); w (n+1)} in w 0
(∗∗∗ Exception : stack overflow

In contrast, with the tracing version of Writer, we can enjoy an infinite stream of actions that happen
during the execution:

. let w n = do {lift (tell (Sum n)); w (n+1)} in w 0
Wrap (0,Wrap (1,Wrap (2,Wrap (3,Wrap (4,Wrap (5,Wrap (6,Wrap (7,Wrap (8,Wrap. . .

3 More advanced tracing with free structures

Tracing computations with free structures is not very flexible: every bind and every join is suspended,
creating a new level of structure every time a monadic action is called. In some circumstances we would
like to trace only selected parts of the computation—perhaps we are confident that the other parts always
succeed, or we want to treat selected pieces of the computation monolithically, and we are not interested
in a fine-grained report about their behaviour.

Another issue is the algebraic properties of monad transformers with drop. Intuitively, a pair of
monads m and t are related as a monad transformer if t incorporates at least the same effects as m. This
is usually formalised with the following equalities [12].

lift (return a) = return a
lift (m>>= f ) = lift m>>=(lift ◦ f )

drop (return a) = return a
drop (lift m>>= f ) = m>>=drop◦ f

The first two equalities state that lift is a monad morphism. The instance MonadTrans m (Free m)
from Section 2.2 does not have this property. For example, lift (Just 1)>> lift (Just 2) is equal to
Wrap (Just (Wrap (Just (Return 2)))), while lift (Just 1>> Just 2) is equal to Wrap (Just (Return 2)).

For these two reasons, we abandon the idea of using free monads directly to trace computations.
Instead, in this section we introduce a general class, MonadTrace, which allows one to specify the points
at which to make observations about the execution, and a corresponding version of the Free monad that
is a proper monad transformer.
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3.1 The MonadTrace class

The MonadTrace class introduces a single monadic value, mark. Intuitively, this is an operation that
stores the current state of execution in the trace.

class Monad t⇒MonadTrace t where
mark :: t ()

We call a monad v a tracer of a monad m, if m and v form a monad transformer (MonadTrans m v), and
v is an instance of MonadTrace. Additionally, lift, drop and mark should satisfy the following equalities.

lift (return a) = return a
lift (m>>= f ) = lift m>>=(lift ◦ f )

drop (return a) = return a
drop (v>>=g) = drop v>>=(drop◦g)

drop mark = return ()

The tracer v cannot perform more effects than the monad m, except for tracing with the mark operation.
Nonetheless, tracing does not affect the course of computation in any way observable from inside of the
v-computation, hence both lift and drop are monad morphisms. Note that the laws entail drop◦ lift = id.

We use the mark gadget wherever we want to make an observation. In the following example, the
intuitive semantics of a tracer for the Maybe monad is that we get a tick whenever the computation is
still successful when placing a mark.

do {x← lift m0; y← lift m1; mark; z← lift m2; mark; return (x+ y+ z)}

That means that if m0 is successful, but m1 fails, no ticks are stored in the trace (intuitively, it is equivalent
to Nothing). Only if both m0 and m1 are successful, the mark operation stores this success (the trace is
of the form Just a, where a is a result of the rest of the computation). If m2 is also successful, the
second call to mark stores this information in the trace (and the trace is of the form Just (Just a), where
a = return (x+ y+ z) = Just (x+ y+ z)).

We also define a convenient function, mind, to perform a traced lifting.

mind :: (MonadTrans m v, MonadTrace v)⇒ m a→ v a
mind m = do {x← lift m; mark; return x}

Then the previous example can be written more concisely:

do {x← lift m0; y← mind m1; z← mind m2; return (x+ y+ z)}

3.2 The Nest monad

Free monads allow one to capture the structure of an m-computation as data; but for tracing, we need
also to be able to perform some parts of the computations (the lifted ones) immediately. This suggests
considering the composition of the two monads m and Free m, in one order or the other. In fact, because
we want the lifted parts to be performed immediately, the appropriate order of composition is to have m
on the outside and Free m inside. We therefore define:
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newtype Nest m a = Nest{unNest :: m (Free m a)}
instance Functor m⇒ Functor (Nest m) where

fmap f (Nest m) = Nest (fmap (fmap f ) m)

It remains to show that Nest can be given the structure of a monad. We do this using Jones and
Duponcheel’s prod construction [14]: given monad M with unit returnM and multiplication joinM, and
similarly monad F with returnF and joinF, the composition M F forms a monad with unit and multipli-
cation given by

return = returnM ◦ returnF

join = joinM ◦ fmapM prod

Diagrammatically:

1 F

MF

returnF

returnM Freturn

MFMF MMF

MF

M prod

joinM Fjoin

provided that natural transformation prod :: F M F .→M F satisfies the three properties

prod ◦ returnF = id (1)
prod ◦ fmapF return = returnM (2)
prod ◦ fmapF join = join◦prod (3)

Diagrammatically:

MF FMF

MF

returnF MF

prod

F FMF

MF

F return

prodreturnM F

FMFMF MFMF

FMF MF

prod MF

joinF join

prod

(In fact, the multiplication joinF of F is not used; all that is required of F is for it to be a premonad.) It
turns out that the definition of prod is—if not quite forced then at least—very strongly suggested by the
necessity of satisfying these three properties.

In our case, M is the monad m, and F is the datatype Free m from Section 2. For brevity, let us
write M for fmapM, and similarly F for fmapF; let us also write the coproduct type former as + and the
coproduct morphism as O, so that we can express the two constructors as one composite,

WrapOReturn :: M F+1 .→ F

and name its inverse,

outF :: F .→M F+1

Recall that the unit of the monad Free m is the constructor Return:

returnF = Return

Without loss of generality, we let
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prod ◦ (WrapOReturn) = prod1 Oprod2

so that

prod1 = prod ◦Wrap
prod2 = prod ◦Return

The definition of prod2 is forced:

prod2
= { definition of prod2 }

prod ◦Return
= { F as a premonad: returnF = Return }

prod ◦ returnF

= { property (1) }
id

Now consider property (2). Expanding the left-hand side, we have

prod ◦F return
= { datatype isomorphism }

prod ◦F return◦ (WrapOReturn)◦outF

= { naturality of WrapOReturn }
prod ◦ (WrapOReturn)◦ (M F return+ return)◦outF

= { definitions of prod1, prod2 }
(prod1 Oprod2)◦ (M F return+ return)◦outF

= { coproducts }
((prod1 ◦M F return)O (prod2 ◦ return))◦outF

and for the right-hand side we have

returnM

= { datatype isomorphism }
returnM ◦ (WrapOReturn)◦outF

= { coproducts }
((returnM ◦Wrap)O (returnM ◦Return))◦outF

These two expressions must be equal, which implies that the equalities

prod1 ◦M F return = returnM ◦Wrap
prod2 ◦ return = returnM ◦Return

must hold. The second equality follows from prod2 = id and the definition of return; we’ll use the first
one to derive a definition for prod1. We have:

prod1 ◦M F return
= { (A) suppose that prod1 = prod′1 ◦M prod }

prod′1 ◦M prod ◦M F return
= { functors }
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prod′1 ◦M (prod ◦F return)
= { (B) induction }

prod′1 ◦M returnM

= { (C) suppose that prod′1 = returnM ◦Wrap◦ joinM }
returnM ◦Wrap◦ joinM ◦M returnM

= { M is a monad }
returnM ◦Wrap

and so property (2) strongly suggests letting

prod1 = returnM ◦Wrap◦ joinM ◦M prod

The three steps (A), (B), (C) need a little justification. For (A), we’re heading towards a use of induction,
so we require an occurrence of M prod at the end of prod1. For (B), induction seems plausible, because
this calculation takes places under a Wrap constructor. For (C), the final M returnM is cancellable via
joinM, so we’re done—we let be prod′1 be the final expression we want composed with this cancellation.

We don’t need any stronger justification for induction than mere plausibility, because we are using
this calculation only to suggest a possible definition of prod1 that we should then check more rigorously.
This still leaves us also with having to check property (3), again by induction. Both of these proofs are
presented in Appendix A.

The final instance declaration for Nest is then as follows:

instance (Functor m, Monad m)⇒Monad (Nest m) where
return = Nest ◦ returnM ◦Return

join = Nest ◦ joinM ◦ fmapM prod ◦unNest
where

prod (Return (Nest m)) = m
prod (Wrap m) = (returnM ◦Wrap◦ joinM ◦ fmapM prod) m

3.3 Tracing with Nest

For any monad m, the monad Nest m is a tracer. The lift function maps Return on values. It does not
create any Wrap constructor, so lifted computations are single-level and are always joined when join
for Nest is performed. The drop function traverses the free structure, and collapses levels which were
previously separated by Wrap constructors. The mark gadget explicitly creates a new level by the Wrap
constructor mapped on Returns. All future computations will be confined to the wrapped Returns, and
so the previous structure is preserved.

instance (Functor m, Monad m)⇒MonadTrans m (Nest m) where
lift = Nest ◦ fmap Return

drop v = unNest v>>= revert
where

revert (Return a) = return a
revert (Wrap m) = m>>= revert

instance (Functor m, Monad m)⇒MonadTrace (Nest m) where
mark = (Nest ◦ return◦Wrap◦ return◦Return) ()
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The proof that these definitions satisfy the laws of MonadTrace from Section 3.1 is given in Appendix B.
As an example of mark, consider the following conversation with the Haskell shell. The call of the

mark operation in the second query maps Wrap on every element. This way, every future computation
is confined to the inside of those two Wrap constructors. Whatever monadic computation is bound to
the result, on the top-level there will always be a two-element list, because it is a node with only Wrap
constructors as children.

. lift [1,2 ]
Nest [Return 1,Return 2]
. do {x← lift [1,2 ]; lift [0 . .x ]}
Nest [Return 0,Return 1,Return 0,Return 1,Return 2]
. do {lift [1,2]; mark}
Nest [Wrap [Return ()],Wrap [Return ()]]

. do {x← lift [1,2 ]; mark; lift [0 . .x ]}
Nest [Wrap [Return 0,Return 1],Wrap [Return 0,Return 1,Return 2 ]]

4 Interpreting traces

The tracing construction has multiple applications. As in the motivating example from the introduction,
we can track the course of computation, in order to identify any point of failure. But, stepping back from
this particular example, we observe that a trace is simply a data structure, and the computation in the
Nest monad is performed only if the data structure is forced. This gives us control over the process of
execution, which can be useful in the context of non-terminating computations (although the inductive
proofs will need strengthening in that context). We can interpret the free parts of a Nest value in any way
we want, and thus mix in some new effects, not previously available with the original monad. This control
over a computation from the outside strongly resembles the paradigm of aspect-oriented programming.

4.1 The partiality monad

Capretta introduced the partiality monad [3] to capture non-termination as an effect; this technique has
applications in type theory, to model non-guarded recursion. The original formulation is as follows.

data Partial a = Later (Partial a) | Now a

A structure of this type is a value wrapped in a (possibly infinite) number of Later constructors. It
represents a computation sliced into layers. We can explicitly force any number of layers. The Nest
monad can be seen as a monad transformer which allows computations structured by any monad to be
sliced. The most basic case, Nest Identity, is indeed isomorphic to Partial.

In most programming languages, including Haskell, the ∨ operator is asymmetric—non-strict in its
second argument (True∨⊥≡ True) but strict in its first (⊥∨ True≡⊥). In pure Haskell, it is impossible
to define parallel-or—that is, a disjunction g with the property that Trueg⊥≡ True≡⊥gTrue.

To implement such a disjunction in the real world, we need some kind of parallelism, so that both
arguments are evaluated simultaneously; when either one terminates with True or both terminate with
False, the computation of the disjunction is complete. We can purely approximate this behaviour—at
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least for the case where undefined arguments arise from non-termination, rather than from any other
reason. We do this by explicitly cutting the infinite computation into finite pieces, using the Nest tracer.

Consider the following function, which is an implementation of the so-called Collatz problem. It is
suspected that for all n > 0 it returns True, but no proof for this claim is known.

collatz :: Integer→ Bool
collatz 1 = True
collatz n | odd n = collatz (3×n+1)

| otherwise = collatz (n÷2)

If we want to check whether at least one of two Collatz sequences ends, it is not the best idea to use the
regular Haskell disjunction, since if the first one diverges, the whole function diverges too.

oneOf :: Integer→ Integer→ Bool
oneOf a b = collatz a ∨ collatz b

A much safer solution is to chop the evaluation of the Collatz sequence into pieces. We use the Nest
tracer for the Identity monad. This way, we make the evaluation incremental, which enables us to execute
it in parallel. The scheduler is very simple and hidden in the definition of g. It executes a piece from
each argument in turn.

collatzN :: Integer→ Nest Identity Bool
collatzN 1 = return True
collatzN n | odd n = mark>> collatzN (3×n+1)

| otherwise = mark>> collatzN (n÷2)
(g) :: Nest Identity Bool→ Nest Identity Bool→ Bool
Nest (Identity (Leaf False))gNest (Identity (Leaf False)) = False
Nest (Identity (Leaf True)) g = True

gNest (Identity (Leaf True)) = True
Nest (Identity (Node m)) g x = xgNest m

We can test the g operator as follows. Note that collatz diverges if applied to 0.

. collatzN 120g collatzN 130
True

. collatzN 0g collatzN 130
True

. collatzN 130g collatzN 0
True

This model can easily be extended to different kinds of such thread races. For example, it is possible to
simulate McCarthy’s ambiguous choice operator amb :: a→ b→ Either a b [18], which has the property
that for a0 ::a and b0 ::b, amb a0⊥= Left a0, and amb⊥ b0 =Right b0 (again, assuming that the undefined
values arise from non-termination).
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4.2 Approximating computations

For some monads, the initial segment of a Nest value may be seen as an “approximation” to the computa-
tion. Consider the monad of finitely supported probability distributions. Its most common representation
is a list of probabilities paired with values.

newtype Distr a = Distr{runDistr :: [(Double,a)]}
instance Functor Distr where

fmap f (Distr xs) = Distr (fmap (λ (p,a)→ (p, f a)) xs)

instance Monad Distr where
return a = Distr [(1,a)]
join (Distr xs) = Distr [(p×q,a) | (p,Distr ys)← xs, (q,a)← ys]

However, this representation has a flaw. Consider the following problem: given the uniform distribution
of {0,1} (a fair coin), select uniformly an element from {0,1,2}. A solution is to flip the coin twice to
get the uniform distribution of {0,1,2,3}; if you draw 0, 1, or 2, this is your answer, and if you draw 3,
flip twice more. In Haskell:

coin :: Distr Int
coin = Distr [(0.5,0),(0.5,1)]
third :: Distr Int
third = do x← coin

y← coin
case (x,y) of

(1,1)→ return 0
(1,0)→ return 1
(0,1)→ return 2
(0,0)→ third

(This is a simplification of Knuth and Yao’s technique to simulate a fair die using three fair coin tosses
[15].) Though the solution is mathematically reasonable, the Haskell implementation is useless, because
the List monad, and so also the Distr monad, gathers the results in a depth-first fashion. Though this may
not be obvious at first sight, the recursive call in third is in the head of the list. Therefore, third actually
diverges without producing any usable results: third =⊥.

The Nest monad can retrieve the situation, if we suspend the recursive call.

thirdN :: Nest Distr Int
thirdN = do x← lift coin

y← lift coin
case (x,y) of

(1,1)→ return 0
(1,0)→ return 1
(0,1)→ return 2
(0,0)→ mark>> thirdN

What can we do with thirdN? One possibility is to get an “approximation” of the structure with the
following function, which cuts the subcomputations if the recursion is deeper than the specified argument.
All the computations that are too deep are replaced with Nothing.
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takeN :: (Functor m, Monad m)⇒ Int→ Nest m a→ Nest m (Maybe a)
takeN k (Nest m) = Nest (fmap (aux k) m)

where
aux 0 (Wrap ) = Return Nothing
aux k (Wrap m) = Wrap (fmap (aux (k−1)) m)
aux k (Return a) = Return (Just a)

approx :: (Functor m, Monad m)⇒ Int→ Nest m a→ m (Maybe a)
approx k = drop◦ takeN k

We can ask the Haskell shell:

. approx 0 thirdN
[(0.25,Nothing),(0.25,Just 2),(0.25,Just 1),(0.25,Just 0)]
. let simpl (Distr xs) = Distr (map (λx→ (sum [p | (p,a)← xs,x≡ a],x)) (nub (fmap snd xs)))
. simpl (approx 1 thirdN)
[(0.0625,Nothing),(0.3125,Just 2),(0.3125,Just 1),(0.3125,Just 0)]
. simpl (approx 2 thirdN)
[(0.015635,Nothing),(0.32813,Just 2),(0.32813,Just 1),(0.32813,Just 0)]
. simpl (approx 10 thirdN)
[(2.38419e−7,Nothing),(0.33333,Just 2),(0.33333,Just 1),(0.33333,Just 0)]

4.3 The Prolog cut operator

Prolog’s cut operator allows one to restrict backtracking. The moment it is reached during evaluation of
a predicate, it succeeds, but also discards all the possible backtrack choices created by the predicate so
far. By exposing the structure of a List computation, we can use this effect also in Haskell. We perform
a depth-first search on a rose tree of type Nest [ ], but once we go down a level, we never go back.

call :: Nest [ ] a→ [a]
call (Nest xs) = aux xs

where
aux [ ] = [ ]
aux (Return a : xs) = a : aux xs
aux (Wrap as : ) = aux as

brace :: Nest [ ] a→ Nest [ ] a
brace = lift ◦ call

cut :: Nest [ ] ()
cut = mark

Consider the following example.

. call ( do x← lift [4,7,13,9 ]
y← lift [2,8,1]
when (x+ y > 15) cut
return (x+ y) )

[6,12,5,9,15]
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(Here, when is a standard Haskell function, defined by when b m = if b then m else return ().) First, we
pick 4 from the first list, which after choices from the second list creates [6,12,5 ]. Then, we pick 7 from
the first list. We cut on the second element of the second choice (because 7+8 = 15). So, all the other
choices from the second list (that is, 1) are discarded, as well as other choices from the first list (that is,
13 and 9).

We can limit the scope of cut by using the brace function. Only choices from inside of the brace are
now cut.

. call ( do x← lift [4,7,13,9 ]
brace ( do y← lift [2,8,1 ]

when (x+ y > 15) cut
return (x+ y) ) )

[6,12,5,9,15,15,11,17 ]

Different interpretations of the Nest data structure enable the definition of different search strategies,
such as breadth-first search. Moreover, it can even mix two different strategies in lifted and minded parts.

4.4 Poor man’s concurrency transformer, revisited

Claessen’s “poor man’s” concurrency transformer [5] adds simple concurrency capabilities to any monad.
It has two flaws. The first one is that it does not respect the laws presented in Section 3. Every lifted
operation is atomic, and execution can only be interrupted in between atomic actions; this means that the
evaluation of lift m1 >> lift m2 can be interrupted by an action from another thread, while lift (m1 >>m2)
cannot. The second flaw is that the return type of its run function is m (), and so it does not allow one to
collect actual results of the computation. Here, we give a version of Claessen’s transformer which fixes
these flaws, via a conscious use of free structures.

In Claessen’s monad, the user first builds a continuation, which produces an expression, which then
is interpreted by the run function. By augmenting the type of expressions, we can skip the continuation
layer. The datatype for concurrent expressions is as follows.

data Action m a = Par (Action m a) (Action m a) | Act (m (Action m a)) | Done a | Kill

Intuitively, the Par constructor pairs two expressions for parallel evaluation, Act performs a single
monadic action, Done terminates the computation with an answer1, and Kill terminates the computa-
tion with no answer. We treat Action as a term algebra with Done as a constructor for variables.

instance Functor m⇒Monad (Action m) where
return = Done

Par a b>>= f = Par (a>>= f ) (b>>= f )
Act m >>= f = Act (fmap (>>=f ) m)
Done a>>= f = f a
Kill >>= f = Kill

The Action datatype describes a program, but does not specify which actions form atomic chunks
that should not be interrupted by other operations. This task is delegated to the Nest transformer. The

1The Kill constructor is called Stop in Claessen’s datatype, and Done is new.
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type of our concurrent monad is then Nest (Action m) a, for a monad m and answer type a. We define
a number of operations, which allow easy construction of concurrent expressions. The functions done
and kill lift the appropriate constructors. A single operation can be embedded in an Action data structure
and lifted to the concurrent monad with act. There are two operators for concurrency, par and fork. The
former constructs a computation from two computations of the same type. The latter starts an auxiliary
thread, whose final value is ignored (see the examples below).

type Concurrent m = Nest (Action m)

done :: (Monad m)⇒ a→ Concurrent m a
done = lift ◦Done

kill :: (Monad m)⇒ Concurrent m a
kill = lift Kill

act :: (Monad m)⇒ m a→ Concurrent m a
act m = lift (Act (liftM Done m))

par :: (Monad m)⇒ Concurrent m a→ Concurrent m a→ Concurrent m a
par (Nest m1) (Nest m2) = Nest (Par (Done (Wrap m1)) (Done (Wrap m2)))

fork :: (Monad m)⇒ Concurrent m b→ Concurrent m ()
fork m = par (m>> kill) (act (return ()))

We schedule such computations with the following round function. We can see Done as a constructor
which either terminates evaluation of an atomic chunk (when it is composed with Wrap) or the entire
thread (when it is composed with Return).

round :: Monad m⇒ [Nest (Action m) x ]→ m [x ]
round [ ] = return [ ]
round (Nest w : as) = case w of

Kill → round as
Done (Return x)→ do {xs← round as; return (x : xs)}
Done (Wrap a) → round (as++[Nest a ])
Act m → do {a← m; round ([Nest a ]++as)}
Par a b → round ([Nest b ]++as++[Nest a ])

We can test our monad as follows. In the first example, we first define two expressions: cat writes
the string "cat" five times, relinquishing control every time the operation is performed. Similarly, fish
writes "fish" seven times.

instance (Monoid s)⇒MonadWriter s (Concurrent (Writer s)) where
tell = act ◦ tell

cat :: Concurrent (Writer String) Int
cat = replicateM 5 (tell "cat">>mark)>> return 1
fish :: Concurrent (Writer String) Int
fish = replicateM 7 (tell "fish">>mark)>> return 2

We can test them, by running them in parallel.

. round [do x← fish ‘par‘ cat
tell "dog"
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return x ]
("catfishcatfishcatfishcatfishcatfishdogfishfishdog", [1,2 ])

The results of all parallel threads called with par, in this example [1,2], are returned in a list. The
operation tell "dog" is bound to both threads.

We can now run fish in a separate, auxiliary thread. The thread is run on the side, the following
actions are not bound to it, and its result is not returned with the overall result.

. round [do fork fish
x← cat
tell "dog"
return x ]

("catfishcatfishcatfishcatfishcatfishdogfishfish", [1 ])

We can also define a version of fish that is performed atomically.

fish′ :: Concurrent (Writer String) Int
fish′ = replicateM 7 (tell "fish")>> return 2

We can see that round does not separate the calls of tell "fish".

. round [do fork fish′

x← cat
tell "dog"
return x ]

("catfishfishfishfishfishfishfishcatcatcatcatdog", [1 ])

5 Related work

The idea of separation of syntax and semantics of monadic computations is not new. It is the very foun-
dation of the success of monads as a tool for encapsulating impure behaviour in pure languages [21]—for
example, the way Haskell integrates impure effects such as I/O within a pure language is to make the
pure evaluation construct a syntactic term, which is subsequently interpreted by the run-time system.

The work most related to ours is the Unimo framework introduced by Lin [17], which is an embedded
domain-specific language designed to modularise construction of monads in Haskell. Even though Lin’s
motivation and toolbox significantly differ from ours, he came to the same conclusion that exposing the
structure of computations allows more functionality to be added to existing monads. We share a strong
flavour of aspect-oriented programming.

There is a resemblance between resumptions, used for modelling semantics of concurrency [8, 11],
and the Nest monad. A resumption monad transformer is used, for example, by Papaspyrou to model
semantics of concurrency in domain theory [20], and by Harrison in his “cheap” concurrency [9, 10].
They both use a definition similar to ours from Section 2 (though they fail to mention the connection
between free monads and resumptions), and as a result their constructions are not transformers in the
sense of Section 3.

Harrison [9] is not quite right in claiming that Claessen’s monad is based on first-class continuations.
A version of the continuation monad is used only to build a syntactic term, which serves as the backbone
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of the concurrent computation. The term is not a monad, since it lacks free variables, but it reveals the
structure of resumptions (notice the type of the constructor Atom :: m (Action m)→ Action m). Simi-
larly, in Swierstra and Altenkirch’s functional specification of concurrency [23], resumptions are used
implicitly, and control is surrendered by a thread whenever it wants to communicate with other parts
of the concurrent system (which is denoted by a constructor of the free structure IOc). As we show in
Sections 4.1 and 4.4, the Nest monad transformer allows one to separate the concepts of composition of
computations and yielding, by an explicit use of mark.

A definition of a resumption transformer, which satisfies the laws from Section 3, and is in fact iso-
morphic to Nest, was already given by Cenciarelli and Moggi [4], but practical applications in program-
ming were not studied. Also—as pointed to us by the anonymous reviewers—the Nest transformer can
be obtained via Hyland, Plotkin and Power’s sum construction [13], as a sum of a monad and an Identity-
generated free monad. Though Hyland et al.’s construction provides a simpler proof that Nest can be
given a monad structure (using a distributive law between a monad m and the m-generated free monad),
our definition of join is not intensionally similar to the one arising from the sum construction, and issues
like efficiency should also be taken into account. A naive implementation of join in the sum construction
traverses the structure twice (once to apply the distributive law, and once to join the free structure), while
join for Nest needs to traverse the structure only once. On the other hand, the sum construction allows
one to include an additional functor—the datatype in question is of the form M (Free (F ◦M) a)—which
may help to generalize our notion of tracing in the future.

The interleaving between pure data and monadic structure was also considered by Filinski and
Støvring [7], and in forthcoming work by Atkey et al. [1]. They give proof principles for reasoning
about datatypes that include effects, for example a stream in which tails are always guarded by I/O
actions.

6 Future work

So far, we failed to mention the mother and father of all purely functional monads, that is the continuation
and state monads. We do not have much to say about continuations, but we see a lot of applications in
tracing the State monad.

Functional specifications of effects. The idea behind functional specifications of effects in pure lan-
guages is to model the logic of an effectful construct in the pure core of the language. For example, such
a specification may consist of a datatype representing a model of the outside world and a variation of the
State monad whose state modifications mirror the actions of the side-effecting monad. This way, we can
translate a program into its pure equivalent, test it, and reason about it no differently from how we would
reason about any other pure program.

The existing frameworks for specifying “effectful” Haskell in “pure” Haskell—like those proposed
by Swierstra and Altenkirch [22, 23] and Butterfield et al. [2, 6]—do not concentrate on non-terminating
computations, which are of little use in the pure world, but which are back in the spotlight in the pres-
ence of effects like I/O and concurrency. For example, Butterfield et al. model the interaction between
programs and a filesystem by means of the State monad, which for an initial state (of the filesystem)
produces a final value and a final state. In case of non-terminating programs, no final state exists, so
the whole model becomes useless. What we are really interested in is not a final state, but the whole
(possibly infinite) sequence of subsequent states of the filesystem, or a trace of all the interactions. In
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such a setting, we can use coinduction as a reasoning tool, which coincides with the non-strict semantics
of Haskell, in which we try to embed our model.

As mentioned before, our approach can transform monolithic computations into coinductive unfold-
ing of traces. That is why we propose to use a different monad as a basis for functional specifications. It is
a monad which produces not only the final state, but the whole (possibly infinite) stream of intermediate
states.

data Trace s a = TCons s (Trace s a) | Nil a

newtype States s a = States{runStates :: s→ Trace s a}

We leave the exact implementation of instances of Monad (States s), MonadTrans (State s) (States s) and
MonadTrace (States s) to the reader as an exercise. The mark operation should accumulate the current
state in the Trace.

What is the relationship between States s and Nest (State s)? It is possible to interpret free parts of
Nest (State s) in a suitable way, that is to define a monad morphism of type Nest (State s)→ States s.
We can also suspect a different kind of generality, since State is a composition of two adjoint functors,
namely State s = Reader s◦Writer s, while States s = Reader s◦Free (Writer s).
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Appendix A Proof that Nest is a monad

We prove the properties (2) and (3) from Section 3.2 by induction, assuming an initial-algebra reading
of the datatype Free m—that is, we assume a well-founded ordering on the subterms of any value of type
Free m a. (We have to resort to something like induction, because the definition of prod above isn’t in
the form of a standard recurson pattern—in particular, it is not a fold.) For brevity, we omit the Nest
constructor.

Property (2): The case for Return is straightforward. For the Wrap case, we assume that the property
holds for each element of data structure m; that is, that

M (prod ◦F return) m = M returnM m

Then we calculate:

(prod ◦F return) (Wrap m)
= { naturality of Wrap :: M F→ F }
(prod ◦Wrap◦M F return) m

= { definition of prod }
(returnM ◦Wrap◦ joinM ◦M prod ◦M F return) m

= { functors }
(returnM ◦Wrap◦ joinM ◦M (prod ◦F return)) m

= { induction }
(returnM ◦Wrap◦ joinM ◦M returnM) m

= { M as a monad }
(returnM ◦Wrap) m

Property (3): The case for Return is again straightforward. In the Wrap case, we again assume that
the property holds for each element of m:

M (join◦prod) m = M (prod ◦F join) m

Then we calculate:

(join◦prod) (Wrap m)
= { definition of join }
(joinM ◦M prod ◦prod ◦Wrap) m

= { definition of prod }
(joinM ◦M prod ◦ returnM ◦Wrap◦ joinM ◦M prod) m

= { naturality of returnM }
(joinM ◦ returnM ◦prod ◦Wrap◦ joinM ◦M prod) m

= { M as a monad }
(prod ◦Wrap◦ joinM ◦M prod) m

= { definition of prod }
(returnM ◦Wrap◦ joinM ◦M prod ◦ joinM ◦M prod) m

= { naturality of joinM }
(returnM ◦Wrap◦ joinM ◦ joinM ◦M M prod ◦M prod) m

= { M as a monad }
(returnM ◦Wrap◦ joinM ◦M joinM ◦M M prod ◦M prod) m
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= { functors }
(returnM ◦Wrap◦ joinM ◦M (joinM ◦M prod ◦prod)) m

= { definition of join; induction }
(returnM ◦Wrap◦ joinM ◦M (prod ◦F join)) m

= { functors }
(returnM ◦Wrap◦ joinM ◦M prod ◦M F join) m

= { definition of join }
(returnM ◦Wrap◦ join◦M F join) m

= { definition of prod }
(prod ◦Wrap◦M F join) m

= { naturality of Wrap :: M F .→ F }
(prod ◦F join) (Wrap m)

Appendix B Proof that Nest is a tracer

Here, we prove that Nest is a tracer (see Sections 3.1 and 3.3 for the definitions). The equalities drop ◦
lift = id and drop mark = return () are straightforward.

We prove the equality lift ◦ returnM = returnN as follows.

lift ◦ returnM

= { definition of lift }
M Return◦ returnM

= { naturality of returnM }
returnM ◦Return

= { definition of returnN }
returnN

The fact that lift c >>=N lift ◦ f = lift (c >>=M f ) follows from the following.

lift c >>=N lift ◦ f
= { definition of >>=N }

joinN (N (lift ◦ f ) (lift c))
= { definition of lift }

joinN (N (M Return◦ f ) (M Return c))
= { definition of N }

joinN (MF (M Return◦ f ) (M Return c))
= { definition of joinN }

joinM (M prod (MF (M Return◦ f ) (M Return c)))
= { functor }

joinM (M (prod ◦F (M Return◦ f )◦Return) c)
= { definition of F }

joinM (M (prod ◦Return◦M Return◦ f ) c)
= { definition of prod }

joinM (M (M Return◦ f ) c)
= { naturality of joinM }
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(M Return◦ joinM) (M f c)
= { definition of lift }

lift (joinM (M f c))
= { definition of joinM }

lift (c >>=M f )

To prove the fact that drop is a monad morphism we first prove a lemma

joinM ◦M revert ◦prod ◦F f = joinM ◦ joinM ◦MM revert ◦M f ◦ revert

The case for Return follows from simple unfolding of the definitions. The case for Wrap is as follows.

(joinM ◦M revert ◦prod ◦F f ) (Wrap m)
= { definition of F }
(joinM ◦M revert ◦prod) (Wrap (MF f ) m))

= { definition of prod }
(joinM ◦M revert ◦ returnM ◦Wrap◦ joinM ◦M prod ◦MF f ) m

= { naturality of returnM }
(joinM ◦ returnM ◦ revert ◦Wrap◦ joinM ◦M prod ◦MF f ) m

= { monad laws }
(revert ◦Wrap◦ joinM ◦M prod ◦MF f ) m

= { definition of revert }
(joinM ◦M revert ◦ joinM ◦M prod ◦MF f ) m

= { naturality of joinM }
(joinM ◦ joinM ◦MM revert ◦M prod ◦MF f ) m

= { monad laws }
(joinM ◦M joinM ◦MM revert ◦M prod ◦MF f )) m

= { functor }
(joinM ◦M (joinM ◦M revert ◦prod ◦F f )) m

= { induction }
(joinM ◦M (joinM ◦M joinM ◦MM revert ◦M f ◦ revert) m

= { functor }
(joinM ◦M joinM ◦MM joinM ◦MMM revert ◦MM f ◦M revert) m

= { monad laws }
(joinM ◦ joinM ◦MM joinM ◦MMM revert ◦MM f ◦M revert) m

= { naturality of joinM }
(joinM ◦M joinM ◦ join m◦MMM revert ◦MM f ◦M revert) m

= { naturality of joinM }
(joinM ◦M joinM ◦MM revert ◦ joinM ◦MM f ◦M revert) m

= { naturality of joinM }
(joinM ◦ joinM ◦MM revert ◦M f ◦ joinM ◦M revert) m

= { definition of revert }
(joinM ◦ joinM ◦MM revert ◦M f ◦ revert) (Wrap m)

To prove that drop (c >>=N f ) = drop c >>=M (drop◦ f ), for c :: a and f :: a→ Nest m b, we unfold the
definition of (>>=) and prove the equivalent equality drop (joinN (N f c)) = joinM (M (drop◦ f ) drop c).
It follows from the commutativity of the following diagram (in Hask). For brevity, we write µN for the
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join of monad Nest. The left-most path of the diagram is equal to joinM ◦M (drop◦ f )◦drop, while the
right-most path is equal to drop◦ joinN ◦N f .

MFA MFA MFA MFA

MMA MMA MFMFB MFMFB

MA MMMFB MMFB MMFB

MMFB MMMMB MMMB MFB

MMMB MMMB

MMB MMB MMB MMB

MB MB MB MB

M revert

µM

MM revert

M µM

µM

drop

M drop

M f

M revert

MM f

MMM revert

MM µM M µM M

µM M M µM

µM

MF f

M prod

MM revert

M µM µM M

µM

MF f

M prod

µM F

M revert

µM

drop

µN

The first column of the diagram depicts unfolding of the definitions of drop. The second column is equal
to the first one due to the fact that joinM is a natural transformation: the morphism joinM :: MMA→MA
form the first column “travelled” down the path to settle as joinM :: MMMB→MMB. Additionally, due
to the monad law for joinM, we can exchange MM joinM with M joinM. This allows us to use the lemma,
the M-image of which commutes columns 2 and 3. Again, we can use the monad law to change M joinM

into joinM. We use the naturality of joinM to switch its position with the mapping of revert, which justify
the fourth column.
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