Tracing monadic computations and representing effects

Maciej Piróg and Jeremy Gibbons
Department of Computer Science
University of Oxford
Maciej.Pirog@cs.ox.ac.uk Jeremy.Gibbons@cs.ox.ac.uk

Abstract

In functional programming, monads are supposed to encapsulate computations, effectfully producing the final result, but keeping to themselves the means of acquiring it. For various reasons, we sometimes want to reveal the internals of a computation. To make that possible, in this paper we introduce monad transformers that add the ability to automatically accumulate observations about the course of execution as an effect. We discover that if we treat the resulting trace as the actual result of the computation, we can find new functionality in existing monads, notably when working with non-terminating computations.

1 Introduction

Consider a simple database in which different users store data under keys. This can be represented in Haskell as a data structure of type $[($ User,$[($ Key,Data $)])]$. We can define a function getData which looks up a value for a specified user and a key.

$$
\begin{aligned}
& \text { getData }::[(\text { User, }[(\text { Key,Data })])] \rightarrow \text { User } \rightarrow \text { Key } \rightarrow \text { Maybe Data } \\
& \text { getData db u } k=\text { lookup u db } \gg=\text { lookup } k
\end{aligned}
$$

If a user u has an entry d associated with a key k in the database, getData $u k$ returns Just d; otherwise, it returns Nothing. In the latter case we might want to inform the user 'why' the program is not able to deliver data: they might have misspelled their username, which means that lookup u will fail, or they might have tried to read from a missing key, which means that lookup k will fail. Unfortunately, the Maybe monad does not allow one to observe at what point a failing program actually fails. We need to structure our function using a more sophisticated monad.

What are the desired properties of such a monad? For sure, we want it to employ the same kind of effects as Maybe, so that we do not have to alter the logic of our program. We would like to have a lift operation, which allows us to automatically translate some operations from Maybe into the new monad, so that it is not necessary to rewrite standard functions like lookup. But most importantly, it must also reveal some observations about the course of execution (a trace), such as the number of successful subcomputations, from which we can extract the desired information about the point of failure. One possibility is to explicitly accumulate such observations inside the computation, using monads like Writer or Exception. In this article, however, we take a different approach: we automate the accumulation inside the monadic structure. The accumulation is transparent inside the computation; that is, it cannot affect the course of execution, and is revealed only on the outside.

We aim for maximum genericity: we construct transformers that add traces to arbitrary monads. Our main tools are free monads (Section 2), which have the ability to represent the very structure of monadic computations. They provide, in a sense, the most informative traces possible. Then, we introduce a transformer, called Nest, which allows one to mix the free and effectful computations provided by a monad (Section 3). The genericity pays off, and we find a number of applications for tracing monads:
J. Chapman and P. B. Levy (Eds.): Fourth Workshop on Mathematically Structured Functional Programming (MSFP 2012). EPTCS 76, 2012, pp. $90-111$ doi 10.4204/EPTCS.76.8
© Maciej Piróg \& Jeremy Gibbons
This work is licensed under the Creative Commons Attribution License.

- Traces of computations can be interpreted in different ways. In Section 4.3 we show an example in which, by revealing the inner structure of a computation in the List monad, we can define the Prolog cut operator.
- Computations encapsulated in monadic expressions are often monolithic. They are supposed to produce final values only, so there is little space for non-termination. But, assuming non-strict semantics, we can see computations as entities that lazily unfold a trace. So, even if a computation is non-terminating, we can benefit from its infinite trace. If we interpret free parts of a Nest value as terms, we discover that Nest is a generalisation of Capretta's partiality monad (see Section 4.1).
- For the same reasons, traces are a useful tool for modelling impure interaction with the environment. In Section 6, we sketch out some future work on a novel, coinductive approach to the functional semantics of effects.

2 Simple tracing with free monads

Moggi [19] called monads notions of computation, because they describe computational effects in a way that abstracts from the type of values produced by a computation. In a sense, from the categorical point of view, monads abstract even from the exact values produced by the computation, since return and join are natural transformations. It is the bind operator (defined as $m \gg=f=$ join (fmap $f m$) that mixes the functorial (looking only at the values) fmap and parametric (looking only at the structure) join. The laws for monads and functors entail the following equality, called naturality of join.

$$
\text { fmap } f \circ \text { join } \equiv \text { join } \circ f m a p ~(f m a p f)
$$

Read as a transformation from left to right, it allows one to move occurrences of join to the left of a composition, and occurrences of fmap to the right. This way, we can split computations with multiple steps into a "mapping" part and a "joining" part. For example, consider a computation $m \gg f \gg g$. It can be split as follows.

```
\(m \gg=f \gg=g \equiv(\) join \(\circ\) fmap \(g \circ\) join \(\circ f m a p f) m \equiv(\) join \(\circ\) join \(\circ f m a p(f m a p g) \circ f m a p f) m\)
```

Intuitively, we can see the "mapping" part (that is, fmap (fmap g) ○fmap f) as the construction of the computation and the "joining" part (join \circ join) as the execution of effects.

Our first approach to tracing is to capture the mapping part of a computation. We suspend execution of the join operators of the monad, so that we can isolate and examine the elements from which the computation is composed.

2.1 Free monads

The type of the mapping part is different for different numbers of nested occurrences of the fmap function, and so for computations consisting of different numbers of steps. For example,

$$
\begin{array}{ll}
\text { Just 'a' } & \text { :: Maybe Char } \\
\text { fmap Just (Just 'a') } & \text { :: Maybe (Maybe Char) } \\
\text { fmap (fmap Just) (fmap Just (Just 'a')) :: Maybe (Maybe (Maybe Char)) }
\end{array}
$$

A reasonable class of datatypes in which to store such expressions are the free monads, also known as f-generated trees. Allowing ourselves to define monads in terms of fmap, return, and join, rather than the return and \gg required by Haskell, we can write:

```
data Freef \(a=\operatorname{Wrap}(f(\) Freef \(a)) \mid\) Return \(a\)
instance Functor \(f \Rightarrow\) Functor (Freef) where
    fmap \(g(\) Return \(a)=\) Return \((g a)\)
    fmap \(g(\) Wrapf \()=\operatorname{Wrap}(\) fmap \((\) fmap g \() f)\)
instance Functor \(f \Rightarrow\) Monad (Freef) where
    return \(\quad=\) Return
    join \((\) Return \(f) \quad=f\)
    join \((\) Wrap \(f) \quad=\) Wrap \((\) frap join \(f)\)
```

Each level of the type constructor of a monad corresponds to a level in the Free data structure. We store Just 'a' :: Maybe Char as Wrap (Just (Return 'a')), and Just (Just ('a')) :: Maybe (Maybe Char) as Wrap (Just (Wrap (Just (Return 'a')))), and so on.

2.2 Monad transformers with drop

The type Free $m a$ can be seen as a datatype of terms generated by the signature m (a functor) and a set of variables a. Even if m is a monad, Free m cannot depend on any effects provided by m; the join operation for Free m performs only substitution, and is independent of the join for m.

In order to couple a monad m and the m-generated free monad, we need the notion of monad transformers [16]. A monad transformer with drop is a relation between two monads, m and t, characterised by two functions, lift and drop, which translate computations in m into computations in t, and vice versa. The relationship can be defined as the following two-parameter Haskell type class. Though in functional programming drop is rarely considered to be a member of MonadTrans, it plays an important role here. For the moment, we forget that we usually insist that monad transformers are subject to a certain set of algebraic laws.

$$
\begin{aligned}
& \text { class }(\text { Monad } m \text {, Monad } t) \Rightarrow \text { MonadTrans } m t \mid t \rightarrow m \text { where } \\
& \text { lift }:: m a \rightarrow t a \\
& \text { drop }:: t a \rightarrow m a
\end{aligned}
$$

For any monad m, we define an instance of MonadTrans m (Free m) as follows. The lift operation is straightforward, as it only wraps the value and maps the Return constructor. The drop operation traverses the structure and flattens each level, thus performing suspended binds of m.

```
instance (Functor \(m\), Monad \(m\) ) \(\Rightarrow\) MonadTrans \(m\) (Free m) where
    lift \(\quad=\) Wrap \(\circ\) fmap Return
    drop \((\) Return \(a)=\) return \(a\)
    drop \((\) Wrap \(m)=m \gg=\) drop
```


2.3 Examples

Now, we can test our tracing free monad transformer on the Maybe monad. The lift function allows us to translate any computation in m into a computation in Free m. To get the original, non-traced computation back, we use the drop function.

We can see every composition WrapoJust as a "tick", given for each lifted successful subcomputation. The trace forms a unary counter, storing the number of ticks. The final value of the computation is stored in the last Wrap. Consider the following conversation with the Haskell interactive shell.

```
do {lift (Just 2); lift (Just 4); lift Nothing }
Wrap (Just (Wrap (Just (Wrap Nothing))))
\triangleright d r o p ( d o ~ \{ l i f t ~ ( J u s t ~ 2 ) ; ~ l i f t ~ ( J u s t ~ 4 ) ; ~ l i f t ~ N o t h i n g ~ \} )
Nothing
```

Similarly, for the Writer monad, we can get a list of all the values appended to the monoid followed by the final return value. (For brevity, we show Writer $(a, \operatorname{Sum} s)$ as (s, a).)

```
\trianglerightdo {lift (tell (Sum 2)); lift (tell (Sum 3)); lift (tell (Sum 7)); return 'a'}
Wrap (2,Wrap (3,Wrap (7,Return 'a')))
\trianglerightdrop (do {lift (tell (Sum 2)); lift (tell (Sum 3)); lift (tell (Sum 7)); return 'a' })
(12,'a')
```

An important thing to notice is that non-terminating computations in Writer do not make much sense. For example, the following computation just diverges.
\triangleright let $w n=$ do $\{$ tell $($ Sum $n) ; w(n+1)\}$ in $w 0$
$(* * *$ Exception: stack overflow
In contrast, with the tracing version of Writer, we can enjoy an infinite stream of actions that happen during the execution:

```
\(\triangleright\) let \(w n=\) do \(\{\operatorname{lift}(\) tell \((\) Sum \(n)) ; w(n+1)\}\) in \(w 0\)
Wrap (0, Wrap (1, Wrap (2, Wrap (3, Wrap (4, Wrap (5, Wrap (6, Wrap (7, Wrap (8, Wrap...
```


3 More advanced tracing with free structures

Tracing computations with free structures is not very flexible: every bind and every join is suspended, creating a new level of structure every time a monadic action is called. In some circumstances we would like to trace only selected parts of the computation-perhaps we are confident that the other parts always succeed, or we want to treat selected pieces of the computation monolithically, and we are not interested in a fine-grained report about their behaviour.

Another issue is the algebraic properties of monad transformers with drop. Intuitively, a pair of monads m and t are related as a monad transformer if t incorporates at least the same effects as m. This is usually formalised with the following equalities [12].

$$
\begin{array}{ll}
\text { lift }(\text { return } a) & =\text { return a } \\
\text { lift }(m \gg f) & =\text { lift } m \gg(\text { lift } \circ f) \\
\text { drop }(\text { return } a) & =\text { return a } \\
\text { drop }(\text { lift } m \gg f) & =m \gg d r o p \circ f
\end{array}
$$

The first two equalities state that lift is a monad morphism. The instance MonadTrans m (Free m) from Section 2.2 does not have this property. For example, lift (Just 1) > lift (Just 2) is equal to Wrap (Just (Wrap (Just (Return 2)))), while lift (Just $1 \gg$ Just 2$)$ is equal to Wrap (Just (Return 2)).

For these two reasons, we abandon the idea of using free monads directly to trace computations. Instead, in this section we introduce a general class, MonadTrace, which allows one to specify the points at which to make observations about the execution, and a corresponding version of the Free monad that is a proper monad transformer.

3.1 The MonadTrace class

The MonadTrace class introduces a single monadic value, mark. Intuitively, this is an operation that stores the current state of execution in the trace.

```
class Monad t MonadTrace t where
    mark::t ()
```

We call a monad v a tracer of a monad m, if m and v form a monad transformer (MonadTrans $m v$), and v is an instance of MonadTrace. Additionally, lift, drop and mark should satisfy the following equalities.

```
lift \(\quad(\) return \(a)=\) return \(a\)
lift \(\quad(m \gg f)=\) lift \(m \gg=(\) lift \(\circ f)\)
drop \((\) return \(a)=\) return \(a\)
drop \((v \gg g)=\) drop \(v \gg=(\) drop \(\circ g)\)
drop mark \(\quad=\) return ( \()\)
```

The tracer v cannot perform more effects than the monad m, except for tracing with the mark operation. Nonetheless, tracing does not affect the course of computation in any way observable from inside of the v-computation, hence both lift and drop are monad morphisms. Note that the laws entail dropolift $=i d$.

We use the mark gadget wherever we want to make an observation. In the following example, the intuitive semantics of a tracer for the Maybe monad is that we get a tick whenever the computation is still successful when placing a mark.

$$
\text { do }\left\{x \leftarrow \text { lift } m_{0} ; y \leftarrow \text { lift } m_{1} ; \text { mark } ; z \leftarrow \text { lift } m_{2} ; \text { mark; return }(x+y+z)\right\}
$$

That means that if m_{0} is successful, but m_{1} fails, no ticks are stored in the trace (intuitively, it is equivalent to Nothing). Only if both m_{0} and m_{1} are successful, the mark operation stores this success (the trace is of the form Just a, where a is a result of the rest of the computation). If m_{2} is also successful, the second call to mark stores this information in the trace (and the trace is of the form Just (Just a), where $a=\operatorname{return}(x+y+z)=\operatorname{Just}(x+y+z)$).

We also define a convenient function, mind, to perform a traced lifting.

$$
\begin{aligned}
& \text { mind }::(\text { MonadTrans } m v, \text { MonadTrace } v) \Rightarrow m a \rightarrow v a \\
& \text { mind } m=\operatorname{do}\{x \leftarrow \text { lift } m \text {; mark; return } x\}
\end{aligned}
$$

Then the previous example can be written more concisely:

$$
\text { do }\left\{x \leftarrow \text { lift } m_{0} ; y \leftarrow \text { mind } m_{1} ; z \leftarrow \text { mind } m_{2} ; \text { return }(x+y+z)\right\}
$$

3.2 The Nest monad

Free monads allow one to capture the structure of an m-computation as data; but for tracing, we need also to be able to perform some parts of the computations (the lifted ones) immediately. This suggests considering the composition of the two monads m and Free m, in one order or the other. In fact, because we want the lifted parts to be performed immediately, the appropriate order of composition is to have m on the outside and Free m inside. We therefore define:

```
newtype Nest ma=Nest \(\{\) unNest \(:: m(\) Free \(m a)\}\)
instance Functor \(m \Rightarrow\) Functor (Nest \(m\) ) where
    fmapf \((\) Nest \(m)=\operatorname{Nest}(\) fmap \((\) fmap \(f) m)\)
```

It remains to show that Nest can be given the structure of a monad. We do this using Jones and Duponcheel's prod construction [14]: given monad M with unit return $_{M}$ and multiplication join $_{M}$, and similarly monad F with return $_{F}$ and join $_{F}$, the composition $M F$ forms a monad with unit and multiplication given by

$$
\begin{aligned}
& \text { return }=\text { return }_{M} \circ \text { return }_{F} \\
& \text { join }=\text { join }_{M} \circ \text { fmap }_{M} \text { prod }
\end{aligned}
$$

provided that natural transformation prod ::FMF \rightarrow MF satisfies the three properties

$$
\begin{array}{ll}
{\text { prod } \circ \text { return }_{F}} \quad=\text { id } \\
\text { prod } \circ \text { fmap }_{F} \text { return } & =\text { return } \\
\text { prod } \circ \text { fmap }_{F} \text { join } & =\text { join } \circ \text { prod } \tag{3}
\end{array}
$$

Diagrammatically:

(In fact, the multiplication join $_{F}$ of F is not used; all that is required of F is for it to be a premonad.) It turns out that the definition of prod is-if not quite forced then at least-very strongly suggested by the necessity of satisfying these three properties.

In our case, M is the monad m, and F is the datatype Free m from Section 2, For brevity, let us write M for $f m a p_{M}$, and similarly F for $f m a p_{F}$; let us also write the coproduct type former as + and the coproduct morphism as ∇, so that we can express the two constructors as one composite,

$$
\text { Wrap } \nabla \text { Return }:: M F+1 \rightarrow F
$$

and name its inverse,

$$
\text { out }_{F}:: F \rightarrow M F+1
$$

Recall that the unit of the monad Free m is the constructor Return:

$$
\text { return }_{F}=\text { Return }
$$

Without loss of generality, we let

$$
\operatorname{prod} \circ(\text { Wrap } \nabla \text { Return })=\operatorname{prod}_{1} \nabla \operatorname{prod}_{2}
$$

so that

$$
\begin{aligned}
& \operatorname{prod}_{1}=\text { prod } \circ \text { Wrap } \\
& \text { prod }_{2}=\text { prod } \circ \text { Return }
\end{aligned}
$$

The definition of prod $_{2}$ is forced:

```
    prod \(_{2}\)
\(=\left\{\right.\) definition of \(\left.\operatorname{prod}_{2}\right\}\)
    prod \(\circ\) Return
\(=\left\{F\right.\) as a premonad: return \(_{F}=\) Return \(\}\)
    prod \(\circ\) return \(_{F}\)
\(=\{\) property (1) \(\}\)
    id
```

Now consider property (2). Expanding the left-hand side, we have

```
    prod \(\circ\) F return
\(=\{\) datatype isomorphism \(\}\)
    prod \(\circ F\) return \(\circ(\) Wrap \(\nabla\) Return \() \circ\) out \(_{F}\)
\(=\quad\{\) naturality of Wrap \(\nabla\) Return \(\}\)
    prod \(\circ(\) Wrap \(\nabla\) Return \() \circ(\) M F return + return \() ~_{\circ} \circ\) out \(_{F}\)
\(=\left\{\right.\) definitions of \(\left.\operatorname{prod}_{1}, \operatorname{prod}_{2}\right\}\)
    \(\left(\operatorname{prod}_{1} \nabla\right.\) prod \(\left._{2}\right) \circ(\) M F return + return \() \circ\) out \(_{F}\)
\(=\{\) coproducts \(\}\)
    \(\left(\left(\operatorname{prod}_{1} \circ M\right.\right.\) F return \() \nabla\left(\right.\) prod \(_{2} \circ\) return \(\left.)\right) \circ\) out \(_{F}\)
```

and for the right-hand side we have

```
    returnM
= {datatype isomorphism }
    returnM}\circ(\mathrm{ Wrap }\nabla\mathrm{ Return ) }\circ\mp@subsup{\mathrm{ out }}{F}{
= { coproducts }
    ((returnM}\circ\mathrm{ Wrap ) }\nabla(\mp@subsup{\mathrm{ return}}{M}{}\circ\mp@subsup{\mathrm{ Return })}{)}{}\circ\mp@subsup{\mathrm{ out }}{F}{
```

These two expressions must be equal, which implies that the equalities

$$
\begin{aligned}
\operatorname{prod}_{1} \circ M F \text { return } & =\text { return }_{M} \circ \text { Wrap } \\
\text { prod }_{2} \circ \text { return } & =\text { return }_{M} \circ \text { Return }^{2}
\end{aligned}
$$

must hold. The second equality follows from $\operatorname{prod}_{2}=i d$ and the definition of return; we'll use the first one to derive a definition for prod $_{1}$. We have:

$$
\begin{aligned}
& \operatorname{prod}_{1} \circ M F \text { return } \\
= & \left\{(\mathrm{A}) \text { suppose that } \text { prod }_{1}=\text { prod }_{1}^{\prime} \circ M \text { prod }\right\} \\
& \text { prod }_{1}^{\prime} \circ M \text { prod } \circ M F \text { return } \\
= & \{\text { functors }\}
\end{aligned}
$$

```
    \(\operatorname{prod}_{1}^{\prime} \circ M(\) prod \(\circ F\) return \()\)
\(=\{(\mathrm{B})\) induction \(\}\)
    \(\operatorname{prod}_{1}^{\prime} \circ M\) return \(M\)
\(=\left\{(\mathrm{C})\right.\) suppose that \(\operatorname{prod}_{1}^{\prime}=\) return \(_{M} \circ{\left.\text { Wrap } \circ j o i n_{M}\right\}}\)
    return \(_{M} \circ\) Wrap \(\circ\) join \(_{M} \circ M\) return \(_{M}\)
\(=\{M\) is a monad \(\}\)
    return \({ }_{M} \circ W r a p\)
```

and so property (2) strongly suggests letting

$$
\operatorname{prod}_{1}=\text { return }_{M} \circ W r a p \circ \text { join }_{M} \circ M \text { prod }
$$

The three steps (A), (B), (C) need a little justification. For (A), we're heading towards a use of induction, so we require an occurrence of M prod at the end of prod_{1}. For (B), induction seems plausible, because this calculation takes places under a Wrap constructor. For (C), the final M return n_{M} is cancellable via $j^{j_{i n}}{ }_{M}$, so we're done-we let be prod $_{1}^{\prime}$ be the final expression we want composed with this cancellation.

We don't need any stronger justification for induction than mere plausibility, because we are using this calculation only to suggest a possible definition of prod_{1} that we should then check more rigorously. This still leaves us also with having to check property (3), again by induction. Both of these proofs are presented in Appendix A.

The final instance declaration for Nest is then as follows:

```
instance (Functor m, Monad m) \(\Rightarrow\) Monad (Nest m) where
    return \(=\) Nest \(\circ\) return \({ }_{M} \circ\) Return
    join \(=\) Nest \(\circ \mathrm{join}_{M} \circ \mathrm{fmap}_{M}\) prod \(\circ\) unNest
    where
        \(\operatorname{prod}(\operatorname{Return}(\) Nest \(m))=m\)
        \(\operatorname{prod}(\) Wrap \(m) \quad=\left(\right.\) return \(_{M} \circ{\left.\text { Wrap } \circ \text { join }_{M} \circ \text { frap }_{M} \operatorname{prod}\right) m}_{m}\)
```


3.3 Tracing with Nest

For any monad m, the monad Nest m is a tracer. The lift function maps Return on values. It does not create any Wrap constructor, so lifted computations are single-level and are always joined when join for Nest is performed. The drop function traverses the free structure, and collapses levels which were previously separated by Wrap constructors. The mark gadget explicitly creates a new level by the Wrap constructor mapped on Returns. All future computations will be confined to the wrapped Returns, and so the previous structure is preserved.

```
instance (Functor \(m\), Monad \(m\) ) \(\Rightarrow\) MonadTrans \(m\) (Nest \(m\) ) where
    lift \(=\) Nest \(\circ\) fmap Return
    drop \(v=\) unNest \(v \gg\) revert
        where
            revert \((\) Return \(a)=\) return \(a\)
            \(\operatorname{revert}(\) Wrap \(m)=m \gg\) revert
```

instance (Functor m, Monad m) \Rightarrow MonadTrace (Nest m) where
mark $=($ Nest \circ return \circ Wrap \circ return \circ Return $)()$

The proof that these definitions satisfy the laws of MonadTrace from Section 3.1 is given in Appendix B.
As an example of mark, consider the following conversation with the Haskell shell. The call of the mark operation in the second query maps Wrap on every element. This way, every future computation is confined to the inside of those two Wrap constructors. Whatever monadic computation is bound to the result, on the top-level there will always be a two-element list, because it is a node with only Wrap constructors as children.

```
\(\triangleright\) lift [1,2]
Nest [Return 1,Return 2]
\(\triangleright\) do \(\{x \leftarrow\) lift \([1,2]\); lift \([0 \ldots x]\}\)
Nest [Return 0, Return 1,Return 0,Return 1,Return 2]
\(\triangleright\) do \(\{\) lift [1,2]; mark \(\}\)
Nest \([\) Wrap \([\) Return ()\(]\), Wrap \([\) Return ()\(]]\)
\(\triangleright\) do \(\{x \leftarrow\) lift \([1,2]\); mark; lift \([0 \ldots x]\}\)
Nest [Wrap [Return 0,Return 1], Wrap [Return 0,Return 1,Return 2]]
```


4 Interpreting traces

The tracing construction has multiple applications. As in the motivating example from the introduction, we can track the course of computation, in order to identify any point of failure. But, stepping back from this particular example, we observe that a trace is simply a data structure, and the computation in the Nest monad is performed only if the data structure is forced. This gives us control over the process of execution, which can be useful in the context of non-terminating computations (although the inductive proofs will need strengthening in that context). We can interpret the free parts of a Nest value in any way we want, and thus mix in some new effects, not previously available with the original monad. This control over a computation from the outside strongly resembles the paradigm of aspect-oriented programming.

4.1 The partiality monad

Capretta introduced the partiality monad [3] to capture non-termination as an effect; this technique has applications in type theory, to model non-guarded recursion. The original formulation is as follows.

$$
\text { data Partial } a=\text { Later }(\text { Partial } a) \mid \text { Now } a
$$

A structure of this type is a value wrapped in a (possibly infinite) number of Later constructors. It represents a computation sliced into layers. We can explicitly force any number of layers. The Nest monad can be seen as a monad transformer which allows computations structured by any monad to be sliced. The most basic case, Nest Identity, is indeed isomorphic to Partial.

In most programming languages, including Haskell, the \vee operator is asymmetric-non-strict in its second argument (True $\vee \perp \equiv$ True) but strict in its first ($\perp \vee$ True $\equiv \perp$). In pure Haskell, it is impossible to define parallel-or-that is, a disjunction \curlyvee with the property that True $\curlyvee \perp \equiv \operatorname{True} \equiv \perp \curlyvee$ True.

To implement such a disjunction in the real world, we need some kind of parallelism, so that both arguments are evaluated simultaneously; when either one terminates with True or both terminate with False, the computation of the disjunction is complete. We can purely approximate this behaviour-at
least for the case where undefined arguments arise from non-termination, rather than from any other reason. We do this by explicitly cutting the infinite computation into finite pieces, using the Nest tracer.

Consider the following function, which is an implementation of the so-called Collatz problem. It is suspected that for all $n>0$ it returns True, but no proof for this claim is known.

$$
\begin{aligned}
& \text { collatz :: Integer } \rightarrow \text { Bool } \\
& \begin{aligned}
\text { collatz } 1 & =\text { True } \\
\text { collatz } n \mid \text { odd } n & =\text { collatz }(3 \times n+1) \\
\mid \text { otherwise } & =\text { collatz }(n \div 2)
\end{aligned}
\end{aligned}
$$

If we want to check whether at least one of two Collatz sequences ends, it is not the best idea to use the regular Haskell disjunction, since if the first one diverges, the whole function diverges too.

$$
\begin{aligned}
& \text { oneOf }:: \text { Integer } \rightarrow \text { Integer } \rightarrow \text { Bool } \\
& \text { oneOf } a b=\text { collatz } a \vee \text { collatz } b
\end{aligned}
$$

A much safer solution is to chop the evaluation of the Collatz sequence into pieces. We use the Nest tracer for the Identity monad. This way, we make the evaluation incremental, which enables us to execute it in parallel. The scheduler is very simple and hidden in the definition of \curlyvee. It executes a piece from each argument in turn.

```
collatzN \(::\) Integer \(\rightarrow\) Nest Identity Bool
collatzN \(1=\) return True
collatz \(N n \mid\) odd \(n \quad=\) mark \(\gg\) collatz \(N(3 \times n+1)\)
    \(\mid\) otherwise \(=\) mark \(\gg \operatorname{collatz} N(n \div 2)\)
\((\curlyvee)::\) Nest Identity Bool \(\rightarrow\) Nest Identity Bool \(\rightarrow\) Bool
Nest \((\) Identity \((\) Leaf False \()) \curlyvee\) Nest \((\) Identity \((\) Leaf False \())=\) False
Nest (Identity (Leaf True)) \(\curlyvee_{-} \quad=\) True
    \(\curlyvee\) Nest (Identity (Leaf True)) \(=\) True
Nest (Identity (Node m)) \(\curlyvee x \quad=x \curlyvee\) Nest \(m\)
```

We can test the \curlyvee operator as follows. Note that collatz diverges if applied to 0 .

```
\trianglerightcollatzN 120 \curlyvee collatzN 130
True
\triangleright ~ c o l l a t z N ~ 0 ~ \curlyvee ~ c o l l a t z N ~ 1 3 0
True
\trianglerightcollatzN 130 \curlyvee collatzN 0
```

True

This model can easily be extended to different kinds of such thread races. For example, it is possible to simulate McCarthy's ambiguous choice operator $a m b:: a \rightarrow b \rightarrow$ Either $a b$ [18], which has the property that for $a_{0}:: a$ and $b_{0}:: b, a m b a_{0} \perp=$ Left a_{0}, and $a m b \perp b_{0}=$ Right b_{0} (again, assuming that the undefined values arise from non-termination).

4.2 Approximating computations

For some monads, the initial segment of a Nest value may be seen as an "approximation" to the computation. Consider the monad of finitely supported probability distributions. Its most common representation is a list of probabilities paired with values.

```
newtype Distr \(a=\) Distr \(\{\) runDistr \(::[(\) Double,\(a)]\}\)
instance Functor Distr where
    fmap \(f(\) Distr \(x s)=\operatorname{Distr}(f m a p ~(\lambda(p, a) \rightarrow(p, f a)) x s)\)
instance Monad Distr where
    return \(a=\operatorname{Distr}[(1, a)]\)
    join \((\) Distr \(x s)=\operatorname{Distr}[(p \times q, a) \mid(p\), Distr \(y s) \leftarrow x s,(q, a) \leftarrow y s]\)
```

However, this representation has a flaw. Consider the following problem: given the uniform distribution of $\{0,1\}$ (a fair coin), select uniformly an element from $\{0,1,2\}$. A solution is to flip the coin twice to get the uniform distribution of $\{0,1,2,3\}$; if you draw 0,1 , or 2 , this is your answer, and if you draw 3 , flip twice more. In Haskell:

$$
\begin{aligned}
& \text { coin }:: \text { Distr Int } \\
& \text { coin }=\text { Distr }[(0.5,0),(0.5,1)] \\
& \text { third }:: \text { Distr Int } \\
& \text { third }=\text { do } x \leftarrow \text { coin } \\
& y \leftarrow \text { coin } \\
& \text { case }(x, y) \text { of } \\
& \quad(1,1) \rightarrow \text { return } 0 \\
& \quad(1,0) \rightarrow \text { return } 1 \\
& (0,1) \rightarrow \text { return } 2 \\
& (0,0) \rightarrow \text { third }
\end{aligned}
$$

(This is a simplification of Knuth and Yao's technique to simulate a fair die using three fair coin tosses [15].) Though the solution is mathematically reasonable, the Haskell implementation is useless, because the List monad, and so also the Distr monad, gathers the results in a depth-first fashion. Though this may not be obvious at first sight, the recursive call in third is in the head of the list. Therefore, third actually diverges without producing any usable results: third $=\perp$.

The Nest monad can retrieve the situation, if we suspend the recursive call.

$$
\begin{aligned}
& \text { third } N:: \text { Nest Distr Int } \\
& \text { third } N=\mathbf{d o} x \leftarrow \text { lift coin } \\
& \qquad \begin{aligned}
& y \leftarrow \text { lift coin } \\
& \text { case }(x, y) \text { of } \\
&(1,1) \rightarrow \text { return } 0 \\
&(1,0) \rightarrow \text { return } 1 \\
&(0,1) \rightarrow \text { return } 2 \\
&(0,0) \rightarrow \text { mark } \gg \text { third } N
\end{aligned}
\end{aligned}
$$

What can we do with thirdN? One possibility is to get an "approximation" of the structure with the following function, which cuts the subcomputations if the recursion is deeper than the specified argument. All the computations that are too deep are replaced with Nothing.

```
takeN \(::(\) Functor \(m\), Monad \(m) \Rightarrow\) Int \(\rightarrow\) Nest \(m a \rightarrow\) Nest \(m\) (Maybe a)
takeN \(k(\) Nest \(m)=N e s t(f m a p(a u x k) m)\)
    where
        aux 0 (Wrap _ ) = Return Nothing
        \(\operatorname{aux} k(\) Wrap \(m)=\) Wrap \((\) fmap \((\operatorname{aux}(k-1)) m)\)
    aux \(k(\) Return \(a)=\) Return \((\) Just \(a)\)
approx: \(:(\) Functor \(m\), Monad \(m) \Rightarrow\) Int \(\rightarrow\) Nest \(m a \rightarrow m(\) Maybe \(a)\)
approx \(k=\) drop \(\circ\) takeN \(k\)
```

We can ask the Haskell shell:

```
\(\triangleright\) approx 0 thirdN
\([(0.25\), Nothing \(),(0.25\), Just 2\(),(0.25\), Just 1\(),(0.25\), Just 0\()]\)
\(\triangleright\) let \(\operatorname{simpl}(\operatorname{Distr} x s)=\operatorname{Distr}(\operatorname{map}(\lambda x \rightarrow(\operatorname{sum}[p \mid(p, a) \leftarrow x s, x \equiv a], x))(\operatorname{nub}(\) fmap snd \(x s)))\)
\(\triangleright \operatorname{simpl}(\) approx 1 thirdN)
\([(0.0625\), Nothing \(),(0.3125\), Just 2\(),(0.3125\), Just 1\(),(0.3125\), Just 0\()]\)
\(\triangleright \operatorname{simpl}(\) approx 2 thirdN)
[(0.015635, Nothing \(),(0.32813\), Just 2\(),(0.32813\), Just 1\(),(0.32813\), Just 0\()]\)
\(\triangleright \operatorname{simpl}(\) approx 10 thirdN)
\([(2.38419 \mathrm{e}-7\), Nothing \(),(0.33333\), Just 2\(),(0.33333\), Just 1\(),(0.33333\), Just 0\()]\)
```


4.3 The Prolog cut operator

Prolog's cut operator allows one to restrict backtracking. The moment it is reached during evaluation of a predicate, it succeeds, but also discards all the possible backtrack choices created by the predicate so far. By exposing the structure of a List computation, we can use this effect also in Haskell. We perform a depth-first search on a rose tree of type Nest [], but once we go down a level, we never go back.

```
call \(::\) Nest []\(a \rightarrow[a]\)
call \((\) Nest \(x s)=\) auxxs
    where
        \(\operatorname{aux}[] \quad=[]\)
        aux (Return \(a: x s)=a: \operatorname{aux} x s\)
        aux \((\) Wrap as :-_ \()=\) aux as
brace::Nest [] \(a \rightarrow\) Nest [] \(a\)
brace \(=\) lift \(\circ\) call
cut :: Nest [] ()
\(c u t=\operatorname{mark}\)
```

Consider the following example.

$$
\left.\begin{array}{c}
\triangleright \text { call }(\text { do } x
\end{array}\right) \leftarrow \text { lift }[4,7,13,9] ~ 子 \begin{aligned}
& y \leftarrow \text { lift }[2,8,1] \\
& \text { when }(x+y \geqslant 15) \text { cut } \\
& \text { return }(x+y)) \\
& {[6,12,5,9,15]}
\end{aligned}
$$

(Here, when is a standard Haskell function, defined by when $b m=\mathbf{i f} b$ then m else return ().) First, we pick 4 from the first list, which after choices from the second list creates $[6,12,5]$. Then, we pick 7 from the first list. We cut on the second element of the second choice (because $7+8=15$). So, all the other choices from the second list (that is, 1) are discarded, as well as other choices from the first list (that is, 13 and 9).

We can limit the scope of cut by using the brace function. Only choices from inside of the brace are now cut.

$$
\begin{aligned}
& \triangleright \text { call }(\text { do } x \leftarrow \text { lift }[4,7,13,9] \\
& \quad \operatorname{brace}(\text { do } y \leftarrow \text { lift }[2,8,1] \\
& \text { when }(x+y \geqslant 15) \text { cut } \\
& \text { return }(x+y))) \\
& {[6,12,5,9,15,15,11,17]}
\end{aligned}
$$

Different interpretations of the Nest data structure enable the definition of different search strategies, such as breadth-first search. Moreover, it can even mix two different strategies in lifted and minded parts.

4.4 Poor man's concurrency transformer, revisited

Claessen's "poor man's" concurrency transformer [5] adds simple concurrency capabilities to any monad. It has two flaws. The first one is that it does not respect the laws presented in Section 3 Every lifted operation is atomic, and execution can only be interrupted in between atomic actions; this means that the evaluation of lift $m_{1} \gg$ lift m_{2} can be interrupted by an action from another thread, while lift ($m_{1} \gg m_{2}$) cannot. The second flaw is that the return type of its run function is $m()$, and so it does not allow one to collect actual results of the computation. Here, we give a version of Claessen's transformer which fixes these flaws, via a conscious use of free structures.

In Claessen's monad, the user first builds a continuation, which produces an expression, which then is interpreted by the run function. By augmenting the type of expressions, we can skip the continuation layer. The datatype for concurrent expressions is as follows.

$$
\text { data Action } m a=\operatorname{Par}(\text { Action } m a)(\text { Action } m a) \mid \operatorname{Act}(m(\text { Action } m a)) \mid \text { Done } a \mid \text { Kill }
$$

Intuitively, the Par constructor pairs two expressions for parallel evaluation, Act performs a single monadic action, Done terminates the computation with an answell and Kill terminates the computation with no answer. We treat Action as a term algebra with Done as a constructor for variables.

```
instance Functor \(m \Rightarrow\) Monad (Action \(m\) ) where
    return \(\quad=\) Done
    Par \(a b \gg=f=\operatorname{Par}(a \gg=f)(b \gg=f)\)
    Act \(m \gg=f=\) Act \((\) fmap \((\gg f) m)\)
    Done \(a \gg f=f a\)
    Kill \(\gg f=\) Kill
```

The Action datatype describes a program, but does not specify which actions form atomic chunks that should not be interrupted by other operations. This task is delegated to the Nest transformer. The

[^0]type of our concurrent monad is then Nest (Action m) a, for a monad m and answer type a. We define a number of operations, which allow easy construction of concurrent expressions. The functions done and kill lift the appropriate constructors. A single operation can be embedded in an Action data structure and lifted to the concurrent monad with act. There are two operators for concurrency, par and fork. The former constructs a computation from two computations of the same type. The latter starts an auxiliary thread, whose final value is ignored (see the examples below).

```
type Concurrent \(m=\operatorname{Nest}\) (Action \(m\) )
done \(::(\) Monad \(m) \Rightarrow a \rightarrow\) Concurrent m \(a\)
done \(=\) lift \(\circ\) Done
kill \(::(\) Monad \(m) \Rightarrow\) Concurrent \(m a\)
kill \(=\) lift Kill
act \(::(\) Monad \(m) \Rightarrow m a \rightarrow\) Concurrent \(m a\)
act \(m=\) lift \((\) Act (liftM Done \(m))\)
par:: (Monad m) \(\Rightarrow\) Concurrent m \(a \rightarrow\) Concurrent m \(a \rightarrow\) Concurrent m a
\(\operatorname{par}\left(\right.\) Nest \(\left.m_{1}\right)\left(\right.\) Nest \(\left.m_{2}\right)=\operatorname{Nest}\left(\operatorname{Par}\left(\right.\right.\) Done \(\left(\right.\) Wrap \(\left.\left.m_{1}\right)\right)\left(\right.\) Done \(\left(\right.\) Wrap \(\left.\left.\left.m_{2}\right)\right)\right)\)
fork \(::(\) Monad \(m) \Rightarrow\) Concurrent \(m b \rightarrow\) Concurrent \(m()\)
fork \(m=\operatorname{par}(m \gg\) kill \()(\) act \((\) return ()\())\)
```

We schedule such computations with the following round function. We can see Done as a constructor which either terminates evaluation of an atomic chunk (when it is composed with Wrap) or the entire thread (when it is composed with Return).

```
round \(::\) Monad \(m \Rightarrow[\operatorname{Nest}(\) Action \(m) x] \rightarrow m[x]\)
round [] \(\quad=\) return []
round (Nest w: as) \(=\) case \(w\) of
    Kill \(\quad \rightarrow\) round as
    Done \((\) Return \(x) \rightarrow\) do \(\{x s \leftarrow\) round as; return \((x: x s)\}\)
    Done (Wrap a) \(\rightarrow\) round (as \(+[\) Nest a \(])\)
    Act \(m \rightarrow\) do \(\{a \leftarrow m\); round \(([\) Nest \(a]+\) as \()\}\)
    Par \(a b \quad \rightarrow\) round \(([\) Nest \(b]+\) as \(+[\) Nest \(a])\)
```

We can test our monad as follows. In the first example, we first define two expressions: cat writes the string "cat" five times, relinquishing control every time the operation is performed. Similarly, fish writes "fish" seven times.

```
instance (Monoid s) m MonadWriter s (Concurrent (Writer s)) where
    tell = act ० tell
cat :: Concurrent (Writer String) Int
cat = replicateM 5 (tell "cat" >> mark) >> return 1
fish:: Concurrent (Writer String) Int
fish = replicateM 7 (tell "fish" >> mark) >> return 2
```

We can test them, by running them in parallel.

$$
\begin{gathered}
\triangleright \text { round }[\mathbf{d o} x \leftarrow \text { fish 'par'cat } \\
\text { tell "dog" }
\end{gathered}
$$

```
    return x]
("catfishcatfishcatfishcatfishcatfishdogfishfishdog",[1,2])
```

The results of all parallel threads called with par, in this example [1,2], are returned in a list. The operation tell "dog" is bound to both threads.

We can now run fish in a separate, auxiliary thread. The thread is run on the side, the following actions are not bound to it, and its result is not returned with the overall result.

```
\triangleright ~ r o u n d ~ [ d o ~ f o r k ~ f i s h
    x\leftarrowcat
    tell "dog"
    return x]
("catfishcatfishcatfishcatfishcatfishdogfishfish",[1])
```

We can also define a version of fish that is performed atomically.

```
fish'::Concurrent (Writer String) Int
fish' = replicateM 7 (tell "fish") >> return 2
```

We can see that round does not separate the calls of tell "fish".

```
\(\triangleright\) round \(\left[\mathbf{d o}\right.\) fork fish \({ }^{\prime}\)
    \(x \leftarrow c a t\)
    tell "dog"
    return \(x\) ]
("catfishfishfishfishfishfishfishcatcatcatcatdog",[1])
```


5 Related work

The idea of separation of syntax and semantics of monadic computations is not new. It is the very foundation of the success of monads as a tool for encapsulating impure behaviour in pure languages [21]-for example, the way Haskell integrates impure effects such as I/O within a pure language is to make the pure evaluation construct a syntactic term, which is subsequently interpreted by the run-time system.

The work most related to ours is the Unimo framework introduced by Lin [17], which is an embedded domain-specific language designed to modularise construction of monads in Haskell. Even though Lin's motivation and toolbox significantly differ from ours, he came to the same conclusion that exposing the structure of computations allows more functionality to be added to existing monads. We share a strong flavour of aspect-oriented programming.

There is a resemblance between resumptions, used for modelling semantics of concurrency [8, 11], and the Nest monad. A resumption monad transformer is used, for example, by Papaspyrou to model semantics of concurrency in domain theory [20], and by Harrison in his "cheap" concurrency [9, 10]. They both use a definition similar to ours from Section 2 (though they fail to mention the connection between free monads and resumptions), and as a result their constructions are not transformers in the sense of Section 3 .

Harrison [9] is not quite right in claiming that Claessen's monad is based on first-class continuations. A version of the continuation monad is used only to build a syntactic term, which serves as the backbone
of the concurrent computation. The term is not a monad, since it lacks free variables, but it reveals the structure of resumptions (notice the type of the constructor Atom $:: m$ (Action $m) \rightarrow$ Action m). Similarly, in Swierstra and Altenkirch's functional specification of concurrency [23], resumptions are used implicitly, and control is surrendered by a thread whenever it wants to communicate with other parts of the concurrent system (which is denoted by a constructor of the free structure $I O_{c}$). As we show in Sections 4.1 and 4.4 the Nest monad transformer allows one to separate the concepts of composition of computations and yielding, by an explicit use of mark.

A definition of a resumption transformer, which satisfies the laws from Section 3, and is in fact isomorphic to Nest, was already given by Cenciarelli and Moggi [4], but practical applications in programming were not studied. Also-as pointed to us by the anonymous reviewers-the Nest transformer can be obtained via Hyland, Plotkin and Power's sum construction [13], as a sum of a monad and an Identitygenerated free monad. Though Hyland et al.'s construction provides a simpler proof that Nest can be given a monad structure (using a distributive law between a monad m and the m-generated free monad), our definition of join is not intensionally similar to the one arising from the sum construction, and issues like efficiency should also be taken into account. A naive implementation of join in the sum construction traverses the structure twice (once to apply the distributive law, and once to join the free structure), while join for Nest needs to traverse the structure only once. On the other hand, the sum construction allows one to include an additional functor-the datatype in question is of the form $M($ Free $(F \circ M) a)$-which may help to generalize our notion of tracing in the future.

The interleaving between pure data and monadic structure was also considered by Filinski and Støvring [7], and in forthcoming work by Atkey et al. [1]. They give proof principles for reasoning about datatypes that include effects, for example a stream in which tails are always guarded by I/O actions.

6 Future work

So far, we failed to mention the mother and father of all purely functional monads, that is the continuation and state monads. We do not have much to say about continuations, but we see a lot of applications in tracing the State monad.

Functional specifications of effects. The idea behind functional specifications of effects in pure languages is to model the logic of an effectful construct in the pure core of the language. For example, such a specification may consist of a datatype representing a model of the outside world and a variation of the State monad whose state modifications mirror the actions of the side-effecting monad. This way, we can translate a program into its pure equivalent, test it, and reason about it no differently from how we would reason about any other pure program.

The existing frameworks for specifying "effectful" Haskell in "pure" Haskell-like those proposed by Swierstra and Altenkirch [22, 23] and Butterfield et al. [2, 6]-do not concentrate on non-terminating computations, which are of little use in the pure world, but which are back in the spotlight in the presence of effects like I/O and concurrency. For example, Butterfield et al. model the interaction between programs and a filesystem by means of the State monad, which for an initial state (of the filesystem) produces a final value and a final state. In case of non-terminating programs, no final state exists, so the whole model becomes useless. What we are really interested in is not a final state, but the whole (possibly infinite) sequence of subsequent states of the filesystem, or a trace of all the interactions. In
such a setting, we can use coinduction as a reasoning tool, which coincides with the non-strict semantics of Haskell, in which we try to embed our model.

As mentioned before, our approach can transform monolithic computations into coinductive unfolding of traces. That is why we propose to use a different monad as a basis for functional specifications. It is a monad which produces not only the final state, but the whole (possibly infinite) stream of intermediate states.

```
data Trace s a =TCons s(Trace s a) | Nil a
newtype States s a = States{runStates ::s }->\mathrm{ Trace s a }
```

We leave the exact implementation of instances of Monad (States s), MonadTrans (State s) (States s) and MonadTrace (States s) to the reader as an exercise. The mark operation should accumulate the current state in the Trace.

What is the relationship between States s and Nest (State s)? It is possible to interpret free parts of Nest (State s) in a suitable way, that is to define a monad morphism of type Nest (State s) \rightarrow States s. We can also suspect a different kind of generality, since State is a composition of two adjoint functors, namely State $s=$ Reader $s \circ$ Writer s, while States $s=$ Reader $s \circ$ Free (Writer s).

References

[1] Robert Atkey, Neil Ghani, Bart Jacobs \& Patricia Johann (2012): Fibrational Induction Meets Effects. In Lars Birkedal, editor: Foundations of Software Science and Computational Structures, Lecture Notes in Computer Science 7213, Springer, pp. 42-57. To Appear.
[2] Andrew Butterfield \& Glenn Strong (2002): Proving Correctness of Programs with I/O - A Paradigm Comparison. In: Selected Papers from the 13th International Workshop on Implementation of Functional Languages, IFL '02, Springer-Verlag, London, UK, pp. 72-87, doi $10.1007 / 3-540-46028-4.5$
[3] Venanzio Capretta (2005): General Recursion via Coinductive Types. Logical Methods in Computer Science 1(2), pp. 1-18, doi 10.2168/LMCS-1(2:1)2005.
[4] Pietro Cenciarelli \& Eugenio Moggi (1993): A Syntactic Approach to Modularity in Denotational Semantics. In: Proceedings of the 5th Biennial Meeting on Category Theory and Computer Science, CTCS '93, CWI Technical Report, Amsterdam, The Netherlands.
[5] Koen Claessen (1999): A poor man's concurrency monad. Journal of Functional Programming 9, pp. 313323, doi $10.1017 /$ S0956796899003342
[6] Malcolm Dowse, Glenn Strong \& Andrew Butterfield (2003): Proving make correct: I/O proofs in Haskell and Clean. In: Proceedings of the 14th International Conference on Implementation of Functional Languages, IFL'02, Springer-Verlag, Berlin, Heidelberg, pp. 68-83, doi 10.1007/3-540-44854-3_5
[7] Andrzej Filinski \& Kristian Støvring (2007): Inductive reasoning about effectful data types. In: Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP '07, ACM, New York, NY, USA, pp. 97-110, doi $10.1145 / 1291151.1291168$.
[8] Steven E. Ganz, Daniel P. Friedman \& Mitchell Wand (1999): Trampolined style. In: Proceedings of the fourth ACM SIGPLAN International Conference on Functional Programming, ICFP '99, ACM, New York, NY, USA, pp. 18-27, doi $10.1145 / 317636.317779$
[9] William L. Harrison: Cheap (But Functional) Threads. Available at http://www.cs.missouri.edu/ ~harrison/drafts/CheapThreads.pdf.
[10] William L. Harrison (2006): The Essence of Multitasking. In: 1st International Conference on Algebraic Methodology and Software Technology (AMAST06), LNCS 4019, Springer-Verlag, doi $10.1007 / 11784180 _14$
[11] Matthew Hennessy \& Gordon Plotkin (1979): Full Abstraction for a Simple Parallel Programming Language. In Jirí Becvár, editor: MFCS, Lecture Notes in Computer Science 74, Springer, pp. 108-120, doi 10.1007/3-540-09526-8_8.
[12] Ralf Hinze (2000): Deriving backtracking monad transformers. In: Proceedings of the fifth ACM SIGPLAN International Conference on Functional Programming, ICFP '00, ACM, New York, NY, USA, pp. 186-197, doi $10.1145 / 351240.351258$
[13] Martin Hyland, Gordon Plotkin \& John Power (2006): Combining effects: sum and tensor. Theoretical Computer Science 357, pp. 70-99, doi $10.1016 / \mathrm{j} . \mathrm{tcs} .2006 .03 .013$.
[14] Mark P. Jones \& Luc Duponcheel (1993): Composing Monads. Technical Report, Yale University.
[15] Donald Knuth \& Andrew Yao (1976): The Complexity of Nonuniform Random Number Generation. In J. F. Traub, editor: Algorithms and Complexity: New Directions and Recent Results, Academic Press. Also in Selected Papers on the Analysis of Algorithms.
[16] Sheng Liang, Paul Hudak \& Mark Jones (1995): Monad transformers and modular interpreters. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '95, ACM, New York, NY, USA, pp. 333-343, doi 10.1145/199448.199528.
[17] Chuan-kai Lin (2006): Programming monads operationally with Unimo. In: Proceedings of the eleventh ACM SIGPLAN International Conference on Functional Programming, ICFP '06, ACM, New York, NY, USA, pp. 274-285, doi $10.1145 / 1159803.1159840$.
[18] John McCarthy (1963): A Basis for a Mathematical Theory of Computation. In P. Braffort \& D. Hirschberg, editors: Computer Programming and Formal Systems, North-Holland, Amsterdam, pp. 3370, doi 10.1016/S0049-237X(08)72018-4.
[19] Eugenio Moggi (1991): Notions of computation and monads. Information and Computation 93, pp. 55-92, doi 10.1016/0890-5401(91)90052-4
[20] Nikolaos S. Papaspyrou (2001): A Resumption Monad Transformer and its Applications in the Semantics of Concurrency. In: Proceedings of the 3rd Panhellenic Logic Symposium, Anogia, Crete.
[21] Simon L. Peyton Jones \& Philip Wadler (1993): Imperative functional programming. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '93, ACM, New York, NY, USA, pp. 71-84, doi $10.1145 / 158511.158524$
[22] Wouter Swierstra (2008): A Functional Specification of Effects. Ph.D. thesis, University of Nottingham.
[23] Wouter Swierstra \& Thorsten Altenkirch (2007): Beauty in the beast. In: Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell '07, ACM, New York, NY, USA, pp. 25-36, doi 10.1145/1291201.1291206.

Appendix A Proof that Nest is a monad

We prove the properties (2) and (3) from Section 3.2 by induction, assuming an initial-algebra reading of the datatype Free m-that is, we assume a well-founded ordering on the subterms of any value of type Free ma. (We have to resort to something like induction, because the definition of prod above isn't in the form of a standard recurson pattern-in particular, it is not a fold.) For brevity, we omit the Nest constructor.

Property (2): The case for Return is straightforward. For the Wrap case, we assume that the property holds for each element of data structure m; that is, that

$$
M(\text { prod } \circ F \text { return }) m=M \text { return }_{M} m
$$

Then we calculate:

```
    (prod \(\circ\) F return) (Wrap m)
\(=\{\) naturality of Wrap \(:: M F \rightarrow F\}\)
    (prod \(\circ\) Wrap \(\circ\) M F return) \(m\)
\(=\{\) definition of prod \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \(\circ\) join \(_{M} \circ\) M prod \(\circ\) M F return \() m\)
\(=\{\) functors \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \(\circ \operatorname{join}_{M} \circ M(\) prod \(\circ F\) return \(\left.)\right) m\)
\(=\{\) induction \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \(\circ\) join \(_{M} \circ\) M return \(\left.{ }_{M}\right) m\)
\(=\{M\) as a monad \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \() m\)
```

Property (3): The case for Return is again straightforward. In the Wrap case, we again assume that the property holds for each element of m :

$$
M(\text { join } \circ \text { prod }) m=M(\text { prod } \circ F \text { join }) m
$$

Then we calculate:

```
    (join \(\circ\) prod) \((\) Wrap \(m)\)
\(=\{\) definition of join \(\}\)
    \(\left(\right.\) join \(_{M} \circ\) M prod \(\circ\) prod \(\circ\) Wrap \() m\)
\(=\{\) definition of prod \(\}\)
    \(\left(\right.\) join \(_{M} \circ\) M prod \(\circ\) return \(_{M} \circ\) Wrap \(\circ\) join \(_{M} \circ\) M prod \() m\)
\(=\left\{\right.\) naturality of return \(\left._{M}\right\}\)
    \(\left(\right.\) join \(_{M} \circ\) return \(_{M} \circ\) prod \(\circ{\left.\text { Wrap } \circ \text { join }_{M} \circ \text { M prod }\right) m}\)
\(=\{M\) as a monad \(\}\)
    \(\left(\right.\) prod \(\circ\) Wrap \(\circ\) join \(_{M} \circ\) M prod \() m\)
\(=\{\) definition of prod \(\}\)
    \(\left(\right.\) return \(_{M} \circ{\left.\text { Wrap } \circ \text { join }_{M} \circ \text { M prod } \circ \text { join }_{M} \circ \text { M prod }\right) m}\)
\(=\left\{\right.\) naturality of join \(\left._{M}\right\}\)
    \(\left(\right.\) return \(_{M} \circ{\left.\text { Wrap } \circ j o i n_{M} \circ j o i n_{M} \circ \text { M M prod } \circ \text { M prod }\right) m}_{m}\)
\(=\{M\) as a monad \(\}\)
    \(\left(\right.\) return \(_{M} \circ{\left.\text { Wrap } \circ j o i n_{M} \circ M \text { join }_{M} \circ M M \text { prod } \circ M \text { prod }\right) m}_{m}\)
```

```
\(=\{\) functors \(\}\)
    \(\left(\right.\) return \(_{M} \circ{\left.\text { Wrap } \circ \text { join }_{M} \circ M\left(\text { join }_{M} \circ \text { M prod } \circ \text { prod }\right)\right) m}\)
\(=\{\) definition of join; induction \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \(\circ j o i n_{M} \circ M(\operatorname{prod} \circ F\) join \(\left.)\right) m\)
\(=\{\) functors \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \(\circ\) join \(_{M} \circ\) M prod \(\circ\) M F join \() m\)
\(=\{\) definition of join \(\}\)
    \(\left(\right.\) return \(_{M} \circ\) Wrap \(\circ\) join \(\circ\) M F join) \(m\)
\(=\{\) definition of prod \(\}\)
    (prod \(\circ\) Wrap \(\circ\) M F join) \(m\)
\(=\{\) naturality of Wrap \(:: M F \rightarrow F\}\)
    (prod \(\circ\) F join) (Wrap m)
```


Appendix B Proof that Nest is a tracer

Here, we prove that Nest is a tracer (see Sections 3.1 and 3.3 for the definitions). The equalities dropo lift $=$ id and drop mark $=$ return () are straightforward.

We prove the equality lifto return $_{M}=$ return $_{N}$ as follows.

$$
\begin{aligned}
& \text { lifto } \circ^{\text {return }}{ }_{M} \\
&=\{\text { definition of } \text { lift }\} \\
& M \text { Return } \circ \text { return } \\
&=\left\{\text { naturality of } \text { return }_{M}\right\} \\
& \text { return } \circ \text { Return } \\
&=\left\{{\text { definition of } \left.\text { return }_{N}\right\}}\right. \\
& \text { return }_{N}
\end{aligned}
$$

The fact that lift $c \gg{ }_{N}$ lift $\circ f=\operatorname{lift}\left(c>{ }_{M} f\right)$ follows from the following.

```
    lift c>>NN lift of
= {definition of >>>N
    join
= {definition of lift }
    join}N(N(M Return Of)(M Return c)
={definition of N}
    join}\mp@subsup{N}{N}{}(MF(M Return\circf)(M Return c)
={definition of join}\mp@subsup{N}{N}{}
    joinM (M prod (MF (M Return ○f) (M Return c)))
= {functor }
    join}M(M(prod\circF(M Return ○f) ○Return)c
={definition of F}
    joinM}(M(\mathrm{ prod }\circ\mathrm{ Return }\circM\mathrm{ Return }\circf)c
={definition of prod }
    join}M(M(M Return\circf) c
= { naturality of joinM }
```

$\left(M\right.$ Return $\left.\circ \mathrm{join}_{M}\right)(M f c)$

```
\(=\{\) definition of lift \(\}\)
    lift \(\left(\right.\) join \(\left._{M}(M f c)\right)\)
\(=\left\{\right.\) definition of join \(\left._{M}\right\}\)
    lift \(\left(c>=_{M} f\right)\)
```

To prove the fact that $d r o p$ is a monad morphism we first prove a lemma

$$
\text { join }_{M} \circ M \text { revert } \circ \text { prod } \circ F f=\text { join }_{M} \circ \text { join }_{M} \circ M M \text { revert } \circ M f \circ \text { revert }
$$

The case for Return follows from simple unfolding of the definitions. The case for Wrap is as follows.

```
    (joinM}\circM revert\circ prod \circFf) (Wrap m)
={definition of F}
    (joinM}\circM\mathrm{ reverto prod) (Wrap (MFf)m))
= { definition of prod }
```



```
= { naturality of returnM}
    (join}\mp@subsup{M}{M}{}\circ\mp@subsup{\mathrm{ return}}{M}{}\circ\mathrm{ revert }\circ\mp@subsup{Wrap }{\mathrm{ join}}{M}\circM\mathrm{ prod }\circ\mathrm{ MF f) m
= { monad laws }
    (revert ○Wrap }\circ\mp@subsup{\textrm{join}}{M}{}\circM\operatorname{prod}\circMFf)
= {definition of revert }
    (join}M\bigcircM revert ○join M ○M prod ○MFf)
= { naturality of join M}
    (joinM}\circ\mp@subsup{\textrm{join}}{M}{}\circ\mathrm{ MM revert }\circM\mathrm{ prod }\circ\mathrm{ MF f) m
= { monad laws }
    (joinM}\circM\mp@subsup{\mathrm{ join }}{M}{}\circMM revert ○M prod ○MFf)) 
= {functor }
    (join}\mp@subsup{M}{M}{}\circM(join M ○M revert © prod \circFf)) 
= { induction }
    (join}\mp@subsup{M}{M}{}\circM(\mp@subsup{join}{M}{}\circM\mp@subsup{\mathrm{ join}}{M}{}\circMM revert ©Mf\circrevert) m
= {functor }
```



```
= { monad laws }
    (join}\mp@subsup{M}{M}{}\circ\mp@subsup{join}{M}{}\circ\mathrm{ MM join}M\circMMM revert © MM f\circM revert) m
= { naturality of joinM }
```



```
= { naturality of joinM }
    (joinM}\circM\mp@subsup{\mathrm{ join}}{M}{}\circMM revert \circ join M OMM f\circM revert ) m
= { naturality of joinM }
    (join M ○join M}\circMM revert\circMf\circjoin M ○M revert) 
= {definition of revert }
    (join}\mp@subsup{M}{M}{}\circ\mp@subsup{join}{M}{}\circMM revert \circMf\circrevert)(Wrap m)
```

To prove that drop $\left(c \gg=_{N} f\right)=\operatorname{drop} c \gg{ }_{M}($ drop $\circ f)$, for $c:: a$ and $f:: a \rightarrow$ Nest $m b$, we unfold the
 It follows from the commutativity of the following diagram (in Hask). For brevity, we write μ_{N} for the
join of monad Nest. The left-most path of the diagram is equal to $j^{\operatorname{join}} \mathrm{M}_{M} \circ M(d r o p \circ f) \circ d r o p$, while the right-most path is equal to $d r o p_{\circ}^{\circ} \mathrm{join}_{N} \circ N f$.

The first column of the diagram depicts unfolding of the definitions of drop. The second column is equal to the first one due to the fact that join $_{M}$ is a natural transformation: the morphism join $:: M M A \rightarrow M A$ form the first column "travelled" down the path to settle as join $_{M}:: M M M B \rightarrow M M B$. Additionally, due to the monad law for join $_{M}$, we can exchange $M M$ join $_{M}$ with M join ${ }_{M}$. This allows us to use the lemma, the M-image of which commutes columns 2 and 3. Again, we can use the monad law to change M join ${ }_{M}$ into join $_{M}$. We use the naturality of join $_{M}$ to switch its position with the mapping of revert, which justify the fourth column.

[^0]: ${ }^{1}$ The Kill constructor is called Stop in Claessen's datatype, and Done is new.

