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Monads are a popular tool for the working functional programmer to structure effectful computations.
This paper presents polymonads, a generalization of monads. Polymonads give the familiar monadic
bind the more general type ∀a,b. L a→ (a→M b)→N b, to compose computations with three different
kinds of effects, rather than just one. Polymonads subsume monads and parameterized monads,
and can express other constructions, including precise type-and-effect systems and information flow
tracking; more generally, polymonads correspond to Tate’s productoid semantic model. We show
how to equip a core language (called λ PM) with syntactic support for programming with polymonads.
Type inference and elaboration in λ PM allows programmers to write polymonadic code directly in an
ML-like syntax—our algorithms compute principal types and produce elaborated programs wherein
the binds appear explicitly. Furthermore, we prove that the elaboration is coherent: no matter which
(type-correct) binds are chosen, the elaborated program’s semantics will be the same. Pleasingly, the
inferred types are easy to read: the polymonad laws justify (sometimes dramatic) simplifications, but
with no effect on a type’s generality.

1 Introduction

Since the time that Moggi first connected them to effectful computation [20], monads have proven to
be a surprisingly versatile computational structure. Perhaps best known as the foundation of Haskell’s
support for state, I/O, and other effects, monads have also been used to structure APIs for libraries that
implement a wide range of programming tasks, including parsers [13], probabilistic computations [24],
and functional reactivity [7, 4].

Monads (and morphisms between them) are not a panacea, however, and so researchers have pro-
posed various extensions. Examples include Wadler and Thiemann’s [29] indexed monad for typing
effectful computations; Filliâtre’s generalized monads [10]; Atkey’s parameterized monad [3], which
has been used to encode disciplines like regions [17] and session types [23]; Devriese and Piessens’ [6]
monad-like encodings for information flow controls; and many others. Oftentimes these extensions are
needed to prove stronger properties about computations, for instance to prove the absence of information
leaks or memory errors.

Unfortunately, these extensions do not enjoy the same status as monads in terms of language support.
For example, the conveniences that Haskell provides for monadic programs (e.g., the do notation com-
bined with type-class inference) do not apply to these extensions. One might imagine adding specialized
support for each of these extensions on a case-by-case basis, but a unifying construction into which all
of them, including normal monads, fit is clearly preferable.

This paper proposes just such a unifying construction, making several contributions. Our first con-
tribution is the definition of a polymonad, a new way to structure effectful computations. Polymonads
give the familiar monadic bind (having type ∀a,b. M a→ (a→M b)→M b) the more general type ∀a,b. L a→
(a→M b)→N b. That is, a polymonadic bind can compose computations with three different types to a
monadic bind’s one. Section 2 defines polymonads formally, along with the polymonad laws, which
we prove are a generalization of the monad and morphism laws. To precisely characterize their ex-
pressiveness, we prove that polymonads correspond to Tate’s productoids [27] (Theorem 2), a recent
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semantic model general enough to capture most known effect systems, including all the constructions
listed above.1

Whereas Tate’s interest is in semantically modeling sequential compositions of effectful compu-
tations, our interest is in supporting practical programming in a higher-order language. Our second
contribution is the definition of λ PM (Section 3), an ML-like programming language well-suited to pro-
gramming with polymonads. We work out several examples in λ PM, including novel polymonadic con-
structions for stateful information flow tracking, contextual type and effect systems [21], and session
types.

Our examples are made practical by λ PM’s support for type inference and elaboration, which allows
programs to be written in a familiar ML-like notation while making no mention of the bind operators.
Enabling this feature, our third contribution (Section 4) is an instantiation of Jones’ theory of qualified
types [14] to λ PM. In a manner similar to Haskell’s type class inference, we show that type inference
for λ PM computes principal types (Theorem 3). Our inference algorithm is equipped with an elabora-
tion phase, which translates source terms by inserting binds where needed. We prove that elaboration is
coherent (Theorem 10), meaning that when inference produces constraints that could have several solu-
tions, when these solutions are applied to the elaborated terms the results will have equivalent semantics,
thanks to the polymonad laws. This property allows us to do better than Haskell, which does not take
such laws into account, and so needlessly rejects programs it thinks might be ambiguous. Moreover,
as we show in Section 5, the polymonad laws allow us to dramatically simplify types, making them far
easier to read without compromising their generality. A prototype implementation of λ PM is available
from the first author’s web page and has been used to check all the examples in the paper.

Put together, our work lays the foundation for providing practical support for advanced monadic
programming idioms in typed, functional languages.

2 Polymonads

We begin by defining polymonads formally. We prove that a polymonad generalizes a collection of
monads and morphisms among those monads. We also establish a correspondence between polymonads
and productoids, placing our work on a semantic foundation that is known to be extremely general.
Definition 1. A polymonad (M ,Σ) consists of (1) a collection M of unary type constructors, with a
distinguished element Id ∈M , such that Id τ = τ , and (2) a collection, Σ, of bind operators such that the
laws below hold, where (M,N)�P,∀a b. M a→ (a→N b)→P b.

For all M,N,P,Q,R,S,T,U ∈M .
(Functor) ∃b.b:(M, Id)�M ∈ Σ and b m (λy.y) = m

(Paired morphisms) ∃b1:(M, Id)�N ∈ Σ ⇐⇒ ∃b2:(Id,M)�N ∈ Σ and
∀b1:(M, Id)�N,b2:(Id,M)�N.b1 (f v) (λy.y) = b2 v f

(Diamond) ∃P,b1,b2.{b1:(M,N)�P,b2:(P,R)�T} ⊆ Σ ⇐⇒
∃S,b3,b4.{b3:(N,R)�S,b4:(M,S)�T} ⊆ Σ

(Associativity) ∀b1,b2,b3,b4.If
{b1:(M,N)�P,b2:(P,R)�T,b3:(N,R)�S,b4:(M,S)�T} ⊆ Σ

then b2 (b1 m f ) g = b4 m (λx.b3 ( f x) g)

(Closure) If ∃b1,b2,b3,b4.
{b1:(M,N)�P,b2:(S,Id)�M,b3:(T,Id)�N,b4:(P,Id)�U} ⊆ Σ

then ∃b.b:(S,T)�U ∈ Σ

1We discovered the same model concurrently with Tate and independently of him, though we have additionally developed
supporting algorithms for (principal) type inference, (provably coherent) elaboration, and (generality-preserving) simplification.
Nevertheless, our presentation here has benefited from conversations with him.
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Definition 1 may look a little austere, but there is a simple refactoring that recovers the structure of
functors and monad morphisms from a polymonad.2 Given (M ,Σ), we can easily construct the following
sets:

(Maps) M = {(λ f m.bind m f ) : (a→b)→M a→M b | bind : (M, Id)�M ∈ Σ}
(Units) U = {(λx.bind x (λy.y)) : a→M a | bind : (Id, Id)�M ∈ Σ}
(Lifts) L = {(λx.bind x (λy.y)) : M a→N a | bind : (M, Id)�N ∈ Σ}

It is fairly easy to show that the above structure satisfies generalizations of the familiar laws for
monads and monad morphisms. For example, one can prove bind (unit e) f = f e, and lift (unit1 e) =
unit2 e for all suitably typed unit1,unit2 ∈U , lift ∈ L and bind ∈ Σ.

With these intuitions in mind, one can see that the Functor law ensures that each M ∈ Σ has a map

in M, as expected for monads. From the construction of L, one can see that a bind (M, Id)�N is just a
morphism from M to N. Since this comes up quite often, we write M ↪→ N as a shorthand for (M, Id)�N.
The Paired morphisms law amounts to a coherence condition that all morphisms can be re-expressed
as binds. The Associativity law is the familiar associativity law for monads generalized for both our
more liberal typing for bind operators and for the fact that we have a collection of binds rather than a
single bind. The Diamond law essentially guarantees a coherence property for associativity, namely that
it is always possible to complete an application of Associativity. The Closure law ensures closure under
composition of monad morphisms with binds, also for coherence.

It is easy to prove that every collection of monads and monad morphisms is also a polymonad. In
fact, in Appendix A, we prove a stronger result that relates polymonads to Tate’s productoids [27].

Theorem 2. Every polymonad gives rise to a productoid, and every productoid that contains an Id

element and whose joins are closed with respect to the lifts, is a polymonad.

Tate developed productoids as a categorical foundation for effectful computation. He demonstrates
the expressive power of productoids by showing how they subsume other proposed extensions to mon-
ads [29, 8, 3]. This theorem shows polymonads can be soundly interpreted using productoids. Strictly
speaking, productoids are more expressive than polymonads, since they do not, in general, need to have
an Id element, and only satisfy a slightly weaker form of our Closure condition. However, these restric-
tions are mild, and certainly in categories that are Cartesian closed, these conditions are trivially met for
all productoids. Thus, for programming purposes, polymonads and productoids have exactly the same
expressive power. The development of the rest of this paper shows, for the first time, how to harness
this expressive power in a higher-order programming language, tackling the problem of type inference,
elaborating a program while inserting binds, and proving elaboration coherent.

3 Programming with polymonads

This section presents λ PM, an ML-like language for programming with polymonads. We also present
several examples that provide a flavor of programming in λ PM. As such, we aim to keep our exam-
ples as simple as possible while still showcasing the broad applicability of polymonads. For a formal
characterization of the expressiveness of polymonads, we appeal to Theorem 2.

2An online version of this paper provides an equivalent formulation of Definition 1 in terms of join operators instead of
binds. It can be found here: http://research.microsoft.com/en-us/um/people/nswamy/papers/polymonads.pdf.
The join-based definition is perhaps more natural for a reader with some familiarity with category theory; the bind-based version
shown here is perhaps more familiar for a functional programmer.

http://research.microsoft.com/en-us/um/people/nswamy/papers/polymonads.pdf
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Signatures(M ,Σ) : k-ary constructors M ::= · |M/k,M
ground constructor M ::= M τ

bind set Σ ::= · | b:s,Σ
bind specifications s ::= ∀ā.Φ⇒ (M1,M2)�M3

theory constraints Φ

Terms: values v ::= x | c | λx.e
expressions e ::= v | e1 e2 | let x=e1 in e2

| if e then e1 else e2 | letrec f =v in e

Types: monadic types m ::= M | ρ
value types τ ::= a | T τ | τ1→ m τ2
type schemes σ ::= ∀āρ̄.P⇒ τ

bag of binds P ::= · | π,P
bind type π ::= (m1,m2)�m3

Figure 1: λ PM: Syntax for signatures, types, and terms

Polymonadic signatures. A λ PM polymonadic signature (M ,Σ) (Figure 1) amends Definition 1 in
two ways. Firstly, each element M of M may be type-indexed—we write M/k to indicate that M is a
(k + 1)-ary type constructor (we sometimes omit k for brevity). For example, constructor W/1 could
represent an effectful computation so that W ε τ characterizes computations of type τ that have effect ε .
Type indexed constructors (rather than large enumerations of non-indexed constructors) are critical for
writing reusable code, e.g., so we can write functions like app : ∀a,b,ε.(a→W ε b)→ a→W ε b. We
write M to denote ground constructors, which are monadic constructors applied to all their type indexes;
e.g., W ε is ground. Secondly, a bind set Σ is not specified intensionally as a set, but rather extensionally
using a language of theory constraints Φ. In particular, Σ is a list of mappings b:s where s contains a
triple (M1,M2)�M3 along with constraints Φ, which determine how the triple’s constructors may be
instantiated. For example, a mapping sube : ∀ε1,ε2.ε1 ⊆ ε2⇒ (W ε1, Id)�W ε2 specifies the set of binds
involving type indexes ε1,ε2 such that the theory constraint ε1 ⊆ ε2 is satisfied.

λ PM’s type system is parametric in the choice of theory constraints Φ, which allows us to encode a
variety of prior monad-like systems with λ PM. To interpret a particular set of constraints, λ PM requires
a theory entailment relation �. Elements of this relation, written Σ � π ; b;θ , state that there exists
b:∀ā.Φ⇒ (M1,M2)�M3 in Σ and a substitution θ ′ such that θπ = θ ′(M1,M2)�M3, and the constraints
θ ′Φ are satisfiable. Here, θ is a substitution for the free (non-constant) variables in π , while θ ′ is an
instantiation of the abstracted variables in the bind specification. Thus, the interpretation of Σ is the
following set of binds: {b:π | Σ � π ; b; ·}. Signature (M ,Σ) is a polymonad if this set satisfies the
polymonad laws (where each ground constructor is treated distinctly).

Our intention is that type indices are phantom, meaning that they are used as a type-level represen-
tation of some property of the polymonad’s current state, but a polymonadic bind’s implementation does
not depend on them. For example, we would expect that binds treat objects of type W ε τ uniformly,
for all ε; different values of ε could statically prevent unsafe operations like double-frees or dangling
pointer dereferences. Of course, a polymonad may include other constructors distinct from W whose
bind operators could have a completely different semantics. For example, if an object has different states
that would affect the semantics of binds, or if other effectful features like exceptions were to be modeled,
the programmer can use a different constructor M for each such feature. As such, our requirement that
the type indices are phantom does not curtail expressiveness.
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Signature:
M = IST/2
Φ ::= l1 v l2 |Φ1,Φ2
Σ = bId : Id ↪→ Id,

unitIST : ∀p, l. Id ↪→ IST p l,
mapIST : ∀p1, l1, p2, l2. p2 v p1, l1 v l2⇒

IST p1 l1 ↪→ IST p2 l2,
appIST : ∀p1, l1, p2, l2. p2 v p1, l1 v l2⇒

(Id, IST p1 l1)� IST p2 l2,
bIST : ∀p1, l1, p2, l2, p3, l3.

l1 v p2, l1 v l3, l2 v l3,
p3 v p1, p3 v p2⇒
(IST p1 l1, IST p2 l2)� IST p3 l3

Types and auxiliary functions:
τ : ... | intref τ | L | H
read : ∀l. intref l→ IST H l int
write : ∀l. intref l→ int→ IST l L ()

Example program:
let add interest = λ savings. λ interest.

let currinterest = read interest in
if currinterest > 0 then

let currbalance = read savings in
let newbalance =

currbalance + currinterest in
write savings newbalance

else ()

Figure 2: Polymonad IST , implementing stateful information flow control

Terms and types. λ PM’s term language is standard. λ PM programs do not explicitly reference binds,
but are written in direct style, with implicit conversions between computations of type m τ and their
τ-typed results. Type inference determines the bind operations to insert (or abstract) to type check a
program.

To make inference feasible, we rely crucially on λ PM’s call-by-value structure. Following our prior
work on monadic programming for ML [26], we restrict the shape of types assignable to a λ PM program
by separating value types τ from the types of polymonadic computations m τ . Here, metavariable m may
be either a ground constructor M or a polymonadic type variable ρ . The co-domain of every function is
required to be a computation type m τ , although pure functions can be typed τ→ τ ′, which is a synonym
for τ → Id τ ′. We also include types T τ̄ for fully applied type constructors, e.g., list int.

Programs can also be given type schemes σ that are polymorphic in their polymonads, e.g., ∀a,b,ρ.
(a→ ρ b)→ a→ ρ b. Here, the variable a ranges over value types τ , while ρ ranges over ground
constructors M. Type schemes may also be qualified by a set P of bind constraints π . For example,
∀ρ.(ρ, Id)�M⇒ (int→ ρ int)→M int is the type of a function that abstracts over a bind having shape
(ρ, Id)�M. Notice that π triples may contain polymonadic type variables ρ while specification triples
s ∈ Σ may not. Moreover, Φ constraints never appear in σ , which is thus entirely independent of the
choice of the theory.

3.1 Polymonadic information flow controls

Polymonads are appealing because they can express many interesting constructions as we now show.
Figure 2 presents a polymonad IST , which implements stateful information flow tracking [6, 25, 19,

5, 1]. The idea is that some program values are secret and some are public, and no information about the
former should be learned by observing the latter—a property called noninterference [11]. In the setting
of IST , we are worried about leaks via the heap.

Heap-resident storage cells are given type intref l where l is the secrecy label of the referenced cell.
Labels l ∈ {L,H} form a lattice with order L < H. A program is acceptable if data labeled H cannot flow,
directly or indirectly, to computations or storage cells labeled L. In our polymonad implementation, L
and H are just types T (but only ever serve as indexes), and the lattice ordering is implemented by theory
constraints l1 v l2 for l1, l2 ∈ {L,H}.

The polymonadic constructor IST/2 uses secrecy labels for its type indexes. A computation with
type IST p l τ potentially writes to references labeled p and returns a τ-result that has security label l;
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we call p the write label and l the output label. Function read reads a storage cell, producing a IST H l int
computation—the second type index l matches that of l-labeled storage cell. Function write writes a
storage cell, producing a IST l L () computation—the first type index l matches the label of the written-
to storage cell. H is the most permissive write label and so is used for the first index of read, while L is
the most permissive output label and so is used for the second index of write.

Aside from the identity bind bId, implemented as reverse apply, there are four kinds of binds. Unit
unitIST p l lifts a normal term into an IST computation. Bind mapIST p l lifts a computation into a
more permissive context (i.e., p2 and l2 are at least as permissive as l1 and l2), and appIST p l does
likewise, and are implemented using mapIST as follows: appIST p l = λx.λ f .mapIST p l ( f x) (λx.x).
Finally, bind bIST composes a computation IST p1 l1 α with a function α→ IST p2 l2 β . The constraints
ensure safe information flow: l1 v p2 prevents the second computation from leaking information about
its l1-secure α-typed argument into a reference cell that is less than l1-secure. Dually, the constraints
l1 v l3 and l2 v l3 ensure that the β -typed result of the composed computation is at least as secure as the
results of each component. The final constraints p3 v p1 and p3 v p2 ensure that the write label of the
composed computation is a lower bound of the labels of each component.

Proving (M ,Σ) satisfies the polymonad laws is straightforward. The functor and paired morphism
laws are easy to prove. The diamond law is more tedious: we must consider all possible pairs of binds
that compose. This reasoning involves consideration of the theory constraints as implementing a lattice,
and so would work for any lattice of labels, not just H and L. In all, there were ten cases to consider. We
prove the associativity law for the same ten cases. This proof is straightforward as the implementation
of IST ignores the indexes: read, write and various binds are just as in a normal state monad, while the
indexes serve only to prevent illegal flows. Finally, proving closure is relatively straightforward—we
start with each possible bind shape and then consider correctly-shaped flows into its components; in all
there were eleven cases.

Example. The lower right of Figure 2 shows an example use of IST . The add interest function takes
two reference cells, savings and interest, and modifies the former by adding to it the latter if it is non-
negative.3 Notice that expressions of type IST p l τ are used as if they merely had type τ—see the
branch on currinterest, for example. The program is rewritten during type inference to insert, or abstract,
the necessary binds so that the program type checks. This process results in the following type for
add interest:4

∀ρ6,ρ27,a1,a2.P⇒ intref a1→ intref a2→ ρ27 ()
where P = (Id, Id)�ρ6,(IST H a1, IST a1 L)�ρ6,(IST H a2,ρ6)�ρ27

The rewritten version of add interest starts with a sequence of λ abstractions, one for each of the bind
constraints in P. If we imagine these are numbered b1 ... b3, e.g., where b1 is a bind with type (Id, Id)�
ρ6, then the term looks as follows (notation ... denotes code elided for simplicity):

λ savings. λ interest. b3 (read interest)
(λ currinterest. if currinterest > 0 then (b2 ...) else (b1 () (λ z. z)))

In a program that calls add interest, the bind constraints will be solved, and actual implementations of
these binds will be passed in for each of bi (using a kind of dictionary-passing style as with Haskell type
classes).

Looking at the type of add interest we can see how the constraints prevent improper information flows.
In particular, if we tried to call add interest with a1 = L and a2 = H, then the last two constraints become

3For ease of presentation, the program in Figure 2 uses let to sequence computations. This is not essential, e.g., we need
not have let-bound currbalance.

4This and other example types were generated by our prototype implementation.
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M = CE/3
Σ = bId : (Id, Id)� Id,

unitce : (Id, Id)�CE> /0>
appce : ∀α1,α2,ε1,ε2,ω1,ω2.
(α2 ⊆ α1,ε1 ⊆ ε2,ω2 ⊆ ω1)⇒
(Id,CE α1 ε1 ω1)�CE α2 ε2 ω2

mapce : ∀α1,α2,ε1,ε2,ω1,ω2.
(α2 ⊆ α1,ε1 ⊆ ε2,ω2 ⊆ ω1)⇒
(CE α1 ε1 ω1, Id)�CE α2 ε2 ω2

bindce : ∀α1,ε1,ω1,α2,ε2,ω2,ε3.
ε2∪ω2 = ω1,ε1∪α1 = α2,ε1∪ ε2 = ε3)⇒
(CE α1 ε1 ω1,CE α2 ε2 ω2)�CE α1 ε3 ω2

Types and theory constraints:
τ ::= ... | {A1}...{An} | /0 | > | τ1∪ τ2
Φ ::= τ ⊆ τ ′ | τ = τ ′ |Φ,Φ

Auxiliary functions:
read : ∀α,ω,r. intref r→ CE α r ω int
write : ∀α,ω,r. intref r→ int→ CE α r ω ()

Figure 3: Polymonad expressing contextual type and effect systems

(IST H L, IST L L)�ρ6,(IST H H,ρ6)�ρ27, and so we must instantiate ρ6 and ρ27 in a way allowed by
the signature in Figure 2. While we can legally instantiate ρ6 = IST L l3 for any l3 to solve the second
constraint, there is then no possible instantiation of ρ27 that can solve the third constraint. After substitut-
ing for ρ6, this constraint has the form (IST H H, IST L l3)�ρ27, but this form is unacceptable because
the H output of the first computation could be leaked by the L side effect of the second computation. On
the other hand, all other instantiations of a1 and a2 (e.g., a1 = H and a2 = L to correspond to a secret
savings account but a public interest rate) do have solutions and do not leak information. Having just
discussed the latter two constraints, consider the first, (Id, Id)�ρ6. This constraint is important because
it says that ρ6 must have a unit, which is needed to properly type the else branch; units are not required
of a polymonad in general.

The type given above for add interest is not its principal type, but an improved one. As it turns out,
the principal type is basically unreadable, with 19 bind constraints! Fortunately, Section 5 shows how
some basic rules can greatly simplify types without reducing their applicability, as has been done above.
Moreover, our coherence result (given in the next section) assures that the corresponding changes to the
elaborated term do not depend on the particular simplifications: the polymonad laws ensure all such
elaborations will have the same semantics.

3.2 Contextual type and effect systems

Wadler and Thiemann [29] showed how a monadic-style construct can be used to model type and effect
systems. Polymonads can model standard effect systems, but more interestingly can be used to model
contextual effects [21], which augment traditional effects with the notion of prior and future effects of
an expression within a broader context. As an example, suppose we are using a language that partitions
memory into regions R1, ...,Rn and reads/writes of references into region R have effect {R}. Then in the
context of the program read r1; read r2, where r1 points into region R1 and r2 points into region R2, the
contextual effect of the subexpression read r1 would be the triple [ /0;{R1};{R2}]: the prior effect is empty,
the present effect is {R1}, and the future effect is {R2}.

Figure 3 models contextual effects as the polymonad CE α ε ω τ , for the type of a computation with
prior, present, and future effects α , ε , and ω , respectively. Indices are sets of atomic effects {A1}...{An},
with /0 the empty effect,> the effect set that includes all other effects, and ∪ the union of two effects. We
also introduce theory constraints for subset relations and extensional equality on sets, with the obvious
interpretation. As an example source of effects, we include read and write functions on references into
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M = Id,A/2
Σ = bId : (Id, Id)� Id,

mapA : ∀p,r. (A p r, Id)�A p r,
appA : ∀p,r. (Id,A p r)�A p r,
unitA : ∀p. (Id, Id)�A p p,
bindA : ∀p,q,r. (A pq, Aqr)�A pr

Types:
τ ::= · · · | send τ1 τ2 | recvτ1 τ2 | end

Auxiliary functions:
send : ∀a,q.a −→ A(send aq)q()
recv : ∀a,q.() −→ A(recvaq)qa

Figure 4: Parameterized monad for session types, expressed as a polymonad

region sets r. The bind unitce ascribes a pure computation as having an empty effect and any prior and
future effects. The binds appce and mapce express that it is safe to consider an additional effect for
the current computation (the εs are covariant), and fewer effects for the prior and future computations
(αs and ωs are contravariant). Finally, bindce composes two computations such that the future effect of
the first computation includes the effect of the second one, provided that the prior effect of the second
computation includes the first computation; the effect of the composition includes both effects, while
the prior effect is the same as before the first computation, and the future effect is the same as after the
second computation.

3.3 Parameterized monads, and session types

Finally, we show λ PM can express Atkey’s parameterized monad [3], which has been used to encode
disciplines like regions [17] and session types [23]. The type constructor A p q τ can be thought of
(informally) as the type of a computation producing a τ-typed result, with a pre-condition p and a post-
condition q.

As a concrete example, Figure 4 gives a polymonadic expression of Pucella and Tov’s notion of
session types [23]. The type A pqτ represents a computation involved in a two-party session which
starts in protocol state p and completes in state q, returning a value of type τ . The key element of the
signature Σ is the bindA, which permits composing two computations where the first’s post-condition
matches the second’s precondition. We use the type index send τ q to denote a protocol state that requires
a message of type τ to be sent, and then transitions to q. Similarly, the type index recvτ r denotes the
protocol state in which once a message of type τ is received, the protocol transitions to r. We also use
the index end to denote the protocol end state. The signatures of two primitive operations for sending
and receiving messages capture this behavior.

As an example, the following λ PM program implements one side of a simple protocol that sends a
message x, waits for an integer reply y, and returns y+1.

let go = λx. let = send x in incr (recv ())

Simplified type: ∀a,b,q,ρ.(A(send ab)b, A(recv int q)q))�ρ ⇒ (a→ ρ int)

There are no specific theory constraints for session types: constraints simply arise by unification and are
solved as usual when instantiating the final program (e.g., to call go 0).

4 Coherent type inference for λ PM

This section defines our declarative type system for λ PM and proves that type inference produces princi-
pal types, and that elaborated programs are coherent.

Figure 5 gives a syntax-directed type system, organized into two main judgments. The value-typing
judgment P |Γ ` v : τ ; e types a value v in an environment Γ (binding variables x and constants c to
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P |= P′ ∀π ∈ P′.π ∈ P∨π ∈ Σ

P |= P′
(TS-Entail)

P |= σ > τ ; f
θ = [τ̄/ā][m̄/ρ̄] P |= θP1

P |= (∀āρ̄.P1⇒ τ) > θτ ; app(θP1)
(TS-Inst)

P |Γ ` v : τ ; e
v ∈ {x,c} P |= Γ(v)> τ ; f

P |Γ ` v : τ ; f v
(TS-XC)

P |Γ,x:τ1 ` e : m τ2 ; e

P |Γ ` λx.e : τ1→ m τ2 ; λx.e
(TS-Lam)

P |Γ ` e : m τ ; e
P |Γ ` v : τ ; e

P, Id ↪→ m |Γ ` v : m τ ; bId,Id,m e (λx.x)
(TS-V)

P1 |Γ,x:τ ` v : τ ; e1 (σ ,e2) = Gen(Γ,P1⇒ τ, e1)
P |Γ,x:σ ` e : m τ ′ ; e3

P |Γ ` letrec x=v in e : m τ ′ ; letrec x=e2 in e3
(TS-Rec)

P1 |Γ ` v : τ ; e1 (σ ,e2) = Gen(Γ,P1⇒ τ, e1)
P |Γ,x:σ ` e : m τ ′ ; e3

P |Γ ` let x=v in e : m τ ′ ; let x=e2 in e3
(TS-Let)

P |Γ ` e1 : m1 τ1 ; e1 P |Γ,x:τ1 ` e2 : m2 τ2 ; e2
e1 6= v P |= (m1,m2)�m3

P |Γ ` let x=e1 in e2 : m3 τ2 ; bm1,m2,m3 e1 (λx.e2)
(TS-Do)

P |Γ ` e1 : m1 (τ2→ m3 τ) ; e1 P |Γ ` e2 : m2 τ2 ; e2
P |= (m1,m4)�m5 P |= (m2,m3)�m4

P |Γ ` e1 e2 : m5 τ ; bm1,m4,m5 e1 (bm2,m3,m4 e2)
(TS-App)

P |Γ ` e1 : m1 bool ; e1 P |Γ ` e2 : m2 τ ; e2
P |Γ ` e3 : m3 τ ; e3 P |= m2 ↪→ m,m3 ↪→ m,(m1,m)�m′

P |Γ ` if e1 then e2 else e3 : m′ τ
(TS-If)

; bm1,m,m′ e1 (λb. if b then bm2,Id,m e2 (λx.x) else bm3,Id,m e3 (λx.x))

Gen(Γ,P⇒ τ,e) = (∀(ftv(P⇒ τ)\ ftv(Γ)).P⇒ τ, abs(P,e))
abs(((m1,m2)�m3,P),e) = λbm1,m2,m3 .abs(P,e)
abs(·,e) = e
app(P,(m1,m2)�m3)) = λ f .app(P)( f bm1,m2,m3 )
app(·) = λx.x

Figure 5: Syntax-directed type rules for λ PM, where Σ is an implicit parameter.

type schemes) at the type τ , provided the constraints P are satisfiable. Moreover, it elaborates the value v
into a lambda term e that explicitly contains binds, lifts, and evidence passing (as shown in Section 3.1).
However, note that the elaboration is independent and we can read just the typing rules by igoring the
elaborated terms. The expression-typing judgment P |Γ ` e : m τ ; e is similar, except that it yields a
computation type. Constraint satisfiability P |= P′, defined in the figure, states that P′ is satisfiable under
the hypothesis P if P′ ⊆ P∪Σ where we consider π ∈ Σ if and only if Σ � π ; b; · (for some b).

The rule (TS-XC) types a variable or constant at an instance of its type scheme in the environment.
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JxK? = x
JcK? = c
Jλx.eK? = λx.JeK

JvK = ret JvK?
Je1 e2K = app Je1K Je2K
Jlet x=v in eK = let x=JvK? in JeK
Jlet x=e1 in e2K = do Je1K Jλx.e2K? (when e1 6= v)
Jif e1 then e2 else e3K = cond Je1K λ ().Je2K λ ().Je3K
Jletrec f =v in eK = letrec f = JvK? in JeK

ret : ∀αρ.(Id ↪→ ρ)⇒ α → ρ α

do : ∀αβρ1ρ2ρ.((ρ1,ρ2)�ρ)⇒ ρ1 α → (α → ρ2 β )→ ρ β

app : ∀αβρ1ρ2ρ3ρ4ρ.((ρ1,ρ4)�ρ,(ρ2,ρ3)�ρ4)⇒ ρ1 (α → ρ3 β )→ ρ2 α → ρ β

cond : ∀αρ1ρ2ρ3ρρ ′.(ρ2 ↪→ ρ,ρ3 ↪→ ρ,(ρ1,ρ)�ρ ′)
⇒ ρ1 bool→ (()→ ρ2 α)→ (()→ ρ3 α)→ ρ ′ α

Figure 6: Type inference for λ PM via elaboration to OML

The instance relation for type schemes P |=σ ≥ τ ; f is standard: it instantiates the bound variables, and
checks that the abstracted constraints are entailed by the hypothesis P. The elaborated f term supplies
the instantiated evidence using the app form. The rule (TS-Lam) is straightforward where the bound
variable is given a value type and the body a computation type.

The rule (TS-V) allows a value v : τ to be used as an expression by lifting it to a computation type
m τ , so long as there exists a morphism (or unit) from the Id functor to m. The elaborated term uses
bId,Id,m to lift explicitly to monad m. Note that for evidence we make up names (bId,Id,m ) based on the
constraint (Id ↪→m). This simplifies our presentation but an implementation would name each constraint
explicitly [16]. We use the name bm1,Id,m2 for morphism constraints m1 ↪→ m2, and use bm1,m2,m3 for
general bind constraints (m1,m2)�m3.

(TS-Rec) types a recursive let-binding by typing the definition v at the same (mono-)type as the letrec-
bound variable f . When typing the body e, we generalize the type of f using a standard generalization
function Gen(Γ,P⇒ τ, e), which closes the type relative to Γ by generalizing over its free type vari-
ables. However, in constrast to regular generalization, we return both a generalized type, as well as an
elaboration of e that takes all generalized constraints as explicit evidence parameters (as defined by rule
abs). (TS-Let) is similar, although somewhat simpler since there is no recursion involved.

(TS-Do) is best understood by looking at its elaboration: since we are in a call-by-value setting, we
interpret a let-binding as forcing and sequencing two computations using a single bind where e1 is typed
monomorphically.

(TS-App) is similar to (TS-Do), where, again, since we use call-by-value, in the elaboration we
sequence the function and its argument using two bind operators, and then apply the function. (TS-If)
is also similar, since we sequence the expression e in the guard with the branches. As usual, we require
the branches to have the same type. This is achieved by generating morphism constraints, m2 ↪→ m and
m3 ↪→m to coerce the type of each branch to a functor m before sequencing it with the guard expression.

4.1 Principal types

The type rules admit principal types, and there exists an efficient type inference algorithm that finds such
types. The way we show this is by a translation of polymonadic terms (and types) to terms (and types)
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in Overloaded ML (OML) [14] and prove this translation is sound and complete: a polymonadic term is
well-typed if and only if its translated OML term has an equivalent type. OML’s type inference algorithm
is known to enjoy principal types, so a corollary of our translation is that principal types exist for our
system too.

We encode terms in our language into OML as shown in Figure 6. We rely on four primitive OML
terms that force the typing of the terms to generate the same constraints as our type system does: ret for
lifting a pure term, do for typing a do-binding, app for typing an application, and cond for conditionals.
Using these primitives, we encode values and expressions of our system into OML.

We write P |Γ `OML e : τ for a derivation in the syntax directed inference system of OML (cf.
Jones [14], Fig. 4).

Theorem 3 (Encoding to OML is sound and complete).
Soundness: Whenever P |Γ ` v : τ we have P |Γ `OML JvK? : τ . Similarly, whenever P |Γ ` e : m τ then
we have P |Γ `OML JeK : m τ .
Completeness: Whenever P |Γ `OML JvK? : τ , then we have P |Γ ` v : τ . Similarly, whenever P |Γ `OML

JeK : m τ , then we have P |Γ ` e : m τ .

The proof is by straightforward induction on the typing derivation of the term. It is important to note
that our system uses the same instantiation and generalization relations as OML which is required for
the induction argument. Moreover, the constraint entailment over bind constraints also satisfies the
monotonicity, transitivity and closure under substitution properties required by OML. As a corollary of
the above properties, our system admits principal types via the general-purpose OML type inference
algorithm.

4.2 Ambiguity

Seeing the previous OML translation, one might think we could directly translate our programs into
Haskell since Haskell uses OML style type inference. Unfortunately, in practice, Haskell would reject
many useful programs. In particular, Haskell rejects as ambiguous any term whose type ∀ᾱ.P⇒ τ

includes a variable α that occurs free in P but not in τ;5 we call such type variables open. Haskell,
in its generality, must reject such terms since the instantiation of an open variable can have operational
effect, while at the same time, since the variable does not appear in τ , the instantiation for it can never be
uniquely determined by the context in which the term is used. A common example is the term show . read

with the type (Show a, Read a)⇒ String→String, where a is open. Depending on the instantiation of a, the
term may parse and show integers, or doubles, etc.

Rejecting all types that contain open variables works well for type classes, but it would be unac-
ceptable for λ PM. Many simple terms have principal types with open variables. For example, the term
λ f .λx. f x has type ∀abρ1ρ2ρ3. ((Id,ρ1)� ρ2,(Id,ρ2)� ρ3) ⇒ (a→ ρ1 b)→ α → ρ3 b where type
variable ρ2 is open.

In the special case where there is only one polymonadic constructor available when typing the pro-
gram, the coherence problem is moot, e.g., say, if the whole program were to only be typed using only
the IST polymonad of Section 3.1. However, recall that polymonads generalize monads and morphisms,
for which there can be coherence issues (as is well known), so polymonads must address them. As an
example, imagine combining our IST polymonad (which generalizes the state monad) with an exception
monad Exn, resulting in an ISTExn polymonad. Then, an improperly coded bind that composed IST with
Exn could sometimes reset the heap, and sometimes not (a similar example is provided by Filinski [9]).

5The actual ambiguity rule in Haskell is more involved due to functional dependencies and type families but that does not
affect our results.
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A major contribution of this paper is that for binds that satisfy the polymonad laws, we need not reject
all types with open variables. In particular, by appealing to the polymonadic laws, we can prove that pro-
grams with open type variables in bind constraints are indeed unambiguous. Even if there are many pos-
sible instantiations, the semantics of each instantiation is equivalent, enabling us to solve polymonadic
constraints much more aggressively. This coherence result is at the essence of making programming with
polymonads practical.

4.3 Coherence

The main result of this section (Theorem 10) establishes that for a certain class of polymonads, the
ambiguity check of OML can be weakened to accept more programs while still ensuring that programs
are coherent. Thus, for this class of polymonads, programmers can reliably view our syntax-directed
system as a specification without being concerned with the details of how the type inference algorithm
is implemented or how programs are elaborated.

The proof of Theorem 10 is a little technical—the following roadmap summarizes the structure of
the development.

• We define the class of principal polymonads for which unambiguous typing derivations are coher-
ent. All polymonads that we know of are principal.

• Given P |Γ ` e : t ; e (with t ∈ {τ,m τ}), the predicate unambiguous(P,Γ, t) characterizes when
the derivation is unambiguous. This notion requires interpreting P as a graph GP, and ensuring
(roughly) that all open variables in P have non-zero in/out-degree in GP.

• A solution S to a constraint graph with respect to a polymonad (M ,Σ) is an assignment of ground
polymonad constructors M∈M to the variables in the graph such that each instantiated constraint
is present in Σ. We give an equivalence relation on solutions such that S1 ∼= S2 if they differ only
on the assignment to open variables in a manner where the composition of binds still computes the
same function according to the polymonad laws.

• Finally, given P |Γ ` e : t ; e and unambiguous(P,Γ, t), we prove that all solutions to P that agree
on the free variables of Γ and t are in the same equivalence class.

While Theorem 10 enables our type system to be used in practice, this result is not the most powerful
theorem one can imagine. Ideally, one might like a theorem of the form P |Γ ` e : t ; e and P′ |Γ `
e : t ; e′ implies e is extensionally equal to e′, given that both P and P′ are satisfiable. While we
conjecture that this result is true, a proof of this property out of our reach, at present. There are at
least two difficulties. First, a coherence result of this form is unknown for qualified type systems in a
call-by-value setting. In an unpublished paper, Jones [15] proves a coherence result for OML, but his
techique only applies to call-by-name programs. Jones also does not consider reasoning about coherence
based on an equational theory for the evidence functions (these functions correspond to our binds). So,
proving the ideal coherence theorem would require both generalizing Jones’ approach to call-by-value
and then extending it with support for equational reasoning about evidence. In the meantime, Theorem 10
provides good assurance and lays the foundation for future work in this direction.

Defining and analyzing principality. We introduce a notion of principal polymonads that corresponds
to Tate’s “principalled productoids.” Informally, in a principal polymonad, if there is more than one way
to combine pairs of computations in the set F (e.g., (M,M′)�M1 and (M,M′)�M2), then there must
be a “best” way to combine them. This best way is called the principal join of F , and all other ways
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to combine the functors are related to the principal join by morphisms. All the polymonadic libraries
we have encountered so far are principal polymonads. It is worth emphasizing that principality does
not correspond to functional dependency—it is perfectly reasonable to combine M and M′ in multiple
ways, and indeed, for applications like sub-effecting, this expressiveness is important. We only require
that there be an ordering among the choices. In the definition below, we take ↓M to be set of ground
instances of all constructors in M .

Definition 4 (Principal polymonad). A polymonad (M ,Σ) is a principal polymonad if and only if for any
set F ⊆↓M 2, and any {M1,M2} ⊆↓M such {(M,M′)�M1 | (M,M′) ∈ F} ⊆ Σ and {(M,M′)�M2 |
(M,M′) ∈ F} ⊆ Σ, then there exists M̂ ∈↓M such that {M̂ ↪→M1,M̂ ↪→M2} ⊆ Σ, and {(M,M′)� M̂ |
(M,M′) ∈ F} ⊆ Σ. We call M̂ the principal join of F and write it as

⊔
F

Definition 5 (Graph-view of a constraint-bag P). A graph-view GP = (V,A,E�,Eeq) of a constraint-bag
P is a graph consisting of a set of vertices V , a vertex assignment A : V → m, a set of directed edges E�,
and a set of undirected edges Eeq, where:

• V = {π.0,π.1,π.2 | π ∈ P}, i.e., each constraint contributes three vertices.

• A(π.i) = mi when π = (m0,m1)�m2, for all π.i ∈V

• E� = {(π.0,π.2),(π.1,π.2) | π ∈ P}
• Eeq = {(v,v′) | v,v′ ∈V ∧ v 6= v′∧∃ρ.ρ = A(v) = A(v′)}

Notation We use v in this section to stand for a graph vertex, rather than a value in a program. We also
make use of a pictorial notation for graph views, distinguishing the two flavors of edges in a graph. Each
constraint π ∈ P induces two edges in E�. These edges are drawn with solid lines, with a triangle for ori-
entation. Unification constraints arise from correlated variable occurrences in multiple constraints—we

m1 m2

ρ � ρ ′ ρ ′ � ρ

depict these with double dotted lines. For example, the pair of constraints
(m1,ρ)�ρ ′,(m2,ρ

′)�ρ contributes four unification edges, two for ρ and two
for ρ ′. We show its graph view alongside.

Unification constraints reflect the dataflow in a program. Referring back to Figure 5, in a principal
derivation using (TS-App), correlated occurrences of unification variables for m4 in the constraints indi-
cate how the two binds operators compose. The following definition captures this dataflow and shows
how to interpret the composition of bind constraints using unification edges as a lambda term (in the
expected way).6

Definition 6 (Functional view of a flow edge). Given a constraint graph G = (V,A,E�,Eeq), an edge
η = (π.2,π ′.i)∈ Eeq, where i∈ {0,1} and π 6= π ′ is called a flow edge. The flow edge η has a functional
interpretation FG(η) defined as follows:

If i = 0, FG(η) = λ (x:A(π.0) a) (y:a→ A(π.1) b) (z:b→ A(π ′.1) c).
bindA(π ′.0),A(π ′.1),A(π ′.2)(bindA(π.0),A(π.1),A(π.2) x y) z

If i = 1, FG(η) = λ (x:A(π ′.0) a) (y:a→ A(π.0) b) (z:b→ A(π.1) c).
bindA(π ′.0),A(π ′.1),A(π ′.2) x (λa.bindA(π.0),A(π.1),A(π.2) (y a) z)

We can now define our ambiguity check—a graph is unambiguous if it contains a sub-graph that
has no cyclic dataflows, and where open variables only occur as intermediate variables in a sequence of
binds.

6Note, for the purposes of our coherence argument, unification constraints between value-type variables a are irrelevant.
Such variables may occur in two kinds of contexts. First, they may constrain some value type in the program, but these do not
depend on the solutions to polymonadic constraints. Second, they may constrain some index of a polymonadic constructor; but,
as mentioned previously, these indices are phantom and do not influence the semantics of elaborated terms.
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Definition 7 (Unambiguous constraints). Given GP = (V,A,E�,Eeq), the predicate unambiguous(P,Γ, t)
holds if and only if there exists E ′eq ⊆ Eeq, such that in the graph G′ = (V,A,E�,E ′eq) all of the following
are true.

1. For all π ∈ P, there is no path from π.2 to π.0 or π.1.

2. For all v ∈V , if A(v) ∈ ftv(P)\ ftv(Γ, t), then there exists a flow edge that connects to v.

We call G′ a core of GP.

Definition 8 (Solution to a constraint graph). For a polymonadic signature (M ,Σ), a solution to a
constraint graph G = (V,A,E�,Eeq), is a vertex assignment S : V →M such that all of the following are
true.

1. For all v ∈V , if A(v) ∈M then S(v) = A(v)

2. For all (v1,v2) ∈ Eeq, S(v1) = S(v2).

3. For all {(π.0,π.2),(π.1,π.2)} ⊆ E�, (S(π.0),S(π.1))�S(π.2) ∈ Σ.

We say that two solutions S1 and S2 to G agree on ρ if for all vertices v ∈V such that A(v) = ρ , S1(v) =
S2(v).

Now we define ∼=R, a notion of equivalence of two solutions which captures the idea that the dif-
ferences in the solutions are only to the internal open variables while not impacting the overall function
computed by the binds in a constraint. It is easy to check that ∼=R is an equivalence relation.

Definition 9 (Equivalence of solutions). Given a polymonad (M ,Σ) and constraint graph G = (V,A,
E�,Eeq), two solutions S1 and S2 to G are equivalent with respect to a set of variables R (denoted
S1 ∼=R S2) if and only if S1 and S2 agree on all ρ ∈ R and for each vertex v ∈ V such that S1(v) 6= S2(v)
for all flow edges η incident on v, FG1(η) = FG2(η), where Gi = (V,Si,E�,Eeq).

Theorem 10 (Coherence). For all principal polymonads, derivations P|Γ ` e : t ; e such that
unambiguous(P,Γ, t), and for any two solutions S and S′ to GP that agree on R = f tv(Γ, t), we have
S∼=R S′.

(Sketch; full version in appendix) The main idea is to show that all solutions in the core of GP are in
the same equivalence class (the solutions to the core include S and S′). The proof proceeds by induction
on the number of vertices at which S and S′ differ. For the main induction step, we take vertices in

S/S′

M1/M
′
1 . . . M2/M

′
2

�

OO
. . . � . . .

OO

�

OO

M3/M
′
3 A/B . . . A/B M4/M

′
4

η1 . . .η . . . ηk

A/B . . . A/B

�

OO
. . . � . . .

OO

�

OO

M5 M6 . . . M7 M8

topological order, considering the least (in the order) set of vertices
Q, all related by unification constraints, and whose assignment in S
is A and in S′ is B, for some A 6= B. The vertices in Q are shown
in the graph alongside, all connected to each other by double dot-
ted lines (unification constraints), and their neighborhood is shown as
well. Since vertices are considered in topological order, all the ver-
tices below Q in the graph have the same assignment in S and in S′.
We build solutions S1 and S′1 from S and S′ respectively, that instead
assign the principal join J =

⊔
{(M5,M6), . . . ,(M7,M8)} to the ver-

tices in Q, where S1 ∼=R S′1 by the induction hypothesis. Finally, we
prove S∼=R S1 and S′ ∼=R S′1 by showing that the functional interpreta-
tion of each of the flow edges ηi are equal according to the polymonad
laws, and conclude S∼=R S′ by transitivity.
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S-⇑

π = (Id,m)�ρ ∨ π = (m, Id)�ρ

ρ ∈ ρ̄ flowsFromP,P′ ρ 6= {}
flowsToP,P′ ρ = {}

P,π,P′
simplify(ρ̄)−−−−−→ ρ 7→ m

S-⇓

π = (Id,ρ)�m ∨ π = (ρ, Id)�m
ρ ∈ ρ̄ flowsFromP,P′ ρ = {}

flowsToP,P′ ρ 6= {}

P,π,P′
simplify(ρ̄)−−−−−→ ρ 7→ m

S-t

F = flowsToP ρ

m ∈ F ⇒ m =M
for some M

P
simplify(ρ̄)−−−−−→ ρ 7→

⊔
F

P
simplify(ρ̄)−−−−−→ θ

θP
simplify(ρ̄)−−−−−→ θ ′

P
simplify(ρ̄)−−−−−→ θ ′θ P

simplify(ρ̄)−−−−−→ ·

where
flowsToP ρ = {(m1,m2) | (m1,m2)�ρ ∈ P}
flowsFromP ρ = {m | ∃m′. π ∈ P ∧ (π = (ρ,m′)�m ∨ π = (m′,ρ)�m)}

Figure 7: Eliminating open variables in constraints

5 Simplification and solving

Before running a program, we must solve the constraints produced during type inference, and apply the
appropriate evidence for these constraints in the elaborated program. We also perform simplification on
constraints prior to generalization to make types easier to read, but without compromising their utility.

A simple syntactic transformation on constraints can make inferred types easier to read. For example,
we can hide duplicate constraints, identity morphisms (which are trivially satisfiable), and constraints
that are entailed by the signature. More substantially, we can find instantiations for open variables in a
constraint set before generalizing a type (and at the top-level, before running a program). To do this, we
introduce below a modified version of (TS-Let) (from Figure 5); a similar modification is possible for
(TS-Rec).

P1 |Γ ` v : τ ; e1 ρ̄, ā = ftv(P1⇒ τ)\ ftv(Γ)

P1
simplify(ρ̄\ftv(τ))−−−−−−−−−−→ θ (σ ,e2) = Gen(Γ,θP1⇒ τ,e1) P |Γ,x:σ ` e : m τ ′; e3

P |Γ ` let x=v in e : m τ ′; let x=e2 in e3

This rule employs the judgment P
simplify(ρ̄)−−−−−→ θ , defined in Figure 7, to simplify constraints by elimi-

nating some open variables in P (via the substitution θ ) before type generalization. There are three main
rules in the judgment, (S-⇑), (S-⇓) and (S-t), while the last two simply take the transitive closure.

Rule (S-⇑) solves monad variable ρ with monad m if we have a constraint π = (Id,m)�ρ , where
the only edges directed inwards to ρ are from Id and m, although there may be many out-edges from ρ .
(The case where π = (m, Id)�ρ is symmetric.) Such a constraint can always be solved without loss of
generality using an identity morphism, which, by the polymonad laws is guaranteed to exist. Moreover,
by the closure law, any solution that chooses ρ = m′, for some m′ 6= m could just as well have chosen
ρ = m. Thus, this rule does not impact solvability of the costraints. Rule S-⇓ follows similar reasoning
in the reverse direction. Finally, we the rule (S-t) exploits the properties of a principal polymonad. Here
we have a variable ρ such that all its in-edges are from pairs of ground constructors Mi, so we can simply
apply the join function to compute a solution for ρ . For a principal polymonad, if such a solution exists,
this simplification does not impact solvability of the rest of the constraint graph.



94 Polymonadic Programming

Example. Recall the information flow example we gave in Section 3.1, in Figure 2. Its principal type
is the following, which is hardly readable:

∀ρ̄i,a1,a2.P0⇒ intref a1→ intref a2→ ρ27 ()
where P0 = (Id,ρ3)�ρ2,(Id, IST H a2)�ρ3,(ρ26, Id)�ρ4,(Id, Id)�ρ4,

(ρ8,ρ4)�ρ6,(Id,ρ9)�ρ8,(Id, Id)�ρ9,(ρ11,ρ25)�ρ26,
(Id,ρ12)�ρ11,(Id, IST H a1)�ρ12,(ρ17,ρ23)�ρ25,(ρ14,ρ18)�ρ17,
(Id, Id)�ρ18,(Id,ρ15)�ρ14,(Id, Id)�ρ15,(ρ20,ρ24)�ρ23,
(Id, IST a1 L)�ρ24,(Id,ρ21)�ρ20,(Id, Id)�ρ21.

After applying (S-⇑) and (S-⇓) several times, and then hiding redundant constraints, we simplify
P0 to P which contains only three constraints. If we had fixed a1 and a2 (the labels of the func-
tion parameters) to H and L, respectively, we could do even better. The three constraints would be
(IST H L,ρ6)� ρ27,(Id, Id)� ρ6,(IST H H, IST H L)� ρ6. Then, applying (S-t) to ρ6 we would get
ρ6 7→ IST H H, which when applied to the other constraints leaves only (IST H L, IST H H)�ρ27, which
cannot be simplified further, since ρ27 appears in the result type.

Pleasingly, this process yields a simpler type that can be used in the same contexts as the original
principal type, so we are not compromising the generality of the code by simplifying its type.
Lemma 11 (Simplification improves types). For a principal polymonad, given σ and σ ′ where σ is

∀āρ̄.P⇒ τ and σ ′ is an improvement of σ , having form ∀ā′ρ̄ ′.θP⇒ τ where P
simplify(ρ̄)−−−−−→ θ and ā′ρ̄ ′ =

(āρ̄)−dom(θ). Then for all P′′,Γ,x,e,m,τ , if P′′ |Γ,x:σ ` e : mτ such that |= P′′ then there exists some
P′′′ such that P′′′ |Γ,x:σ ′ ` e : mτ and |= P′′′.

Note that our
simplify(ρ̄)−−−−−→ relation is non-deterministic in the way it picks constraints to analyze, and also

in the order in which rules are applied. In practice, for an acyclic constraint graph, one could consider
nodes in the graph in topological order and, say, apply (S-t) first, since, if it succeeds, it eliminates a
variable. For principal polymonads and acyclic constraint graphs, this process would always terminate.

However, if unification constraints induce cycles in the constraint graph, simply computing joins as
solutions to internal variables may not work. This should not come as a surprise. In general, finding
solutions to arbitrary polymonadic constraints is undecidable, since, in the limit, they can be used to
encode the correctness of programs with general recursion. Nevertheless, simple heuristics such as
unrolling cycles in the constraint graph a few times may provide good mileage, as would the use of
domain-specific solvers for particular polymonads, and such approaches are justified by our coherence
proof.

6 Related work and conclusions

This paper has presented polymonads, a generalization of monads and morphisms, which, by virtue
of their relationship to Tate’s productoids, are extremely powerful, subsuming monads, parameterized
monads, and several other interesting constructions. Thanks to supporting algorithms for (principal) type
inference, (provably coherent) elaboration, and (generality-preserving) simplification (none of which
Tate considers), this power comes with strong supports for the programmer. Like monads before them,
we believe polymonads can become a useful and important element in the functional programmer’s
toolkit.

Constructions resembling polymonads have already begun to creep into languages like Haskell. No-
tably, Kmett’s Control.Monad.Parameterized Haskell package [18] provides a type class for bind-
like operators that have a signature resembling our (m1,m2)�m3. One key limitation is that Kmett’s
binds must be functionally dependent: m3 must be functionally determined from m1 and m2. As such, it
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is not possible to program morphisms between different constructors, i.e., the pair of binds (m1, Id)�m2
and (m1, Id)�m3 would be forbidden, so there would be no way to convert from m1 to m2 and from m1
to m3 in the same program. Kmett also requires units into Id, which may later be lifted, but such lifting
only works for first-order code before running afoul of Haskell’s ambiguity restriction. Polymonads do
not have either limitation. Kmett does not discuss laws that should govern the proper use of non-uniform
binds. As such, our work provides the formal basis to design and reason about libraries that functional
programmers have already begun developing.

While polymonads subsume a wide range of prior monad-like constructions, and indeed can express
any system of producer effects [27], as might be expected, other researchers have explored generalizing
monadic effects along other dimensions that are incomparable to polymonads. For example, Altenkirch
et al. [2] consider relative monads that are not endofunctors; each polymonad constructor must be an
endofunctor. Uustalu and Vene [28] suggest structuring computations comonadically, particularly to
work with context-dependent computations. This suggests a loose connection with our encoding of
contextual effects as a polymonad, and raises the possibility of a “co-polymonad”, something we leave
for the future. Still other generalizations include reasoning about effects equationally using Lawvere
theories [22] or with arrows [12]—while each of these generalize monadic constructions, they appear
incomparable in expressiveness to polymonads. A common framework to unify all these treatments of
effects remains an active area of research—polymonads are a useful addition to the discourse, covering
at least one large area of the vast design space.
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Appendix

A Polymonads are productoids and vice versa

Given a polymonad (M ,Σ), we can construct a 4-tuple (M ,U,L,B) as follows:

(Units) U = {(λx.bind x (λy.y)) : a→M a | bind : (Id, Id)�M ∈ Σ},

(Lifts) L = {(λx.bind x (λy.y)) : M a→N a | bind : M ↪→ N ∈ Σ},

(Binds) The set B = Σ−{bind | bind : (Id, Id)�M or bind : (M, Id)�N ∈ Σ}.

It is fairly easy to show that the above structure satisfies generalizations of the familiar laws for monads
and monad morphisms.

Theorem 12. Given a polymonad (M ,Σ), the induced 4-tuple (M ,U,L,B) satisfies the following prop-
erties.

(Left unit) ∀unit ∈U,bind ∈ B. if unit: ∀a. a→M a and bind:(M,N)�N then bind (unit e) f = f (e) where
e : τ and f : τ →N τ ′.

(Right unit) ∀unit ∈ U,bind ∈ B. if unit: ∀a. a→N a and bind:(M,N)�M then bind m (unit) = m where
m : M τ .

(Associativity) ∀bind1,bind2,bind3,bind4 ∈ B. if bind1 : (M,N)�P,
bind2 : (P,R)�T, bind3 : (M,S)�T, and bind4 : (N,R)�S then
bind2 (bind1 m f ) g = bind3 m (λx.bind4 ( f x) g)
where m : M τ , f : τ →N τ ′ and g : τ ′ →R τ ′′

(Morphism 1) ∀unit1,unit2 ∈ U, lift ∈ L. if unit1: ∀a. a→M a, unit2: ∀a. a→N a and lift: ∀a. M a→N a then
lift (unit1 e) = unit2 e where e : τ .

(Morphism 2) ∀bind1,bind2 ∈ B, lift1, lift2, lift3 ∈ L. if bind1 : (M,P)�S,
bind2 : (N,Q)�T, lift1: ∀a. M a→N a, lift2: ∀a. P a→Q a and lift3: ∀a. S a→T a then lift3 (bind1 m f ) =
bind2 (lift1 m) (λx.lift2 ( f x))
where m : M τ and f : τ →P τ ′.

Now we show how this definition can be used to relate polymonads to Tate’s productoids [27]. The
definition of a productoid is driven by an underlying algebraic structure: the effectoid [27, Theorem 1].
An effectoid (E,U,≤, 7→) is a set E, with an identified subset U ⊆ E and relations ≤ ⊆ E × E and
( ; ) 7→ ⊆ E×E×E, that satisfies six monoid-like conditions. It is possible to show that a polymonad
directly induces an effectoid structure and hence a productoid.

Lemma 13. Given a polymonad (M ,U,L,B) we can define an effectoid (E,U,≤,( ; ) 7→ ) as follows.

E = M U = {M | unit: a→M a ∈U}
≤ = {(M,N) | lift: M a→N a ∈ L} ( ; ) 7→ = {(M,N,P) | (M,N)�P ∈ B}

Lemma 14. Every polymonad gives rise to a productoid.

Proof. We have shown that a polymonad gives rise to an effectoid. Given an effectoid (E,U,≤,( ; ) 7→ )
a productoid is defined as a collection of functors indexed by the collection E, and three collections of
natural transformations indexed by the three relations. These functors and natural transformations are
required to satisfy five addition properties [27, Theorem 2]. The five properties are the five properties of
Theorem 12, so the proof is immediate.
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Figure 8: Constraint graphs used to illustrate the proof of coherence (Theorem 10)

Interestingly, we can identify conditions where the opposite direction also holds.

Lemma 15. A productoid (C,{Fe : C→C}e∈E ,{η : 1⇒Fe}e∈U ,{µ : Fe1 ◦Fe2⇒Fe3}(e1;e2)7→e3 ,{σ : Fe1⇒
Fe2}e1≤e2) that in addition satisfies the following conditions gives rise to a polymonad.
1. Id ∈ E and FId = 1 4. For all e ∈ E,µ : Fe ◦1⇒ Fe = Id
2. Id ∈U 5. (e1;e2) 7→ e ∧ e′1 ≤ e1 ⇒ (e′1;e2) 7→ e
3. For all e ∈ E, (e;Id) 7→ e 6. (e1;e2) 7→ e ∧ e′2 ≤ e2 ⇒ (e1;e′2) 7→ e

These additional conditions are fairly mild: (1)-(4) simply ensure that the Id element is interpreted as
the identity functor. Conditions (5)-(6) are also quite straightforward; certainly if the category is cartesian
closed then the extra natural transformations are always defined.

B Coherence of solutions

Lemma 16 (Solutions to a core). For a polymonad (M ,Σ), and a constraint graph G with a core G′, the
set of all solutions S ′ to G′ includes all the solutions S of G.

Proof. (Sketch) This is easy to see, since G′ differs from G only in that it includes fewer unification
constraints. So, all solutions to G are also solutions to G′.

Theorem 17 (Coherence). For all principal polymonads, derivations P|Γ ` e : t ; e such that
unambiguous(P,Γ, t), and for any two solutions S and S′ to GP that agree on R = f tv(Γ, t), we have
S∼=R S′.

Proof. We consider the set S of all solutions to the core of GP that agree on f tv(Γ, t), and prove that all
these solutions are in the same equivalence class. By Lemma 16, {S,S′} ⊆S , establishing our goal.

Let G= (V,A,E�,Eeq) be a core of GP and let S and S′ be arbitrary elements of S . S and S′ may only
differ on the open variables of P. Since G is unambiguous, the nodes associated with these variables all
have non-zero in- and out-degree. Let US,S′ = {v | v∈V ∧ S(v) 6= S′(v)}; the proof proceeds by induction
on the the size of U .
Base case |US,S′ |= 0: Trivial, since we have S(v) = S′(v), for all v.
Induction step |US,S′ = i|: From the induction hypothesis: All solutions S1 and S′1 such that |US1,S′1

|< i,
we have S1 ∼= S′1.

Topologically sort G, such that all vertices in the same connected component following edges in Eeq
have the same index, and each vertex v is assigned an index greater than the index of all vertices v′ such
that (v,v′) is an edge in E�. That is, “leaf” nodes have the highest indices.

Pick a vertex v with the maximal index, such that S(v) = A and S′(v) = B, for A 6= B, and let I be the
set of vertices reachable from v via unification edges. Since both S and S′ are solutions, there must exist
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an open variable ρ such that A(v) = ρ , and since G is a core, there must be some non-empty set of flow
edges incident on v.

Thus, the neighborhood of v in the graphs G, under assignment S and S′ has a shape as shown in
graph at left in Figure 8. All the nodes in I are shown connected by double dotted lines—they each have
assignment A/B in S/S′. Since all the nodes in I have an index greater than the index of any variable that
differs among S and S′, all their immediate predecessors have identical assignments in the two solutions
(i.e,. M5, . . . ,M8). However, the other assignments may differ, (e.g., the top-left node could be assigned
M1 in S and M′1 in S′, etc.) Each flow-edge {η1, . . . ,ηk} incident upon one of the nodes with the same
index as v is also labeled.

Now, since we have a principal polymonad, there exists a principal join of {(M5,M6), . . . ,(M7,M8)}—
call it J. Consider the assigment S1 (resp. S′1) that differs from S (resp. S′) only by assigning J to each
vertex in I instead of A (resp. B).

We first show that S1 (resp. S′1) is a solution and that S∼= S1 (resp. S′ ∼= S′1). Then, we note that since
S1 and S′1 agree on all the vertices in I, |US1,S′1

| < i, so we apply the induction hypothesis to show that
S1 ∼= S′1 and conclude with transitivity of ∼=.

To show that S1 (resp S′1) is a solution, since J is a join of M5,M6, . . ., then {(M5,M6)�J, . . . ,(M7,M8)�
J} all exist, as well as J ↪→ A (resp. J ↪→ B). By the Closure property, for every (M,A)�M′ (resp. B)
there also exists (M,J)�M′. Thus, the assignment of J to I is valid for a solution.

To show that S∼= S1 (resp. S′ ∼= S′1), we have to show that FS(ηi) = FS1(ηi) (resp. FS′(ηi) = FS′1
(ηi)),

for all i. Taking ηk as a representative case (the other cases are similar), we need to show the identity
below, which is an immediate corollary of Associativity 1 and 2 (resp. for B,M′4,M

′
2).

bindA,M4,M2(bindM7,M8,A x y) z = bindJ,M4,M2(bindM7,M8,J x y) z
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