
Jiri Barnat and Keijo Heljanko (Eds.)
10th International Workshop on
Parallel and Distributed Methods in verifiCation (PDMC 2011)
EPTCS 72, 2011, pp. 91–98, doi:10.4204/EPTCS.72.10

The HIVE Tool for Informed Swarm State Space Exploration

Anton Wijs∗

Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

A.J.Wijs@tue.nl

Swarm verification and parallel randomised depth-first search are very effective parallel techniques
to hunt bugs in large state spaces. In case bugs are absent, however, scalability of the parallelisation
is completely lost. In recent work, we proposed a mechanism to inform the workers which parts of
the state space to explore. This mechanism is compatible with any action-based formalism, where a
state space can be represented by a labelled transition system. With this extension, each worker can
be strictly bounded to explore only a small fraction of the state space at a time. In this paper, we
present the HIVE tool together with two search algorithms which were added to the LTSMIN tool
suite to both perform a preprocessing step, and execute a bounded worker search. The new tool is
used to coordinate informed swarm explorations, and the two new LTSMIN algorithms are employed
for preprocessing a model and performing the individual searches.

1 Introduction

In explicit-state model checking (MC), it is checked whether a given system specification yields a given
temporal property. This is done by exploring the so-called state space of the specification, which is a
directed graph describing explicitly all potential behaviour of the system. Since state space exploration
algorithms often need to keep track of all explored states in order to efficiently perform the MC task,1

and since state spaces can be very large, for many years, the amount of available memory in a computer
has been the most important bottleneck for MC.

In recent years, however, the increase of available memory in state-of-the-art computers has con-
tinued to follow Moore’s Law [12], while the increase of their processors’ speed no longer has. For
MC, this means that large state spaces can be stored in memory, but the time needed to explore them is
impractically long, hence a time explosion problem has emerged. This can be mitigated by developing
distributed exploration algorithms, in which a number of computers in a cluster or grid are used to per-
form an exploration. Many of those algorithms use a partitioning function to assign states to workers,
and require frequent synchronisation between these workers, see e.g. [1, 2, 4, 7, 10].

Swarm verification [9] (SV) (and parallel randomised Depth-First Search [5]) are recent techniques
to perform state space exploration in a so-called embarrassingly parallel [6] way, where the individual
workers never need to synchronise with each other. In SV, each worker starts at the initial state and
performs a search based on Depth-First Search (DFS). The direction of a worker is determined by a
given successor ordering strategy. As the direction of a DFS depends on the fact that a stack is used to
order successor states (i.e. a Last-In-First-Out strategy), changing this ordering directly influences the
direction of the search. By providing each worker a unique strategy, they will explore different parts of
the state space first. With this method, some states may be explored multiple times by different workers,

∗Supported by the Netherlands Organisation for Scientific Research (NWO) project 612.063.816 Efficient Multi-Core Model
Checking.

1A Depth-First Search can in principle be performed by just using a stack, but this means that the MC task can often not be
performed in linear time (depending on the structure of the state space).

http://dx.doi.org/10.4204/EPTCS.72.10

92 The HIVE Tool for Informed Swarm State Space Exploration

Table 1: The four major functionalities of ISV
LTSMIN HIVE

P1. Trace-counting DFS: Constructs P′ with tc(s) = min(1,Σs′∈N′ tc(s′)). F1. Trace selection: select a swarm trace σ for worker

F2. Informed Swarm Search (ISS): Search of P restricted to σ F3. Update swarm set: remove inspected traces

but if the property does not hold, any bug states present are likely to be detected very quickly, due to the
diversity of the searches, which often means that the whole state space does not have to be explored.

However, if a property holds, each worker will exhaustively explore the whole reachable state space,
which means that the benefits of parallelisation are completely lost. Recently, we proposed a mechanism
to bound each worker to a particular reachable strict subset of the set of reachable states, in such a way
that together, the workers explore the whole state space [14]. This mechanism is compatible with any
action-based formalism such as µCRL [8], where each transition in a state space is labelled with some
action name corresponding with system behaviour. In this paper, we explain how the Heuristics Instruc-
tor for parallel VErification (HIVE) tool, which resulted from [14], works in practice. Section 2 presents
the functionality of the HIVE tool together with some new algorithms implemented in the LTSMIN tool
suite [4]. How all these have been implemented and how the resulting tools can be used is explained in
Section 3. In Section 4, experimental results are discussed. Finally, conclusions and pointers for possible
future work are given in Section 5.

2 The Informed Swarm Exploration Technique

The Setting The so-called Informed SV technique (ISV) implemented in HIVE and LTSMIN is appli-
cable if three conditions are met: (1) A system specification P should be an implicit description of a
Labelled Transition System (LTS) P. An LTS P is a quadruple (S,A,T,sin), where sin is the initial state,
S is the set of states reachable from sin, A is a set of transition labels (actions), and T : S×A×S is the set
of transitions between states. With s A−→ t, A⊆A, we say that there exists an ` ∈ A such that (s, `, t) ∈ T.
The reflexive transitive closure of−→ is denoted as−→∗ . In on-the-fly state space exploration, sin and A

are known a priori, but S and T are not, and a next-state function N : S→ 2S provides the set of successors
of a given state. A state t is the successor of a state s iff s A−→ t. N is used to construct S and T, starting at
sin. In the following, we use the notation N | A, with A⊆ A, to denote N restricted to a set of transition
labels A, i.e. N | A(s) = {s′ ∈ S | ∃` ∈ A.(s, `,s′) ∈ T}. Clearly, N |A=N. Finally, a sequence of actions

〈`0, `1, . . .〉 describes all transition sequences (traces) through an LTS P with sin
{`0}−→s0

{`1}−→s1 · · · for some

s0,s1, If P is label-deterministic, i.e. for all s, t ∈ S, ` ∈ A with s `−→ t, there does not exist a state
t ′ 6= t with s `−→ t ′, such an action sequence corresponds to a single trace. Here, we assume that all LTSs
are label-deterministic. If this is not the case, relabelling of some transitions can resolve this.

(2) P should consist of a finite number n > 1 of process descriptions (e.g. process algebraic terms)
in parallel composition. This is the case for any concurrent system. (3) At least some of these processes
in parallel composition, i.e. a subsystem, should yield finite behaviour, hence only finite traces. This is
not a strict requirement, but if it is not met, then the method relies on bounded analysis of the subsystem,
and it does not automatically guarantee anymore that all reachable states are visited.

ISV Say that a specification describes a system of concurrent processes P= {P0, . . . ,Pn}, with n ∈N.
ISV exploits the fact that parallel composition is a major cause for state space explosion, and that LTS

A.J. Wijs 93

P of P is the synchronous product of LTSs Pi = (Si,Ai,Ti,si
in) of the Pi (0 ≤ i ≤ n), restricted by some

synchronisation rules between processes, given by a symmetric function C. E.g. C(`,`′) = `′′ states that
if actions ` and `′ can be performed by different processes, then the result is action `′′ in the system.
For the formal details, see [14]. We assume that the Ai are disjoint (if this is not the case, then some
rewriting can resolve this)2 and that no action is involved in more than one rule defined by C (either
as an input, or as a result). All this implies that for any ` ∈ A, it can be determined whether or not it
stems from some behaviour of a particular process Pi. Say that Ac ⊆ A is the set of actions stemming
from synchronisations, and that Ai

c ⊆Ai is the set of actions of Pi which are forced to synchronise with
other actions, then A = (

⋃
i≤nA

i \Ai
c)∪Ac. Now, for any A ⊆ A, we can define M(A) as {`′′ ∈ Ac |

∃` ∈ A, `′ 6∈ A.C(`,`′) = `′′}, which is the set of actions resulting from synchronisation involving one
action in A. Finally, the assumptions about C allow us to define a relabelling function R as follows:
R({`}) = {`′′} iff there exists an `′ such that C(`,`′) = `′′, and R({`}) = {`}, otherwise.

recv_C1_3

recv_C1_1

recv_C1_2

off(C1)

send

send

send
recv_C1_3

off(C1)

recv_C1_1

off(C1)

recv_C1_2

off(C1)

issue

send

send

send

off(C1)

request

request

off(C1)

recv_C1_1
off(C1)

recv_C1_2

resolves(C1)

off(C1)

update

update

send

recv_C1_2

off(C1)

send

request

recv_C1_2

off(C1)

update

0
1

2

3

4
5

6

7
10 8

9

11

12

13

14

15

16

17

18

19

20

21
22

23

24

Trace counts

State tc

0 14

1 3

2 3

3 7

4 1

5 7

6 6

7 6

8 5

9 1

10 1

11 3

12 3

13 2

· · · · · ·

24 2

Trace #10

0→ [0,14〉

3→ [6,13〉

5→ [6,13〉

6→ [7,13〉

7→ [7,13〉

8→ [7,12〉

11→ [9,12〉

12→ [9,12〉

13→ [10,12〉

14→ [10,12〉

15→ [10,12〉

4→ [10,11〉

Figure 1: The LTS of an iPod process, with weights, and trace nr. 10

Four basic functionalities are
required to perform ISV in prac-
tice. These are listed in Table 1;
a preprocessing step (P1) involv-
ing the analysis of a defined sub-
system yielding finite behaviour,
and three techniques for the three
major phases of ISV (F1-3). P1
and F2 require two new search
algorithms, which have been im-
plemented in LTSMIN. F1 and
F3 have been implemented in
the new stand-alone HIVE tool.
The general procedure to per-
form an ISV is as follows: First,
the user selects a strict subsys-
tem P′ ⊂P which is guaranteed
to yield finite behaviour (again,
alternatively, this behaviour is
bounded in the ISV, but then,
the overall search could be non-
exhaustive). In P1, the LTS P′ =

(S′,A′,T′,s′in), described by P′, is constructed and saved to disk, together with a weight function
tc : S′ → N. For this, we have extended the DFS implementation in LTSMIN, as described in Alg. 1.
The tc function (see also Table 1) assigns 1 to deadlock states, i.e. if N′(s) = /0, and the sum of all the
successor weights to any other state (note that N′ is the next-state function of P′).

This allows efficient reasoning about the traces through P′; the number of traces represented by a
trace prefix from sin to some s ∈ S′ equals tc(s). E.g., Fig. 1 shows a simplified acyclic LTS3 of an
iPod process as part of the DRM protocol specification from [13], with part of the definition of tc. With
this, if we sort the states based on their numbering (which was assigned by the DFS), then each trace
can be uniquely referred to with a natural number: note that the number of possible traces is 14, which

2Strictly speaking, a weaker requirement suffices [14].
3The actual LTS of this example, in which the actions are extended with some data parameters, consists of 547 states.

94 The HIVE Tool for Informed Swarm State Space Exploration

corresponds with tc(0). Say that we want to identify trace 10 (shown in Fig. 1). State 0 has successors
{1, . . . ,4}. Sorted by increasing state number, we first consider state 1; since tc(1) = 3, we conclude that
trace 〈recv_C1_3〉 represents traces 0 to 2, i.e. 3 traces, starting at trace 0.

Algorithm 1 Trace-counting DFS

Require: P′ ⊂P, s′in, A′

Ensure: P′ and tc : S′→N are constructed
Closed← /0
tc(sin)← dfs(sin)

dfs(s) =
if s 6∈ Closed then

tc(s)← 0
for all s′ ∈N′(s) do

tc(s)← tc(s)+dfs(s′)
if N′(s) = /0 then

tc(s)← 1
Closed← Closed∪{s}

return tc(s)

We also have tc(2) = 3, therefore 〈recv_C1_1〉 represents
traces 3 to 5. Similarly, 〈recv_C1_2〉 represents traces 6 to 12,
and 〈off(C1)〉 represents trace 13. This means that 〈recv_C1_2〉
is a prefix of trace 10. Since state 3 only has state 5 as a succes-
sor, clearly 〈recv_C1_2,send〉 is also a prefix (this agrees with
tc(5) = 7: all 7 traces represented by 〈recv_C1_2〉 are also rep-
resented by 〈recv_C1_2,send〉). In this fashion, the complete
trace can be constructed following the states listed on the right of
Fig. 1. This principle is used for trace selection in HIVE (F1). In
ISV, each worker is bounded by a trace through P′, given by HIVE

(this will be explained next). Therefore, each trace represents a
worker job to be performed, and P′ represents the set of jobs.
From a trace 〈`0, . . . , `n〉 through P′ (n ∈ N), a so-called swarm
trace σ = 〈R(`0), . . . ,R(`n)〉 can be constructed, taking into account synchronisations with P \P′.
Whenever a worker thread can be launched, HIVE selects a swarm trace. When the HIVE tool is launched
to start an ISV, this is done first.

A launched worker thread performs an informed swarm search (ISS), implemented in LTSMIN

(Alg. 2 and F2). In Alg. 2, σ is the swarm trace assigned by the HIVE tool, and σ(i) is the singleton
set containing the (i+1)th element of σ (If σ contains fewer than i+1 elements, we say that σ(i) = /0).
In the ISS, P is explored, but not exhaustively: the potential behaviour of the subsystem P′ is restricted
to σ , which restricts exploration of P. For each visited state s, Next is extended with N | (A \A)(s),
i.e. all successor states reachable via behaviour of P\P′, and Step is extended with N | σ(i)(s), i.e. all
successor states reachable via the current behaviour in σ .

Algorithm 2 BFS-based ISS

Require: P, sin, A, A =A′ ∪M(A′), σ

Ensure: P restricted to σ is explored
i← 0
Open← sin; Closed,Next,Step,Fi← /0
while Open 6= /0∨Step 6= /0 do

if Open = /0 then
i← i+1
Open← Step\Closed; Step,Fi← /0

for all s ∈ Open do
Next← Next∪N | (A\A)(s)
Step← Step∪N | σ(i)(s)
Fi← Fi ∪{` ∈ A |N | {`}(s) 6= /0}

Closed← Closed∪Open
Open← Next \Closed; Next← /0

When all states in Open are explored, the contents of Next is
moved to Open, after duplicate detection (for which the search his-
tory Closed is used). Note that when all reachable states have been
explored in this manner, i is increased, by which the ISS moves to
the next step in σ , and new states become available. The main idea
of ISV is to construct the set of all possible traces through P′, and to
perform an ISS through P for each of those traces. This means that
eventually P is completely explored. A proof of correctness can be
sketched as follows: say that all traces through P′ have been used by
workers to explore P, and that after this, some reachable state s ∈ S

has never been visited. We will show that this leads to a contradic-
tion. It follows from Alg. 2 that for each state t to be explored, all
new states t ′ ∈N | (A\A)(t) are going to be explored as well, and for

some i, t ′′ ∈N | σ(i)(t) is going to be added to Step. This implies that all states t̂ ∈N | (A\σ(i))(t) are
going to be ignored. From this and the fact that sin is explored, it follows that a state s is ignored iff for all
traces through P from sin to s, there exist t, t̂ ∈ S such that sin

A−→∗ t `−→ t̂ A−→∗ s, with `∈ A\σ(i), i being
the current position in σ when exploring t. Let us consider one of those traces. We call σ ′ the swarm
trace followed to reach t from sin over that trace. Note that this is a prefix of σ . Let us assume that by

A.J. Wijs 95

following σ ′ extended with `, s can be reached from sin.4 Since σ ′ has been derived from a trace through
P′ and ` ∈ A, the extended trace must also be derivable from a trace through P′. But then, since all traces
through P′ have been used in the ISV, s must have been visited by some other worker that followed σ ′,
and we have a contradiction.

In case P and P′ sometimes synchronise, the trace counting will produce an over-approximation of
the possible set of traces of P′ in the context of P. This is because in the trace counting, it is always
assumed that whenever P′ needs to synchronise, this can happen in P. The result is that some swarm
traces may not correspond with actual potential behaviour in P. To deal with this, ISS includes a feedback
procedure: For every position i in σ , it is recorded in Fi which potential behaviour of P′ has actually
been observed. When finished, ISS returns the Fi, and using these, HIVE can prune away both σ and
other, invalid, traces (F3). Since each trace prefix represents a set of traces with consecutive numbers
(see e.g. the ranges for states in trace 10 in Fig. 1), the set of explored and pruned swarm traces can
be represented in a relatively small list of ranges. Initially, the set of swarm traces is empty. Say we
explore the LTS P of the DRM specification, and P′ is as displayed in Fig. 1, and say it is detected
that synchronisation with recv_C1_2 at state 0 (to state 3) can actually not happen in P. As already
mentioned, 〈recv_C1_2〉 represents [6,13〉. So after pruning, [6,13〉 represents the new set of explored
traces. Furthermore, elements in the list can often be merged. E.g., if ranges [0,5〉 and [8,14〉 have been
explored earlier, and range [5,8〉 is to be added, the result can again be described using a single range
[0,14〉. At all times, HIVE is ready to launch another worker (F1) and to prune more traces (F3). When
there are no more swarm traces left to explore, the ISV is finished.

3 Implementation and Using the Tools

Implementation The trace-counting DFS and ISS have both been implemented in an unofficial exten-
sion of the LTSMIN toolset version 1.6-19, which has been written in C. Since LTSMIN already contains
a whole range of exploration algorithms (both explicit-state and symbolic), there was no need to imple-
ment new data structures. ISV is very light-weight in terms of communication between the HIVE and the
workers, the only information sent to launch an ISS being a swarm trace in the form of a list of actions.
This list is being stored in LTSMIN in a linked list, and a pointer traverses this list when exploring, to
keep track of the current swarm trace position. In addition to this, a bit set is used to keep track of
the encountered actions stemming from P′ since the last move along the swarm trace. This is done to
construct the Fi. A bit set implementation using a tree data structure is available in the LTSMIN toolset.

Unfortunately, it is currently not possible to automatically extract P′ of a given subsystem from P,
meaning that P′ must manually be derived from P. At times, this requires quite some inside knowledge
of the description, therefore it is at the moment the main reason that we have not yet performed more
experiments. Automatic construction of the P′ description is listed as future work (see Section 5).

The HIVE tool consists of about 1,200 lines of C-code. Because of the communication being light-
weight, and because interactions between the workers and HIVE either involve asking for a new trace
and receiving it, or sending the results of an ISS, we decided to implement all communication in the
request-response method using TCP/IP sockets. During an ISV, HIVE frequently needs to extract traces
from the P′, which is kept in memory together with the tc-function. Besides this, a linked list L of nodes
containing trace ranges (the [i, j〉 mentioned in Section 2) is maintained, representing the set of explored

4This is not true if there are multiple transitions stemming from P′ on the trace to s not agreeing with σ , but then, we can
repeat the reasoning in the proof sketch until there is only one left.

96 The HIVE Tool for Informed Swarm State Space Exploration

traces. Currently, when a trace is selected (F1), an ID is chosen randomly from L, but one can imagine
other selection strategies (see Section 5). Then, the corresponding trace is extracted from P′.

When launching many workers, frequent requests to HIVE are to be expected. Therefore, HIVE has
been implemented with pthreads; whenever a worker sends a request, a new thread is launched in HIVE

to handle the request. If a new swarm trace is required, F1 is performed, and if feedback is given, F3 is
performed. The LTS P′ is never changed, hence no race conditions can occur when multiple threads read
it, but L is frequently accessed and updated, when selecting a trace and processing feedback, the latter
involving writing. For this reason, we introduced a data lock on L. We plan to use more fine-grained
locking in the future, but we have not yet experienced a real slowdown when using one lock.

During an ISV, HIVE keeps accepting new requests until L has one node containing the range
[0, tc(s′in)〉. From that moment on, any requests are answered with the command to terminate, effectively
ending all worker executions. The same is done if a worker reports in its feedback that a counter-example
to a property to check has been found, because the ISV can stop immediately in that case.

Finally, all has been tested on LINUX (RED HAT 4.3.2-7 and DEBIAN 6.0.1) and MAC OS X 10.6.8.

Setting up and launching an ISV In the following, we assume that we have a µCRL specification
named spec.mcrl describing P, and a specification named specsub.mcrl describing P′. Actually, any
action-based modelling language compatible with LTSMIN is suitable for ISV as well. A µCRL spec-
ification is usually first linearised to a tbf file, using the µCRL toolset [3], which is subsequently used
as the actual input of LTSMIN. Having spec.tbf and specsub.tbf, the weighted P′ is saved to disk as
follows, with 〈sub〉 being the chosen base name for the files storing the weighted P′:5

lpo2lts-grey –getswarm=〈sub〉 specsub.tbf

This produces the files sub.swh, sub.swc, and sub.sww, containing the actions in A′, the transitions in
T′ (with actions and states represented by numbers), and the weights of the states, respectively. Actually,
if specsub.tbf yields infinite behaviour, this can be bounded by a depth n using the option –swbound=〈n〉.

The HIVE can now be launched on the same machine by invoking the following, with 〈portnr〉 being
the port number it is supposed to listen at for incoming requests:

hive 〈portnr〉 〈sub〉

An ISS can be started as follows, 〈server〉 being the IP address of the machine running HIVE:

lpo2lts-grey –swarm=〈sub〉 –hiveserver=〈server〉 –hiveport=〈port〉 spec.tbf

Note that each ISS also needs information on P′. Actually, only sub.swh is read from disk, to learn
A′. Therefore, this file should be available on all machines where ISSs are started. Finally, in practice,
one often wants to start many ISSs simultaneously, and start a new ISS every time one terminates. This
whole procedure can be launched using the shell script hive_launch.sh.

4 Experimental Results

Table 2 shows experimental results using the µCRL [8] specifications of a DRM procotol [13] and the
Link Layer Protocol of the IEEE-1394 Serial Bus (Firewire) [11]. We were not yet able to perform

5For µCRL specifications, lpo2lts-grey is the explicit-state space generator of LTSMIN. For other modelling languages,
another appropriate LTSMIN tool should be used.

A.J. Wijs 97

Table 2: Results for bug-free cases with SV and ISV, 10 and 100 workers.
case # workers search results

est. runs # runs max. # states max. time total # states total time

DRM (1nnc, 3ttp)

10 SV 10 10 13,246,976 19,477 s 132,469,760 19,477 s
10 ISV, 1 iPod 5,124 45 2,352,315 2,832 s 85,966,540 14,157 s
10 ISV, 2 iPods 1.31∗1013 7,070 70,211 177 s 353,591,910 125,139 s
100 ISV, 2 iPods 1.31∗1013 9,900 70,211 175 s 361,050,900 17,325 s

1394 (3 link ent.)
10 SV 10 10 137,935,402 105,020 s 1,379,354,020 105,020 s
10 ISV 3.01∗109 1,160 236,823 524 s 235,114,520 60,784 s
100 ISV 3.01∗109 1,400 236,823 521 s 252,206,430 7,294 s

est. runs: estimated # runs needed (# of swarm traces for ISV). # runs: actual # runs needed. total (max.) # states: total
(largest) # states explored (in a single search). total (max.) time: total (longest) running time (of a single search).

more experiments using other specifications, mainly because subsystem specifications still need to be
constructed manually, which requires a deep understanding of the system specifications. The experiments
were performed on a machine with two dual-core AMD OPTERON (tm) processors 885 2.6 GHz, 126 GB
RAM, running RED HAT 4.3.2-7. We simulated the presence of 10 and 100 workers for each experiment
(the fully independent worker threads can also be run in sequence). This has some effect on the results:
in order to simulate 10 and 100 parallel ISSs, HIVE postponed the processing of ISS feedback until 10
and 100 of them had been accumulated, respectively. When the ISSs truly run in parallel, this feedback
processing is done continuously, and redundant work can therefore be avoided at an earlier stage. In the
DRM case, we selected both one and two iPod processes for P′, and in the Firewire case, a bounded
analysis of one of the link protocol entities resulted in P′. The SV runs have been performed with the
DFS of LTSMIN. Since the specifications are correct, there is no early termination for the explorations,
meaning that in SV, all reachable states are explored 10 times. In the DRM case, ISV based on one iPod
process leads to an initial swarm set with 5,124 traces, 45 of which were actually needed for different
runs. Each run needed to explore at most 18% of P, and in total, the number of states explored was
smaller than in the SV. ISV based on two iPod processes leads to a much larger swarm set, and clearly,
feedback information is essential. ISV with 10 parallel workers explored in total 2.5 times more states
than SV, but each ISS covered at most 1

2 % of P, meaning that they needed a small amount of memory.
This demonstrates that ISV is useful in a network where the machines do not have large amounts of
RAM. In the Firewire case with 10 parallel workers, each ISS explored at most only 1

6 % of P, and in
total, the SV explored 83% more states than the ISV. In terms of scalability related to the number of
parallel workers, the results with 100 workers show that the overall execution times can be drastically
reduced when increasing the number of workers: compared to having 10 workers, 100 workers reduce
the time by 86% in the DRM case, and 88% in the Firewire case. The number of ISSs has actually
increased, but we expect this to be an effect of the simulations of parallel workers, as explained before.

A full experimental analysis of the algorithms would also incorporate cases with bugs, to test the
speed of detection. This is future work, but since ISV has practically no overhead compared to SV,
and the ISSs are embarrassingly parallel and explore very different parts of a state space, we expect
ISV and SV to be comparable in their bug-hunting capabilities. Finally, we chose not to compare ISV
experimentally with other distributed techniques (e.g. those using frequent synchronisations), because
there are too many undesired factors playing a role when doing that (e.g. implementation language,
modelling language, level of expertise of the user with the model checker).

98 The HIVE Tool for Informed Swarm State Space Exploration

5 Conclusions and Future Work

We presented the functionality of the HIVE tool and two new LTSMIN algorithms for ISVs. ISV is an
SV method for action-based formalisms to bound the embarrassingly parallel workers to different LTS

parts. Worst case, if the system under verification is correct, no worker needs to perform an exhaustive
exploration, and memory and time requirements for a single worker can remain low.

Tool availability Both the ISV extended version of LTSMIN and HIVE are available at http://
www.win.tue.nl/~awijs/suppls/hive_ltsmin.html.

Future work We plan to further develop the HIVE tool such that a description P′ of a given sub-
system can automatically be derived from a given description P. We also wish to investigate which
kind of subsystems are particulary effective for the work distribution in ISV, and which are not, so that
an automatic subsystem selection method can be derived. If P′ yields infinite behaviour, we want to
support its full behaviour automatically in the future. As long as P is finite-state, this should be possible.
Furthermore, we want to investigate different strategies to select swarm traces and to guide individual
ISSs. Finally, we will perform more experiments with much larger state spaces, using a computer cluster.

References
[1] J. Barnat, L. Brim, M. Ceška & P. Ročkai (2010): DiVinE: Parallel Distributed Model Checker. In:

HiBi/PDMC’10, pp. 4–7, doi:10.1109/PDMC-HiBi.2010.9.

[2] B. Bingham, J. Bingham, F.M. de Paula, J. Erickson, G. Singh & M. Reitblatt (2010): Industrial Strength
Distributed Explicit State Model Checking. In: HiBi / PDMC 2010, IEEE, pp. 28–36, doi:10.1109/PDMC-
HiBi.2010.13.

[3] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser & J.C. van de Pol (2001): µCRL:
A Toolset for Analysing Algebraic Specifications. In: CAV’01, LNCS 2102, Springer, pp. 250–254,
doi:10.1007/3-540-44585-4_23.

[4] S.C.C. Blom, J.C. van de Pol & M. Weber (2010): LTSMIN: Distributed and Symbolic Reachability. In:
CAV’10, LNCS 6174, pp. 354–359, doi:10.1007/978-3-642-14295-6_31.

[5] M.B. Dwyer, S.G. Elbaum, S. Person & R. Purandare (2007): Parallel Randomized State-space Search. In:
ICSE’07, IEEE, pp. 3–12, doi:10.1109/ICSE.2007.62.

[6] I. Foster (1995): Designing and Building Parallel Programs. Addison-Wesley.

[7] H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Joubert, I. Smarandache-Sturm &
G. Stragier (2006): DISTRIBUTOR and BCG_MERGE: Tools for Distributed Explicit State Space Gen-
eration. In: TACAS’06, LNCS 3920, Springer, pp. 445–449, doi:10.1007/11691372_30.

[8] J.F. Groote & A. Ponse (1995): The Syntax and Semantics of µCRL. In: ACP’94, Springer, pp. 26–62.

[9] G.J. Holzmann, R. Joshi & A. Groce (2008): Swarm Verification. In: ASE’08, IEEE, pp. 1–6,
doi:10.1109/ASE.2008.9.

[10] F. Lerda & R. Sista (1999): Distributed-Memory Model Checking with SPIN. In: SPIN’99, LNCS 1680,
Springer, pp. 22–39, doi:10.1007/3-540-48234-2_3.

[11] S.P. Luttik (1997): Description and Formal Specification of the Link Layer of P1394. SEN-R 9706, CWI.

[12] G.E. Moore (1998): Cramming more Components onto Integrated Circuits. Proc. of the IEEE 86(1), pp.
82–85, doi:10.1109/JPROC.1998.658762.

[13] M. Torabi Dashti, S. Krishnan Nair & H.L. Jonker (2008): Nuovo DRM Paradiso: Towards a Verified Fair
DRM Scheme. Fundamenta Informaticae 89(4), pp. 393–417.

[14] A.J. Wijs (2011): Towards Informed Swarm Verification. In: NFM’11, LNCS 6617, Springer, pp. 422–437,
doi:10.1007/978-3-642-20398-5_30.

http://www.win.tue.nl/~awijs/suppls/hive_ltsmin.html
http://www.win.tue.nl/~awijs/suppls/hive_ltsmin.html
http://dx.doi.org/10.1109/PDMC-HiBi.2010.9
http://dx.doi.org/10.1109/PDMC-HiBi.2010.13
http://dx.doi.org/10.1109/PDMC-HiBi.2010.13
http://dx.doi.org/10.1007/3-540-44585-4_23
http://dx.doi.org/10.1007/978-3-642-14295-6_31
http://dx.doi.org/10.1109/ICSE.2007.62
http://dx.doi.org/10.1007/11691372_30
http://dx.doi.org/10.1109/ASE.2008.9
http://dx.doi.org/10.1007/3-540-48234-2_3
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1007/978-3-642-20398-5_30

	1 Introduction
	2 The Informed Swarm Exploration Technique
	3 Implementation and Using the Tools
	4 Experimental Results
	5 Conclusions and Future Work

