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The increasing popularity of automated tools for softwanet leardware verification puts ever increas-
ing demands on the underlying decision procedures. Thismapsents a framework for distributed
decision procedures (for first-order problems) based oig@nterpolation. Formulas are distributed

in a lazy fashion, i.e., without the use of costly decompasitlgorithms. Potential models which

are shown to be incorrect are reconciled through the useaf@rterpolants. Experimental results
on challenging propositional satisfiability problems icate that our method is able to outperform
traditional solving techniques even without the use of toldal resources.

1 Introduction

Decision procedures for first-order logic problems, or fnegts thereof, have seen a tremendous increase
in popularity in the recent past. This is due to the greateiase in performance of solvers for the
propositional satisfiability (SAT) problem, as well as tinerieasing popularity of verification tools for
both soft- and hardware which extensively use first-ordeisiten procedures like SAT and SMT solvers.

As the decision problems that occur in large-scale veriioaproblems become larger, methods
for distribution and parallelization are required to o memory and runtime limitations of mod-
ern computer systems. Frequently, computing clusters artloore processors are employed to solve
such problems. The inherent parallelism in these systemites used to solve multiple problems con-
currently, while distributed and parallel decision proaess would allow for much better performance.
This has led to the development of distributed verificatimold, for example through the distribution of
Bounded-Model-Checking (BMC) problems (see, eldl, [9).15]

In the following sections we present a general method faribiged decision procedures which
is applicable to decision procedures of first-order fragimiernhe key component in this method is
Craig’s interpolation theoreni [11]. This theorem enablsgauarbitrarily split formulas into multiple
parts without any restrictions on the nature or size of thie &e propose to use this lazy formula
decomposition because it does not require analysis of tharsigcs of a formula prior to the distribution
of the problem. In many other distributed algorithms, sut¢hzgg decomposition clearly has a negative
impact on the overall runtime of the decision procedure. el@y, when using an interpolation scheme,
the abstraction provided by the interpolation algorithrofien strong enough to counterbalance this.

Through an experimental evaluation of our algorithm on pseponal formulas, we are able to show
that, at least in the propositional case, large speed-gp# feom using a lazy decomposition when using
a suitable interpolation algorithm.

2 Background

We are interested in satisfiability of first-order formuldSormulas are assumed to be in conjunctive
normal form, i.e., of the fornp = Wi (X1,..., %) A ... A Pn(X1, ... %), WhereVy = {x1,..., %} are the
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free variables ofp and they; are clauses (disjunctions of atoms).
Craig’s interpolation theorem provides a way to charaegetine relationship between two formulas
when one implies the other:

Theorem 1 (Craig Interpolation[[111]) Let ¢ and ¢ be first-order formulas. Ifp =  then there exists
anInterpolantl such thatp =1 A | = ¢ and \f CVyNVy.

Equivalently, there is an interpolahtsuch thatp = | A | = = wheneverp A ¥ is unsatisfiable,
becausep = -y = —~(@A ). Craig’s theorem guarantees the existence of an interpdiahdoes not
provide an algorithm for obtaining it. However, such al¢fums are known for many logics. We refer to
two interpolation algorithms for propositional logic armdescribe them, we require some definitions:

A literal | is either a propositional variabbeor its negation—-x. A clause is a disjunction of liter-
als, denotedl,...,I,}. A formula ¢ is assumed to be in conjunctive normal form (CNF), i.e., & is
conjunction of clauses, denoted= {cy,...,Cn}.

A (partial) assignmendr is a consistent set of clauses of size 1. The (propositi@®al) problem is
to determine whether for a given formujathere exists a total assignment such thata = T. Given
two clauses of the forn€; U {x} andC, U {—x}, their resolution is defined &3 UC; and if it is not
tautological the result is calledrasolventand the variablex is called the pivot variable. A resolution
refutation is a sequence of resolution operations suchthieatinal resolvent is empty, proving that the
formula is unsatisfiable.

There are multiple techniques for propositional interpofa Here, we refer to two popular systems,
one by McMillan [26] and the other by Huang, Krajicek and Rkd20/24,30] (HKP). Both are methods
that require time linear in the size of the resolution reffotaof —(@ A ). Both interpolation methods
construct interpolants by associating an intermediatrpaiant with every resolvent in the resolution
refutation of@ A . The interpolant associated with the final resolvent (thetgrolause) constitutes an
interpolantl for which Theoreni Il holds. For a characterization of theseadher interpolation systems
see, e.g.[[13].

McMillan’s interpolation system associates with everyusiaC in ¢ the intermediate interpolant
C\ {v,~v|v e Vy}, i.e., the restriction o€ to the variables iny. Every clause inp is associated with
the intermediate interpolant. Every other interpolant is calculated depending on theesponding
resolution step. Consider the derivation of resolM@rftom clausesC; andC, with pivot variablex,
whereC; andC; have previously been associated with intermediate intenggic, andlc,. The resulting
clauseRis then associated with the intermediate interpolant

|Cl\/|(;2 ifXEVq;/\X%VAU
IrR:=1 I Ale, IfXeVpAXeEVy
Ic, Ale, ifX§ZVqM\XEV4,

In the HKP system, every clause ¢nis associated the intermediate interpolantwhile the clauses
in Y are associated . Every resolvenR obtained from clause€; andC, with pivot variablex is
associated with the intermediate interpolant

|Cl\/|(;2 ifXEV(p/\X¢Vw
lR:=4¢ (XVIg)A(—xVlg,) if xeVoAxeVy
Ic, Ale, ifXgV(p/\XEVw

For every propositional interpolation system that compaieinterpolant fop = (, thedual system
is defined by the computation of an interpolant lfdor () = ¢, with the effect that-l is an interpolant
for ¢ = . Itis known that the HKP system is self-dual and that McMikasystem is not [13].
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3 Related Work

Our work is most closely related to parallel and distribuiedision procedures. Many decision proce-
dures exists for the propositional satisfiability and soifniaem exploit parallelism.

3.1 Parallel SAT Solving

In parallel SAT, the objective is to simultaneously expldiferent parts of the search space in order to
quickly solve a problem. There are two main approaches tallpRSAT solving. First, the classical
concept of divide-and-conquer, which divides the seareltesjinto subspaces and allocate each of them
to sequential SAT solvers. The search space is divided ghanguiding-path constraints (typically unit
clauses). A formula is found satisfiable if one worker is abldind a solution for its subspace, and
unsatisfiable if all the subspaces have been proved unahltésfiWorkers usually cooperate through a
load balancing strategy which performs the dynamic transfsubspaces to idle workers, and through
the exchange of conflict-clausés [10], 16].

In 2008, Hamadi et al[ [18, 19] introduced the parallel gitf approach. This method exploits
the complementarity between different sequential DPLhtsgies to let them compete and cooperate
on the original formula. Since each worker deals with the l&Hormula, there is no need for load
balancing, and the cooperation is only achieved througlexichange of learnt clauses. Moreover, the
search process is not artificially influenced by the origs®lof guiding-path constraints like in the first
category of techniques. With this approach, the craftinthefstrategies is important, and the objective
is to cover the space of the search strategies in the besbjgoagy.

The main drawback of parallel SAT techniques comes front tiegjuired replication of the formula.
This is obvious for the parallel portfolio approach. It is@ltrue for divide-and-conquer algorithms
whose guiding-path constraints do not produce signifigastialler subproblems (onlpg,c variables
have to be set to obtamsubproblems). This makes these techniques only applitalpieblems which
fit into the memory of a single machine.

In the last two years, portfolio-based parallel solversabee prominent and it has been used in SMT
decision procedures as well [34]. We are not aware of a rgcéeteloped improvements on the divide-
and-conquer approach (the latest being [16]). We give & tescription of the parallel solvers qualified
for the 2010 SAT Ra

e In plingeling [6], the original SAT instance is duplicated by a boss thraad allocated to
worker threads. The strategies used by these workers ardyndéfferentiated around the amount
of pre-processing, random seeds, and variables branc@imgflict clause sharing is restricted to
units which are exchanged through the boss thread. Thisrsaien the parallel track of the 2010
SAT Race.

e ManySAT [19] was the first parallel SAT portfolio. It duplicates thestance of the SAT problem to
solve, and runs independent SAT solvers differentiatecheir testart policies, branching heuris-
tics, random seeds, conflict clause learning, etc. It exgpdmmlauses through various policies.
Two versions of this solver were presented at the 2010 SAERhBey finished second and third.

e In SArTagnan, [22] different SAT algorithms are allocated to differehteads, and differentiated
with respect to restart policies and VSIDS heuristics. Stmeads apply a dynamic resolution
process/[5,6] or exploit reference poirits|[23]. Some othgr® simplify a shared clauses database
by performing dynamic variable elimination or replacemdirtiis solver finished fourth.

Thttp://baldur.iti.uka.de/sat-race-2010
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e In Antom [32], the SAT algorithms are differentiated on decisionristic, restart strategy, conflict
clause detection, lazy hyper binary resolution |5, 6], agdaginic unit propagation lookahead.
Conflict clause sharing is implemented. This solver finistiftl

3.2 Distributed SAT Solving

Contrary to parallel SAT, in distributed SAT, the goal is tankle problems which are by nature dis-
tributed or, even more interestingly, to handle problemschviare too large to fit into the memory of
a single computing node. Therefore, the speed-up agairejuestial execution is not necessarily the
main objective, and in some cases (large instances) caneote measured.

To the best of our knowledge, the only relevant work in theagreesents an architecture tailored
for large distributed Bounded Model Checking[15]. The chje is to perform deep BMC unwindings
thanks to a network of standard computers, where the SATUlasrbecome so large that they cannot
be handled by any one of the machines. This approach usesterfslases topology, and the unrolling
of an instance provides a natural partitioning of the pnoble a chain of workers. Each worker has to
reconcile its local solution with its neighbors. The maslistributes the parts, and controls the search.
First, based on proposals coming from the slaves, it setegtebally best variable to branch on. From
that decision, each worker performs Boolean Constrainp&gation (BCP) on its subproblem, and the
master performs the same on the globally learnt clausesmaister maintains the global assignment, and
to ensure the consistency of the parallel BCP algorithmpawates to the slaves Boolean implications.
The master also records the causality of these implicatidrich allows him to perform conflict-analysis
when required.

3.3 Interpolation

McMillan’s propositional interpolation systerh [26] whemployed in a suitable Model Checking al-
gorithm, has been shown to perform competitively with alfpons based purely on SAT-solving, i.e.,
McMillan showed that the abstraction obtained throughrpatation for Model Checking problems is at
least as good as and sometimes better than previously kriostraetion methods.

4 Lazy Decomposition

When considering distributed decision procedures, it igallg assumed that the formulas which are
to be solved are too large to be solved on a single computidg.ntnder this premise, strategies for
distributing a formula have to be employed. If there existpuantifier elimination algorithm for the
fragment considered, then it is straight-forward, but carapvely expensive to distribute the problem:
Find sparsely connected partitions of the formula and elt@ the connections such that the partitions
become independent. For example, let formpla: ¢ A @ where the partitiongg, and ¢ overlap on
variablesxX =V, NVy,. The elimination oiX from 3X . g1 A @ produces two independent pagisandg,
which, respectively, depend on variablégs \ X andV,, \ X and therefore can be solved independently.
While this distribution strategy is quite simple, it depsrah the existence of a quantifier elimination
algorithm. Furthermore, the performance of such an algoriin practice depends greatly on the fact
that the problem is sparsely connected, which is not gegeaajiven. We therefore use a different and
cheaper method for distribution:

Definition 1 (Lazy Decomposition) Let ¢ be in conjunctive normal form, i.eg=@ A... AN @. A
lazy decompositiorof @ into k partitions is an equivalent set of formulégh, ..., Yk} such that each
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Input : Formulag
Output T if @is satisfiable,L otherwise

Yn,..., Y := decompose);
G.=T,;

flag :=true;
while flag do
if G= L then

| return L;
else

| Letmbe a total model foG;
end

flag := false;
foreachiin 1...kdo

if i Am= L then
Let| be an interpolant for (s A m) overVy, NVg;

G =GAl,
flag := true;
end
end
end
return T;

Algorithm 1: A reconciliation algorithm.

Y is equivalent to some conjunction of clauses frpmi.e., there exist @ (a < b < n), such that
U=@AN...\@.

We call this alazy decomposition, because no effort is made to ensure thatigastdo not share
variables. The formulagy, ... Yy may then be solved independently, but if the partitions bapp share
variables, i.e., wheNy, NVy, # 0 for somej # i, then these (potentially global) solutions have to be
reconciled.

LetSy = \/;m; j be the set of all models satisfying and letS= {S, , ..., Sy, } be a set of all models
of all partitions. Thereconciliation problenis to determine whethe®y, A ... ASy, is satisfiable, i.e., to
determine whether there is a global modebywhich has a matching extension in eggh Clearly, any
set of models is not required to be any smaller in representttian its corresponding partition; in fact,
it may be exponentially larger. In practice it may therefbeemore efficient to build the solution sets
incrementally, avoiding any blowup wherever possible. His €nd, we require the following lemma:

Lemmal. Letg=yn A... Ay and let m be a model for the shared variables:\/U}fj:1V4,i NVy, and
let1 <i<k.Iflis an interpolant for-(¢s A m) theng =-I.

Proof. |is an interpolant for-(¢s A m) or, equivalently, fony; = —m. Thereforey; = |. Since@ = 4,
we also havep = 1. O

Algorithm[T presents a simple method that makes use of thisnhe to solve a decomposed formula.
First, it extracts a modeh for G, which is over the shared variables of the decompositioa gtbbals).
It then attempts to extend the model to models satisfyingy eathe partitions and returns if this was
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successful. Otherwise, it extracts an interpoladnbm every unsatisfiable partition which is subsequently
used to refings. WhenG is found to be unsatisfiable the algorithm returhss there cannot be any
model that is extensible to all partitions.

The maximum number of iterations require by Algorithim 1 deggeon the number and the domain of
the shared variables in the decomposition. Of course, this/ates the use of decompaosition techniques
that find partitions with little overlap and on the other hamebtivates the use of interpolation techniques
that produce (logically) weak interpolants such that eweigrpolant covers as many (global) models as
possible.

Theorem 2. Algorithm([1 is sound.

Proof. When the algorithm returng, there is a modem for G which has an extension in every.
Conversely, if the algorithm returng, then every potential modeh is contained in some interpolant
which implies—m, which is an immediate consequence of Lenina 1. O

Theorem 3. Algorithm[1 is complete for formulas over finite-domain ahates.

Proof. Every iteration of the algorithm excludes at least one fbssmnodel fromG (otherwise the
algorithm would terminate and return). For formulas over finite-domain variables there is onlynédi
number of potential variables. Therefofé,has to become unsatisfiable at some point, for€Gng L
and therefore termination of the algorithm. O

5 Interpolation and Conflict Clauses

The DPLL procedure is an algorithm that solves the SAT proklsee, e.g.[[28]). It does so by evaluat-
ing a series of partial assignments until a total assignnseiound. When a partial assignment is found
to be inconsistent with the input formula, DPLL backtrackstprevious (smaller) assignment. Modern
incarnations of this algorithm use conflict-driven bac&kiag, which means that the conflicting state of
the solver is analyzed andcanflict clausds derived. It is required that every conflict clause be iegbli
by the original formula, that it is over the variables of therent assignment, and that it be inconsistent
with the current assignment. Any conflict clause is theeefedundant, but it may help to prevent further
conflicts when it is kept in the clause database (in which dasecalled alearnt clause). We think it
worthwile to characterize the relationship between canflauses and interpolants:

Corollary 1. Every conflict clause for a propositional formujaderived under the partial assignment
a is an interpolant forgp = —a.

Proof. According to the definition of a conflict claus® it must be implied byp and inconsistent with
a. We therefore have = C and—(C A a) = C = —a, which make<C an interpolant forp = —a by
TheoreniL. O

Currently, the most popular conflict resolution scheme fBLD-style solvers is the so-called First-
UIP method (for a definition se€l[7]). The corollary stated\abraises the question whether other
interpolation methods are able to improve upon this schedmte that the First-UIP scheme has some
properties which make it very efficient in practice:

e a conflict clause can be computed in linear time and

e every such clause &ssertingi.e., it contains a unique literal which is unassignedrdftecktrack-
ing.
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More general interpolation schemes like McMillan’s or HKIBaahave the first of these properties
since interpolants are usually computed in linear time feorasolution proof. Therefore, an interpolant
may be computed in linear time, too, if the resolution proithe current conflict is kept in the state of
the solver. This, however, is much more expensive than kgepie reasons for implications as is done
in the First-UIP scheme.

An interpolant is generally not of clause form. If it is to bept as part of the problem (akin to a
learnt clause) it therefore requires conversion. Thegitebrward expansion to CNF may increase the
size of the interpolant exponentially. The Tseitin transfation [33] increases the size of the interpolant
only linearly, but introduces new variables. It is not clednich of these methods is to be preferred. In
general, however, setof conflict clauses is produced, instead of a single cladkseiti the First-UIP
scheme.

An interpolant is also asserting in the sense that it is ts$¢0 be true; however, it is not immedi-
ately asserting a specific literal like a First-UIP confliduse. A preliminary experimental evaluation
(of which the details are omitted) has shown that none of timvk propositional interpolation meth-
ods performs better than the First-UIP scheme. This, howevay be due to the lack of an efficient
interpolation algorithm that matches the performance efalgorithm for First-UIP conflict resolution.

6 Experimental Evaluation

As a first step in evaluating our algorithm, we implementedaggsitional satisfiability solver based on
the MiniSAT solver. We restrict ourselves to the slightiytdated version 1.14p, because propositional
interpolation methods require proof production, whichas available in more recent versions of Min-
iSAT [14]. Interpolants are produced by iterating over tesalution proof, which is saved (explicitly)
in memory. We use Reduced Boolean Circuits (RBCs [1]) toasgmt interpolants such that recurring
structure is exploited. Furthermore, Algoritfilh 1 permite exploitation of state-of-the-art SAT solver
technology, like incremental solving techniques in sajvpartitions. Furthermore, every assignment to
the globals is a set of clauses of size 1, which means théititscifor solving a formula under assump-
tions may be made use of. The lazy decomposition used by qiementation is indeed quite trivial: it
simply divides the clauses of the problem into a predefinediarp of equally sized partitions. Clauses
are ordered as they appear in the input file and each partif®assigned the clauses numbered from
i-3to(i+1)- 3, wherenis the total number of clauses.

Our implementation is evaluated on set of formulas whichsamall but hard to solvd[[] They are
known to contain symmetries, which potentially can be ex@ibby interpolation. For this evaluation,
our implementation uses only a single processing elemeant, the evaluation of the partitions of a
decomposition is sequentialized. Through this, we are tbkhow that our algorithm performs well
even when using the same resources as a traditional sorelimfary experiments have shown that an
actual (shared-memory) parallelization of our algorithenfprms better than the sequentialized version,
but not significantly so, which is due to the lack of a loadalbaing mechanism to balance the runtime
of partition evaluation.

All our experiments are executed on a Windows HPC clusteuaf Quad-Xeon 2.5 GHz processors
with 16 GB of memory each, using a timeout of 3600 seconds andraory limit of 2 GB.

To assess the impact of the decomposition on the solverrpeafice, we investigate all decomposi-
tions into 2 to 50 partitions for each of the three intergolatmethods (McMillan's, Dual McMillan’s

“http://www.aloul.net/benchmarks. html
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Figure 1: Decomposition intd2, ... ,50} partitions, using different interpolation systems.
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Minisat Decomposition (# partitions)
Filename 220 1.14p 5 ] 10 | 20 | 30 | 40 | 50 ]| Best
chnl1Q11.cnf 169.39 33.52 3.00 3.20 1.92 2.14 1.29 1.22 0.98
chnl1Q12.cnf 165.02 20.95 2.46 2.07 4.17 2.07 1.53 2.15 0.98
chnl1Q13.cnf 204.77 15.23 2.93 1.87 3.40 2.57 2.40 2.07 0.89
chnl1112.cnf T/O 291.61 5.23 6.05 17.02 14.29 6.46 7.16 4.45
chnl1113.cnf T/O 960.72 5.69 4.70 18.28 12.62 7.55 6.07 4.45
chnl11.20.cnf T/O | 2346.30 13.31 15.07 5.05 10.50 10.33 12.39 4.96
fpgalQ8_sat.cnf 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.06 0.00
fpgalQ9_sat.cnf 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02
fpgal28_sat.cnf 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.05 0.00
fpgal29_sat.cnf 0.03 0.02 0.03 0.02 0.05 0.05 0.05 0.05 0.02
fpgal211 sat.cnf 0.02 0.00 0.03 0.03 0.03 0.03 0.05 0.06 0.00
fpgal212 sat.cnf 0.00 0.02 0.05 0.05 0.03 0.03 0.03 0.05 0.02
fpgal39_sat.cnf 0.00 0.00 0.03 0.02 0.03 0.06 0.05 0.08 0.02
fpgal310.sat.cnf 0.00 0.00 0.05 0.03 0.05 0.05 0.05 0.06 0.02
fpgal312 sat.cnf 0.00 0.00 0.06 0.08 0.11 0.09 0.12 0.12 0.02
hole7.cnf 0.08 0.05 0.08 0.11 0.08 0.08 0.11 0.11 0.06
hole8.cnf 0.37 0.33 0.31 0.51 0.37 0.53 0.37 0.47 0.30
hole9.cnf 6.51 3.59 1.56 3.03 231 1.93 1.40 1.65 1.22
hole10.cnf 247.11 26.75 10.09 22.76 11.22 12.93 12.50 | 10.65 4.34
hole1l.cnf T/O 509.86 59.12 | 116.42| 109.61 81.88 75.93 | 80.84 37.03
hole12.cnf T/O T/O 293.08 | 564.38| 843.20| 435.18| 572.90| 522.65|| 187.70
s3-3-3-1.cnf 0.44 0.16 2.98 0.30 0.20 0.23 0.27 0.39 0.16
s3-3-3-3.cnf 1.20 0.02 1.90 0.33 0.23 0.28 0.50 0.39 0.12
$3-3-3-4.cnf 0.44 1.50 3.51 0.23 0.14 0.19 0.42 0.51 0.12
s3-3-3-8.cnf 0.34 0.80 0.98 0.37 0.20 0.48 0.56 0.42 0.19
$3-3-3-10.cnf 0.47 0.81 1.23 0.41 0.36 0.48 0.67 0.55 0.28
uUrq3.5.cnf 310.22 58.27 T/O | 1633.50| 470.33 448.89 386.04 | 391.56 || 243.55
Urq4.5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
uUrqg5.5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
Urg6.5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
Urg7.5.cnf T/O T/O M/O T/O T/O T/O T/O T/O T/O
Urg8.5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
fpgalQ8_satrcr.cnf 0.00 0.00 0.03 0.03 0.03 0.03 0.05 0.05 0.02
fpgalQ9_satrcr.cnf 0.00 0.00 0.02 0.05 0.03 0.05 0.06 0.08 0.00
fpgal28_satrcr.cnf 0.00 0.02 0.03 0.02 0.08 0.03 0.09 0.06 0.02
fpgal29_satrcr.cnf 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.08 0.02
fpgal210.satrcr.cnf 0.02 0.00 0.03 0.05 0.05 0.08 0.09 0.08 0.02
fpgal211 satrcr.cnf 0.02 0.03 0.02 0.06 0.06 0.09 0.08 0.09 0.02
fpgal212 satrcr.cnf 0.02 0.00 0.05 0.50 0.42 0.09 0.14 0.19 0.02
fpgal39_satrcr.cnf 0.00 0.02 0.03 0.03 0.05 0.05 0.06 0.09 0.02
fpgal310.satrcr.cnf 0.03 0.05 0.03 0.05 0.14 0.08 0.08 0.14 0.02
fpgal3ll satrcr.cnf 0.00 0.00 0.05 0.03 0.06 0.09 0.12 0.11 0.03
fpgal3d12 satrcr.cnf 0.00 0.00 0.08 30.83 34.30 0.12 0.25 0.12 0.02
fpgalQll unsrcr.cnf 173.04 32.09 235.20 | 213.47| 110.25 41.68 41.23 29.39 26.97
fpgalQ12 unsrcr.cnf 484.76 109.31 137.37 197.23 120.71 41.65 25.79 13.81 13.81
fpgalQl3.unsrer.enf || 1279.94| 110.32 132.26 92.70 74.96 65.26 38.77 42.46 20.12
fpgalQl5_unsrcr.cnf T/O 215.50 271.72 232.78 42.85 83.32 26.13 20.64 8.25
fpgalQ20.unsrer.enf || 3089.90 | 696.29 76.05 164.60 87.72 125.91 65.74 28.24 28.24
fpgalll2 unsrer.enf || 3204.84 | 449.22 T/O | 2404.97 | 1435.07 | 648.40| 380.16| 251.60 || 134.86
fpgalll3.unsrcr.cnf T/O | 1933.98 T/O | 2638.34 | 1023.83| 348.48 295.11 | 146.20 || 132.34
fpgalll4 unsrcr.cnf T/O | 3199.81|| 2562.86| 2011.51| 893.40| 866.23| 450.22 | 250.13 || 179.15
fpgalll5 unsrcr.cnf T/O T/O T/O | 1417.94| 1121.73| 512.84| 1309.82| 321.85 || 294.67
fpgall20_unsrcr.cnf T/O T/O T/O | 2828.49 | 2141.49| 1068.31| 577.14 | 352.92 || 154.24

Table 1: Runtime comparison with MiniSAT (versions 2.2.@ dnl4p), using McMillan’s interpola-
tion system. Bold numbers indicate the smallest runtimé&éndecompositions shown here or the best
decomposition intd2,...,50} partitions (right-most column).
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and HKP). Each line in Figuréslia,]1b, 1c correspondseenchmark file and indicates the change
in runtime required to solve the benchmark when using frorp 2260 partitions in the decomposition.
These figures provide strong evidence for an improvemetiteofiintime behavior as the number of par-
titions increase. Note that, as mentioned before, the atiatuof partitions was sequentialized for this
experiment, i.e., this effect ot due to an increasing number of resources being utilized.gféehs in
Figured IH, 1b, aridIlL.c provide equally strong evidence éoutility of McMillan’s interpolation system:
the impact on the runtime is the largest and most consisteit three interpolation systems.

Finally, Table[1 provides a comparison of the runtime of BT versions 2.2.0 and 1.14p with
a selection of different decompositions, the right-modtiem indicating the time of the best decom-
position found among all those evaluated. It is clear from table that no single partitioning can be
identified as the best overall method. However, some decsitipus, like the one into 50 partitions,
perform consistently well and almost always better thameeiversions of MiniSAT.

7 Conclusion

We present the concept of lazy distribution for first-ordecidion procedures. Formulas are decomposed
into partitions without the need for quantifier eliminationany other method for logical disconnection
of the partitions. Instead, local models for the partiti@ie reconciled globally through the use of
Craig interpolation. Experiments using different intdgtion systems and decompositions for proposi-
tional formulas indicate that our approach performs bdttan traditional solving methods even when
sequentialized, i.e., when no additional resources aré. uethe same time, our algorithm provides
straight-forward opportunities for parallelization aridtdbution of the solving process.
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