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The increasing popularity of automated tools for software and hardware verification puts ever increas-
ing demands on the underlying decision procedures. This paper presents a framework for distributed
decision procedures (for first-order problems) based on Craig interpolation. Formulas are distributed
in a lazy fashion, i.e., without the use of costly decomposition algorithms. Potential models which
are shown to be incorrect are reconciled through the use of Craig interpolants. Experimental results
on challenging propositional satisfiability problems indicate that our method is able to outperform
traditional solving techniques even without the use of additional resources.

1 Introduction

Decision procedures for first-order logic problems, or fragments thereof, have seen a tremendous increase
in popularity in the recent past. This is due to the great increase in performance of solvers for the
propositional satisfiability (SAT) problem, as well as the increasing popularity of verification tools for
both soft- and hardware which extensively use first-order decision procedures like SAT and SMT solvers.

As the decision problems that occur in large-scale verification problems become larger, methods
for distribution and parallelization are required to overcome memory and runtime limitations of mod-
ern computer systems. Frequently, computing clusters and multi-core processors are employed to solve
such problems. The inherent parallelism in these systems isoften used to solve multiple problems con-
currently, while distributed and parallel decision procedures would allow for much better performance.
This has led to the development of distributed verification tools, for example through the distribution of
Bounded-Model-Checking (BMC) problems (see, e.g., [9,15]).

In the following sections we present a general method for distributed decision procedures which
is applicable to decision procedures of first-order fragments. The key component in this method is
Craig’s interpolation theorem [11]. This theorem enables us to arbitrarily split formulas into multiple
parts without any restrictions on the nature or size of the cut. We propose to use this lazy formula
decomposition because it does not require analysis of the semantics of a formula prior to the distribution
of the problem. In many other distributed algorithms, such alazy decomposition clearly has a negative
impact on the overall runtime of the decision procedure. However, when using an interpolation scheme,
the abstraction provided by the interpolation algorithm isoften strong enough to counterbalance this.

Through an experimental evaluation of our algorithm on propositional formulas, we are able to show
that, at least in the propositional case, large speed-ups result from using a lazy decomposition when using
a suitable interpolation algorithm.

2 Background

We are interested in satisfiability of first-order formulas.Formulas are assumed to be in conjunctive
normal form, i.e., of the formφ = ψ1(x1, . . . ,xn)∧ . . .∧ψm(x1, . . .xn), whereVφ = {x1, . . . ,xn} are the
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free variables ofφ and theψi are clauses (disjunctions of atoms).
Craig’s interpolation theorem provides a way to characterize the relationship between two formulas

when one implies the other:

Theorem 1 (Craig Interpolation [11]). Let φ andψ be first-order formulas. Ifφ ⇒ ψ then there exists
an InterpolantI such thatφ ⇒ I ∧ I ⇒ ψ and VI ⊆Vφ ∩Vψ .

Equivalently, there is an interpolantI such thatφ ⇒ I ∧ I ⇒ ¬ψ wheneverφ ∧ψ is unsatisfiable,
becauseφ ⇒¬ψ ≡ ¬(φ ∧ψ). Craig’s theorem guarantees the existence of an interpolant, but does not
provide an algorithm for obtaining it. However, such algorithms are known for many logics. We refer to
two interpolation algorithms for propositional logic and to describe them, we require some definitions:

A literal l is either a propositional variablex or its negation¬x. A clause is a disjunction of liter-
als, denoted{l1, . . . , ln}. A formula φ is assumed to be in conjunctive normal form (CNF), i.e., it isa
conjunction of clauses, denotedφ = {c1, . . . ,cn}.

A (partial) assignmentα is a consistent set of clauses of size 1. The (propositional)SAT problem is
to determine whether for a given formulaφ there exists a total assignment such thatφ ∧α ≡ ⊤. Given
two clauses of the formC1∪{x} andC2 ∪{¬x}, their resolution is defined asC1∪C2 and if it is not
tautological the result is called aresolventand the variablex is called the pivot variable. A resolution
refutation is a sequence of resolution operations such thatthe final resolvent is empty, proving that the
formula is unsatisfiable.

There are multiple techniques for propositional interpolation. Here, we refer to two popular systems,
one by McMillan [26] and the other by Huang, Kraj́ıcek and Pudlák [20,24,30] (HKP). Both are methods
that require time linear in the size of the resolution refutation of ¬(φ ∧ψ). Both interpolation methods
construct interpolants by associating an intermediate interpolant with every resolvent in the resolution
refutation ofφ ∧ψ . The interpolant associated with the final resolvent (the empty clause) constitutes an
interpolantI for which Theorem 1 holds. For a characterization of these and other interpolation systems
see, e.g., [13].

McMillan’s interpolation system associates with every clauseC in φ the intermediate interpolant
C\ {v,¬v|v ∈Vψ}, i.e., the restriction ofC to the variables inψ . Every clause inψ is associated with
the intermediate interpolant⊤. Every other interpolant is calculated depending on the corresponding
resolution step. Consider the derivation of resolventR from clausesC1 andC2 with pivot variablex,
whereC1 andC2 have previously been associated with intermediate interpolantsIC1 andIC2. The resulting
clauseR is then associated with the intermediate interpolant

IR :=







IC1 ∨ IC2 if x∈Vφ ∧x 6∈Vψ
IC1 ∧ IC2 if x∈Vφ ∧x∈Vψ
IC1 ∧ IC2 if x 6∈Vφ ∧x∈Vψ

.

In the HKP system, every clause inφ is associated the intermediate interpolant⊥, while the clauses
in ψ are associated⊤. Every resolventR obtained from clausesC1 andC2 with pivot variablex is
associated with the intermediate interpolant

IR :=







IC1 ∨ IC2 if x∈Vφ ∧x 6∈Vψ
(x∨ IC1)∧ (¬x∨ IC2) if x∈Vφ ∧x∈Vψ

IC1 ∧ IC2 if x 6∈Vφ ∧x∈Vψ

.

For every propositional interpolation system that computes an interpolant forφ ⇒ ψ , thedualsystem
is defined by the computation of an interpolant forI for ψ ⇒ φ , with the effect that¬I is an interpolant
for φ ⇒ ψ . It is known that the HKP system is self-dual and that McMillan’s system is not [13].
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3 Related Work

Our work is most closely related to parallel and distributeddecision procedures. Many decision proce-
dures exists for the propositional satisfiability and some of them exploit parallelism.

3.1 Parallel SAT Solving

In parallel SAT, the objective is to simultaneously exploredifferent parts of the search space in order to
quickly solve a problem. There are two main approaches to parallel SAT solving. First, the classical
concept of divide-and-conquer, which divides the search space into subspaces and allocate each of them
to sequential SAT solvers. The search space is divided thanks to guiding-path constraints (typically unit
clauses). A formula is found satisfiable if one worker is ableto find a solution for its subspace, and
unsatisfiable if all the subspaces have been proved unsatisfiable. Workers usually cooperate through a
load balancing strategy which performs the dynamic transfer of subspaces to idle workers, and through
the exchange of conflict-clauses [10,16].

In 2008, Hamadi et al. [18, 19] introduced the parallel portfolio approach. This method exploits
the complementarity between different sequential DPLL strategies to let them compete and cooperate
on the original formula. Since each worker deals with the whole formula, there is no need for load
balancing, and the cooperation is only achieved through theexchange of learnt clauses. Moreover, the
search process is not artificially influenced by the originalset of guiding-path constraints like in the first
category of techniques. With this approach, the crafting ofthe strategies is important, and the objective
is to cover the space of the search strategies in the best possible way.

The main drawback of parallel SAT techniques comes from their required replication of the formula.
This is obvious for the parallel portfolio approach. It is also true for divide-and-conquer algorithms
whose guiding-path constraints do not produce significantly smaller subproblems (onlylog2c variables
have to be set to obtainc subproblems). This makes these techniques only applicableto problems which
fit into the memory of a single machine.

In the last two years, portfolio-based parallel solvers became prominent and it has been used in SMT
decision procedures as well [34]. We are not aware of a recently developed improvements on the divide-
and-conquer approach (the latest being [16]). We give a brief description of the parallel solvers qualified
for the 2010 SAT Race1:

• In plingeling [6], the original SAT instance is duplicated by a boss threadand allocated to
worker threads. The strategies used by these workers are mainly differentiated around the amount
of pre-processing, random seeds, and variables branching.Conflict clause sharing is restricted to
units which are exchanged through the boss thread. This solver won the parallel track of the 2010
SAT Race.

• ManySAT [19] was the first parallel SAT portfolio. It duplicates the instance of the SAT problem to
solve, and runs independent SAT solvers differentiated on their restart policies, branching heuris-
tics, random seeds, conflict clause learning, etc. It exchanges clauses through various policies.
Two versions of this solver were presented at the 2010 SAT Race, they finished second and third.

• In SArTagnan, [22] different SAT algorithms are allocated to different threads, and differentiated
with respect to restart policies and VSIDS heuristics. Somethreads apply a dynamic resolution
process [5,6] or exploit reference points [23]. Some otherstry to simplify a shared clauses database
by performing dynamic variable elimination or replacement. This solver finished fourth.

1http://baldur.iti.uka.de/sat-race-2010
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• In Antom [32], the SAT algorithms are differentiated on decision heuristic, restart strategy, conflict
clause detection, lazy hyper binary resolution [5, 6], and dynamic unit propagation lookahead.
Conflict clause sharing is implemented. This solver finishedfifth.

3.2 Distributed SAT Solving

Contrary to parallel SAT, in distributed SAT, the goal is to handle problems which are by nature dis-
tributed or, even more interestingly, to handle problems which are too large to fit into the memory of
a single computing node. Therefore, the speed-up against a sequential execution is not necessarily the
main objective, and in some cases (large instances) cannot even be measured.

To the best of our knowledge, the only relevant work in the area presents an architecture tailored
for large distributed Bounded Model Checking [15]. The objective is to perform deep BMC unwindings
thanks to a network of standard computers, where the SAT formulas become so large that they cannot
be handled by any one of the machines. This approach uses a master/slaves topology, and the unrolling
of an instance provides a natural partitioning of the problem in a chain of workers. Each worker has to
reconcile its local solution with its neighbors. The masterdistributes the parts, and controls the search.
First, based on proposals coming from the slaves, it selectsa globally best variable to branch on. From
that decision, each worker performs Boolean Constraint Propagation (BCP) on its subproblem, and the
master performs the same on the globally learnt clauses. Themaster maintains the global assignment, and
to ensure the consistency of the parallel BCP algorithms propagates to the slaves Boolean implications.
The master also records the causality of these implicationswhich allows him to perform conflict-analysis
when required.

3.3 Interpolation

McMillan’s propositional interpolation system [26] when employed in a suitable Model Checking al-
gorithm, has been shown to perform competitively with algorithms based purely on SAT-solving, i.e.,
McMillan showed that the abstraction obtained through interpolation for Model Checking problems is at
least as good as and sometimes better than previously known abstraction methods.

4 Lazy Decomposition

When considering distributed decision procedures, it is usually assumed that the formulas which are
to be solved are too large to be solved on a single computing node. Under this premise, strategies for
distributing a formula have to be employed. If there exists aquantifier elimination algorithm for the
fragment considered, then it is straight-forward, but comparatively expensive to distribute the problem:
Find sparsely connected partitions of the formula and eliminate the connections such that the partitions
become independent. For example, let formulaφ = φ1 ∧ φ2 where the partitionsφ1 andφ2 overlap on
variablesX =Vφ1∩Vφ2. The elimination ofX from∃X . φ1∧φ2 produces two independent partsφ ′

1 andφ ′
2,

which, respectively, depend on variablesVφ1 \X andVφ2 \X and therefore can be solved independently.
While this distribution strategy is quite simple, it depends on the existence of a quantifier elimination
algorithm. Furthermore, the performance of such an algorithm in practice depends greatly on the fact
that the problem is sparsely connected, which is not generally a given. We therefore use a different and
cheaper method for distribution:

Definition 1 (Lazy Decomposition). Let φ be in conjunctive normal form, i.e.,φ = φ1 ∧ . . .∧ φn. A
lazy decompositionof φ into k partitions is an equivalent set of formulas{ψ1, . . . ,ψk} such that each
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Input : Formulaφ
Output
:

⊤ if φ is satisfiable,⊥ otherwise

ψ1, . . . ,ψk := decompose(φ);
G := ⊤;
f lag := true;
while f lag do

if G≡⊥ then
return ⊥;

else
Let mbe a total model forG;

end
f lag := false;
foreach i in 1. . .k do

if ψi ∧m≡⊥ then
Let I be an interpolant for¬(ψi ∧m) overVψi ∩VG;
G := G∧ I ;
f lag := true;

end
end

end
return ⊤;

Algorithm 1: A reconciliation algorithm.

ψi is equivalent to some conjunction of clauses fromφ , i.e., there exist a,b (a < b < n), such that
ψi = φa∧ . . .∧φb.

We call this alazy decomposition, because no effort is made to ensure that partitions do not share
variables. The formulasψ1 . . .ψk may then be solved independently, but if the partitions happen to share
variables, i.e., whenVψi ∩Vψ j 6= /0 for some j 6= i, then these (potentially global) solutions have to be
reconciled.

Let Sψi =
∨

j mi, j be the set of all models satisfyingψi and letS= {Sψ1, . . . ,Sψk} be a set of all models
of all partitions. Thereconciliation problemis to determine whetherSψ1 ∧ . . .∧Sψk is satisfiable, i.e., to
determine whether there is a global model inSφ which has a matching extension in eachSψi . Clearly, any
set of models is not required to be any smaller in representation than its corresponding partition; in fact,
it may be exponentially larger. In practice it may thereforebe more efficient to build the solution sets
incrementally, avoiding any blowup wherever possible. To this end, we require the following lemma:

Lemma 1. Letφ = ψ1∧ . . .∧ψk and let m be a model for the shared variables V:=
⋃k

i, j=1Vψi ∩Vψ j and
let 1≤ i ≤ k. If I is an interpolant for¬(ψi ∧m) thenφ ⇒ I.

Proof. I is an interpolant for¬(ψi ∧m) or, equivalently, forψi ⇒¬m. Thereforeψi ⇒ I . Sinceφ ⇒ ψi ,

we also haveφ ⇒ I .

Algorithm 1 presents a simple method that makes use of this Lemma to solve a decomposed formula.
First, it extracts a modelm for G, which is over the shared variables of the decomposition (the globals).
It then attempts to extend the model to models satisfying each of the partitions and returns⊤ if this was
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successful. Otherwise, it extracts an interpolantI from every unsatisfiable partition which is subsequently
used to refineG. WhenG is found to be unsatisfiable the algorithm returns⊥ as there cannot be any
model that is extensible to all partitions.

The maximum number of iterations require by Algorithm 1 depends on the number and the domain of
the shared variables in the decomposition. Of course, this motivates the use of decomposition techniques
that find partitions with little overlap and on the other hand, motivates the use of interpolation techniques
that produce (logically) weak interpolants such that everyinterpolant covers as many (global) models as
possible.

Theorem 2. Algorithm 1 is sound.

Proof. When the algorithm returns⊤, there is a modelm for G which has an extension in everyψi .
Conversely, if the algorithm returns⊥, then every potential modelm is contained in some interpolant
which implies¬m, which is an immediate consequence of Lemma 1.

Theorem 3. Algorithm 1 is complete for formulas over finite-domain variables.

Proof. Every iteration of the algorithm excludes at least one possible model fromG (otherwise the
algorithm would terminate and return⊤). For formulas over finite-domain variables there is only a finite
number of potential variables. Therefore,G has to become unsatisfiable at some point, forcingG ≡ ⊥
and therefore termination of the algorithm.

5 Interpolation and Conflict Clauses

The DPLL procedure is an algorithm that solves the SAT problem (see, e.g., [28]). It does so by evaluat-
ing a series of partial assignments until a total assignmentis found. When a partial assignment is found
to be inconsistent with the input formula, DPLL backtracks to a previous (smaller) assignment. Modern
incarnations of this algorithm use conflict-driven backtracking, which means that the conflicting state of
the solver is analyzed and aconflict clauseis derived. It is required that every conflict clause be implied
by the original formula, that it is over the variables of the current assignment, and that it be inconsistent
with the current assignment. Any conflict clause is therefore redundant, but it may help to prevent further
conflicts when it is kept in the clause database (in which caseit is called alearnt clause). We think it
worthwile to characterize the relationship between conflict clauses and interpolants:

Corollary 1. Every conflict clause for a propositional formulaφ derived under the partial assignment
α is an interpolant forφ ⇒¬α .

Proof. According to the definition of a conflict clauseC, it must be implied byφ and inconsistent with
α . We therefore haveφ ⇒C and¬(C∧α) ≡C ⇒¬α , which makesC an interpolant forφ ⇒¬α by
Theorem 1.

Currently, the most popular conflict resolution scheme for DPLL-style solvers is the so-called First-
UIP method (for a definition see [7]). The corollary stated above raises the question whether other
interpolation methods are able to improve upon this scheme.Note that the First-UIP scheme has some
properties which make it very efficient in practice:

• a conflict clause can be computed in linear time and

• every such clause isasserting, i.e., it contains a unique literal which is unassigned after backtrack-
ing.
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More general interpolation schemes like McMillan’s or HKP also have the first of these properties
since interpolants are usually computed in linear time froma resolution proof. Therefore, an interpolant
may be computed in linear time, too, if the resolution proof of the current conflict is kept in the state of
the solver. This, however, is much more expensive than keeping the reasons for implications as is done
in the First-UIP scheme.

An interpolant is generally not of clause form. If it is to be kept as part of the problem (akin to a
learnt clause) it therefore requires conversion. The straight-forward expansion to CNF may increase the
size of the interpolant exponentially. The Tseitin transformation [33] increases the size of the interpolant
only linearly, but introduces new variables. It is not clearwhich of these methods is to be preferred. In
general, however, asetof conflict clauses is produced, instead of a single clause like in the First-UIP
scheme.

An interpolant is also asserting in the sense that it is asserted to be true; however, it is not immedi-
ately asserting a specific literal like a First-UIP conflict clause. A preliminary experimental evaluation
(of which the details are omitted) has shown that none of the known propositional interpolation meth-
ods performs better than the First-UIP scheme. This, however, may be due to the lack of an efficient
interpolation algorithm that matches the performance of the algorithm for First-UIP conflict resolution.

6 Experimental Evaluation

As a first step in evaluating our algorithm, we implemented a propositional satisfiability solver based on
the MiniSAT solver. We restrict ourselves to the slightly outdated version 1.14p, because propositional
interpolation methods require proof production, which is not available in more recent versions of Min-
iSAT [14]. Interpolants are produced by iterating over the resolution proof, which is saved (explicitly)
in memory. We use Reduced Boolean Circuits (RBCs [1]) to represent interpolants such that recurring
structure is exploited. Furthermore, Algorithm 1 permits the exploitation of state-of-the-art SAT solver
technology, like incremental solving techniques in solving partitions. Furthermore, every assignment to
the globals is a set of clauses of size 1, which means that facilities for solving a formula under assump-
tions may be made use of. The lazy decomposition used by our implementation is indeed quite trivial: it
simply divides the clauses of the problem into a predefined numberp of equally sized partitions. Clauses
are ordered as they appear in the input file and each partitioni is assigned the clauses numbered from
i · n

p to (i +1) · n
p, wheren is the total number of clauses.

Our implementation is evaluated on set of formulas which aresmall but hard to solve [2]2. They are
known to contain symmetries, which potentially can be exploited by interpolation. For this evaluation,
our implementation uses only a single processing element, i.e., the evaluation of the partitions of a
decomposition is sequentialized. Through this, we are ableto show that our algorithm performs well
even when using the same resources as a traditional solver. Preliminary experiments have shown that an
actual (shared-memory) parallelization of our algorithm performs better than the sequentialized version,
but not significantly so, which is due to the lack of a load-balancing mechanism to balance the runtime
of partition evaluation.

All our experiments are executed on a Windows HPC cluster of dual Quad-Xeon 2.5 GHz processors
with 16 GB of memory each, using a timeout of 3600 seconds and amemory limit of 2 GB.

To assess the impact of the decomposition on the solver performance, we investigate all decomposi-
tions into 2 to 50 partitions for each of the three interpolation methods (McMillan’s, Dual McMillan’s

2http://www.aloul.net/benchmarks.html

http://www.aloul.net/benchmarks.html
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Figure 1: Decomposition into{2, . . . ,50} partitions, using different interpolation systems.
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Minisat Decomposition (# partitions)
Filename 2.2.0 1.14p 5 10 20 30 40 50 Best

chnl10 11.cnf 169.39 33.52 3.00 3.20 1.92 2.14 1.29 1.22 0.98
chnl10 12.cnf 165.02 20.95 2.46 2.07 4.17 2.07 1.53 2.15 0.98
chnl10 13.cnf 204.77 15.23 2.93 1.87 3.40 2.57 2.40 2.07 0.89
chnl11 12.cnf T/O 291.61 5.23 6.05 17.02 14.29 6.46 7.16 4.45
chnl11 13.cnf T/O 960.72 5.69 4.70 18.28 12.62 7.55 6.07 4.45
chnl11 20.cnf T/O 2346.30 13.31 15.07 5.05 10.50 10.33 12.39 4.96
fpga108 sat.cnf 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.06 0.00
fpga109 sat.cnf 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02
fpga128 sat.cnf 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.05 0.00
fpga129 sat.cnf 0.03 0.02 0.03 0.02 0.05 0.05 0.05 0.05 0.02
fpga1211 sat.cnf 0.02 0.00 0.03 0.03 0.03 0.03 0.05 0.06 0.00
fpga1212 sat.cnf 0.00 0.02 0.05 0.05 0.03 0.03 0.03 0.05 0.02
fpga139 sat.cnf 0.00 0.00 0.03 0.02 0.03 0.06 0.05 0.08 0.02
fpga1310 sat.cnf 0.00 0.00 0.05 0.03 0.05 0.05 0.05 0.06 0.02
fpga1312 sat.cnf 0.00 0.00 0.06 0.08 0.11 0.09 0.12 0.12 0.02
hole7.cnf 0.08 0.05 0.08 0.11 0.08 0.08 0.11 0.11 0.06
hole8.cnf 0.37 0.33 0.31 0.51 0.37 0.53 0.37 0.47 0.30
hole9.cnf 6.51 3.59 1.56 3.03 2.31 1.93 1.40 1.65 1.22
hole10.cnf 247.11 26.75 10.09 22.76 11.22 12.93 12.50 10.65 4.34
hole11.cnf T/O 509.86 59.12 116.42 109.61 81.88 75.93 80.84 37.03
hole12.cnf T/O T/O 293.08 564.38 843.20 435.18 572.90 522.65 187.70
s3-3-3-1.cnf 0.44 0.16 2.98 0.30 0.20 0.23 0.27 0.39 0.16
s3-3-3-3.cnf 1.20 0.02 1.90 0.33 0.23 0.28 0.50 0.39 0.12
s3-3-3-4.cnf 0.44 1.50 3.51 0.23 0.14 0.19 0.42 0.51 0.12
s3-3-3-8.cnf 0.34 0.80 0.98 0.37 0.20 0.48 0.56 0.42 0.19
s3-3-3-10.cnf 0.47 0.81 1.23 0.41 0.36 0.48 0.67 0.55 0.28
Urq3 5.cnf 310.22 58.27 T/O 1633.50 470.33 448.89 386.04 391.56 243.55
Urq4 5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
Urq5 5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
Urq6 5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
Urq7 5.cnf T/O T/O M/O T/O T/O T/O T/O T/O T/O
Urq8 5.cnf T/O T/O T/O T/O T/O T/O T/O T/O T/O
fpga108 sat rcr.cnf 0.00 0.00 0.03 0.03 0.03 0.03 0.05 0.05 0.02
fpga109 sat rcr.cnf 0.00 0.00 0.02 0.05 0.03 0.05 0.06 0.08 0.00
fpga128 sat rcr.cnf 0.00 0.02 0.03 0.02 0.08 0.03 0.09 0.06 0.02
fpga129 sat rcr.cnf 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.08 0.02
fpga1210 sat rcr.cnf 0.02 0.00 0.03 0.05 0.05 0.08 0.09 0.08 0.02
fpga1211 sat rcr.cnf 0.02 0.03 0.02 0.06 0.06 0.09 0.08 0.09 0.02
fpga1212 sat rcr.cnf 0.02 0.00 0.05 0.50 0.42 0.09 0.14 0.19 0.02
fpga139 sat rcr.cnf 0.00 0.02 0.03 0.03 0.05 0.05 0.06 0.09 0.02
fpga1310 sat rcr.cnf 0.03 0.05 0.03 0.05 0.14 0.08 0.08 0.14 0.02
fpga1311 sat rcr.cnf 0.00 0.00 0.05 0.03 0.06 0.09 0.12 0.11 0.03
fpga1312 sat rcr.cnf 0.00 0.00 0.08 30.83 34.30 0.12 0.25 0.12 0.02
fpga1011 uns rcr.cnf 173.04 32.09 235.20 213.47 110.25 41.68 41.23 29.39 26.97
fpga1012 uns rcr.cnf 484.76 109.31 137.37 197.23 120.71 41.65 25.79 13.81 13.81
fpga1013 uns rcr.cnf 1279.94 110.32 132.26 92.70 74.96 65.26 38.77 42.46 20.12
fpga1015 uns rcr.cnf T/O 215.50 271.72 232.78 42.85 83.32 26.13 20.64 8.25
fpga1020 uns rcr.cnf 3089.90 696.29 76.05 164.60 87.72 125.91 65.74 28.24 28.24
fpga1112 uns rcr.cnf 3204.84 449.22 T/O 2404.97 1435.07 648.40 380.16 251.60 134.86
fpga1113 uns rcr.cnf T/O 1933.98 T/O 2638.34 1023.83 348.48 295.11 146.20 132.34
fpga1114 uns rcr.cnf T/O 3199.81 2562.86 2011.51 893.40 866.23 450.22 250.13 179.15
fpga1115 uns rcr.cnf T/O T/O T/O 1417.94 1121.73 512.84 1309.82 321.85 294.67
fpga1120 uns rcr.cnf T/O T/O T/O 2828.49 2141.49 1068.31 577.14 352.92 154.24

Table 1: Runtime comparison with MiniSAT (versions 2.2.0 and 1.14p), using McMillan’s interpola-
tion system. Bold numbers indicate the smallest runtime in the decompositions shown here or the best
decomposition into{2, . . . ,50} partitions (right-most column).
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and HKP). Each line in Figures 1a, 1b, and 1c corresponds to one benchmark file and indicates the change
in runtime required to solve the benchmark when using from 2 up to 50 partitions in the decomposition.
These figures provide strong evidence for an improvement of the runtime behavior as the number of par-
titions increase. Note that, as mentioned before, the evaluation of partitions was sequentialized for this
experiment, i.e., this effect isnot due to an increasing number of resources being utilized. Thegraphs in
Figures 1a, 1b, and 1c provide equally strong evidence for the utility of McMillan’s interpolation system:
the impact on the runtime is the largest and most consistent of all three interpolation systems.

Finally, Table 1 provides a comparison of the runtime of MiniSAT versions 2.2.0 and 1.14p with
a selection of different decompositions, the right-most column indicating the time of the best decom-
position found among all those evaluated. It is clear from this table that no single partitioning can be
identified as the best overall method. However, some decompositions, like the one into 50 partitions,
perform consistently well and almost always better than either versions of MiniSAT.

7 Conclusion

We present the concept of lazy distribution for first-order decision procedures. Formulas are decomposed
into partitions without the need for quantifier eliminationor any other method for logical disconnection
of the partitions. Instead, local models for the partitionsare reconciled globally through the use of
Craig interpolation. Experiments using different interpolation systems and decompositions for proposi-
tional formulas indicate that our approach performs betterthan traditional solving methods even when
sequentialized, i.e., when no additional resources are used. At the same time, our algorithm provides
straight-forward opportunities for parallelization and distribution of the solving process.
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