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PKIND is a novel parallel k-induction-based model checker of invariant properties for finite- or
infinite-state Lustre programs. Its architecture, which is strictly message-based, is designed to min-
imize synchronization delays and easily accommodate the incorporation of incremental invariant
generators to enhance basic k-induction. We describe PKIND’s functionality and main features, and
present experimental evidence that PKIND significantly speeds up the verification of safety proper-
ties and, due to incremental invariant generation, also considerably increases the number of provable
ones.

1 Introduction

PKIND is a parallel model checker based on the k-induction principle, used to verify invariant properties
of programs written in the specification/programming language Lustre [8]. Lustre is a synchronous data-
flow language that operates on infinite streams of values of three basic types: bool, int (finite precision
integers), and real (floating point numbers). PKIND assumes an idealized version of Lustre, which treats
int as the type of mathematical integers, and real as the type of rational numbers. Its reasoning about
Lustre programs is done in the context of a first-order quantifier-free logic that includes uninterpreted
functions and mixed real-integer linear arithmetic. Idealized Lustre programs can be faithfully and read-
ily encoded as transition systems in this logic (see [7] for more details). PKIND relies on the SMT solvers
CVC3 [3] and Yices [5], in alternative, as satisfiability solvers for this logic.

PKIND’s architecture is strictly message-based and designed to minimize synchronization delays
and easily accommodate the concurrent automatic generation of invariants to bolster basic k-induction.
A first level of parallelism is introduced in the k-induction procedure itself by executing the base and the
inductive steps concurrently. A second level allows the addition of one or more independent processes
that incrementally generate auxiliary invariants for the system being verified. These invariants are fed to
the k-induction loop as soon as they are produced and used to strengthen the induction hypothesis.

To the best of our knowledge, this sort of parallel architecture has not been presented in previous
work on parallel model checking. Our approach is orthogonal to those in previous work [2] that focus on
other sources of parallelism, including parallelization across the processes of an asynchronous transition
system. Most closely related to ours is the work by Eén et al. [6] who describe a sequential imple-
mentation of SAT-based k-induction in which a Bounded Model Checking loop is interleaved with one
performing just the inductive step of k-induction. Our approach goes beyond that work, not only in using
a genuinely parallel architecture, but also by incorporating concurrent invariant generation processes.
Another line of related work is exemplified by [1, 13, 4], which discuss a different type of parallelism in
the BMC algorithm. There, satisfiability checks are done concurrently within the SAT solver. This too is
orthogonal to our approach, as the parallelism we exploit is not at the level of the underlying solver, but
at the level of the k-induction procedure.
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In the current version of PKIND, invariant generation is achieved using a novel incremental version
of an offline invariant discovery scheme we developed in previous work [9]. This general scheme consists
in sifting through a large set of formulas generated automatically from a transition system’s description,
looking for possible invariants. The formulas in the set, the candidate invariants, are all instances of a
template encoding a decidable relation over the system’s data types. In [9], a single invariant is generated
at the end of the process as a conjunction of template instances, each of which is k-inductive for some
k. In contrast, in the version developed for PKIND, instances that are k-inductive for the same k are
discovered and returned before instances that are k′-inductive for some k′ > k.

Before describing PKIND’s architecture, we briefly recall the definition of k-induction [12]. Assume
a logic L and a transition system S specified in the logic by an initial state condition I(x) and a two-state
transition relation T (x,x′) where x,x′ are vectors of state variables. A state property P(x) is invariant for
S, i.e., satisfied by every reachable state of S, if the following entailments hold in L for some k ≥ 0:

I(x0)∧T (x0,x1)∧·· ·∧T (xk−1,xk) |= P(x0)∧·· ·∧P(xk) (1)

T (x0,x1)∧·· ·∧T (xk,xk+1)∧P(x0)∧·· ·∧P(xk) |= P(xk+1) (2)

A counterexample trace for the base case entailment (1) indicates that the property P is falsified in a
reachable state of S, and so is not invariant. A counterexample trace for the induction step entailment
(2) does not provide the same information because it may start from an unreachable state. The normal
way to try to rule out such spurious counterexamples is to increase the depth k of the induction. This
is, however, not guaranteed to succeed because some invariant properties are not k-inductive for any k.
An additional, and orthogonal, way of enhancing k-induction is to strengthen the induction hypothesis
P(x0)∧·· ·∧P(xk) with the assertion of previously proven invariants for S.1

2 PKind’s architecture

PKIND is implemented in OCaml and is built with components from (the sequential) KIND model
checker [7] and the KIND-INV invariant generator [9] we developed in previous work. Its concurrent
components are implemented as operating system processes since OCaml’s concurrency model does not
take advantage of multi-processor hardware to parallelize thread-level computation. We used the MPI

(Message Passing Interface) API [11] to implement communication among the different processes.
Figure 1 illustrates the general architecture of PKIND. For simplicity, we consider only the case

of one invariant generation process. The extension to an arbitrary number of invariant generators (of
the same type) is straightforward. Each process uses its own copy of the SMT-solver; and each of them
receives as input the formulas encoding the Lustre program to be checked. The three processes, described
below, cooperate as in the Actor model, exchanging messages asynchronously by means of non-blocking
send and receive operations on message queues.

Base process: Starting from k = 0, the base process checks the entailment of case (1) in the k-induction
definition, for increasing values of k. If the entailment fails, it produces a counterexample and sends a
termination signal M2 to the inductive step process. Otherwise, it keeps increasing k and checking the
entailment until it receives a message M1 from the inductive step process stating that the process has
proven the inductive step (2) for a certain value n of k. At that point, the base case process checks that
the base case holds for that value of k, succeeding if it does and returning a counterexample otherwise.

1 Further improvements involve the addition of path compression constraints and checks [12, 10], which not only speed up
computation but also guarantee completeness in certain cases—including all finite state systems.
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Figure 1: PKIND general architecture.

Inductive step process: This process checks the inductive step entailment for increasing values of k
until one of the following occurs, in this order: (i) the entailment succeeds, (ii) it receives a termination
signal from the base case process, or (iii) it receives an invariant from the invariant generation process.
In the latter case, the inductive step process asserts the discovered invariant for all the states involved so
far (from 0 to k+ 1) before repeating the process with the same value of k. The inductive step process
has an auxiliary role in this architecture—it is the base case process that determines whether the property
is k-inductive or not.

Invariant generation process: This process is composed of three modules. The Candidate generator,
synthesizes a set of candidate invariant from predefined templates. The Int and Bool Invariants modules
generate integer and Boolean type invariants respectively. Invariants are sent to the inductive step process,
in messages M3, as soon as they are discovered. The process keeps sending newly discovered invariants
until it processes all candidates or it receives a termination signal M4 from the base process.

This process produces k-inductive invariants for a given transition system S from a template R[ , ],
a formula of L representing a decidable binary relation over one of system’s data types. The invariants
are conjunctions of instances R[s, t] of the template produced with terms s, t from a set U of terms over
the state variables of S . The set U can be determined heuristically from S (and possibly also from the
property P to be proven) in any number of ways.2

2.1 Invariant Generation

The general invariant generation scheme introduced in [9] is illustrated in Figure 2, Version A. The two-
phase procedure, also based on k-induction, starts with a conjunction C of candidate invariants and first
eliminates from C as many conjuncts as possible that have an actual counterexample. Then it attempts to
prove the resulting C k-inductive, pruning any unprovable conjunct until it succeeds—possibly with an
empty C in the worst case. All conjuncts of C that remain at the end are invariant and can be returned.
Note that in Phase 1 the search for counterexamples stops when, for some k, C is falsified by no k-
reachable states. This is just a heuristic termination condition which does not preclude the possibility
that some conjuncts of C may be falsified by longer counterexamples. As a consequence, every conjunct
of C that does not pass the test in Phase 2 are conservatively assumed not to be invariant (even if it may
be k′-inductive for some k′ > k) and removed.

2 In our experiments, we constructed U with terms occurring in the L -encoding of S plus a few distinguished constants
from the domain of S ’s variables.
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proc invariant generator ≡
C =

∧
s,t∈U R[s, t]

k =−1
resetbase; resetind
// Phase 1
repeat

k = k+1
assertbase(Tk)
changed = false
while ¬entailedbase(Ck) do

cex = project(cexbase,Ck)
C = filter(C,cex)
changed = true

until ¬changed
// Phase 2
assertind(T1∧C0∧·· ·∧Tk+1∧Ck)
while ¬entailedind(Ck+1) do

cex = project(cexind,Ck+1)
C = filter(C,cex)

send(D, ind proc)

Version A
(non-incremental)

proc invariant generator ≡
C =

∧
s,t∈U R[s, t]

k =−1
resetbase
repeat

k = k+1
assertbase(Tk)
while ¬entailedbase(Ck) do

cex = project(cexbase,Ck)
C = filter(C,cex)

D =C
resetind
assertind(T1∧D0∧·· ·∧Tk+1∧Dk)
changed = false
while ¬entailedind(Dk+1) do

cex = project(cexind,Dk+1)
D = filter(D,cex)
changed := true

send(D, ind proc)
until ¬changed

Version B
(incremental)

Figure 2: General scheme for invariant generation. The procedures reset and assert and the functions
entailed and cex, are all indexed by the copy of the L -solver used by the process. reset empties the
solver’s set of asserted formulas; assert(F) adds the formula F to that set; entailed(F) returns true iff
the currently asserted formulas L -entail F . When invoked after a call to entailed that returned false, cex
returns a counterexample for that failed entailment. The function project takes an assignment α for state
variables and a formula F , and returns the restriction of α to the variables of F . The function filter takes
a conjunctive property P and an assignment α for P’s variables, and returns the property obtained from
P by removing all conjuncts falsified by α . In Version B, D is meant to be a copy of C, not a renaming.
The call send(D, ind proc) sends D to the inductive step process.

The general invariant discovery scheme above produces a single conjunctive invariant at the very
end. In a concurrent setting, however, it is better for runtime performance to have an incremental in-
variant generation process, which identifies and returns invariants as it goes. Concretely, it is better for
the invariant generation process of PKIND first to identify, and immediately send to the inductive step
process, conjuncts of C that are 0-inductive, then identify and send those that are 1-inductive, and so on.

Pseudo-code for the incremental procedure is provided in Figure 2, Version B. The procedure starts
again with the conjecture C =

∧
s,t∈U R[s, t]. However, it does the following for every k ≥ 0. First, it

eliminates from C all conjuncts falsified by a k-reachable state. Then it makes a copy D of C and tries
to prove it k-inductive by checking the k-induction step on D. Counterexamples in that step are used to
weaken D further, eliminating more and more conjuncts from it until no counterexamples exists. The
final formula D is k-inductive and can be already sent to the inductive step process. If D did not need to
be weakened at all, it means that all the conjuncts left in C after the base case check were k-inductive.
Hence, the whole process terminates. If D was weakened, the eliminated conjuncts are either falsified by
a longer counterexample or possibly k-inductive for a larger k. Those conjuncts are still in C, so in that
case the procedure increases k by 1 and repeats with the larger k.
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We point out that the conjuncts left in D (and sent out because k-inductive) are not removed from C
before repeating. This is for simplicity but also for convenience because on the new iteration they will
end up be in D again, strengthening the induction hypothesis for the inductive step check. That means,
however, that the set of conjuncts sent out at iteration k+ 1 is a (strict) superset of the one sent out at
iteration k. This can be remedied by keeping the previous D and sending out only the difference between
the new D and the old.3

2.2 Additional Features

PKIND takes full advantage of all the sophisticated features of its two embedded SMT solvers, such as
their being on-line, incremental, backtrackable, and able to compute and return satisfying assignements
or unsatisfiable cores of input formulas. It provides three different running modes: in k induct mode,
PKIND functions as a basic parallel k-induction model checker, scheduling only the processes for the base
and the inductive step; in no inc invariant mode, it creates also the invariant generation process. The
invariant generation implemented here is Version A of Figure 2; in inc invariant mode, the invariant
generation is done in an incremental fashion, as in Version B of Figure 2.

PKIND includes a number of optional enhancements on top of this basic procedure, inherited from
the KIND checker. The main ones are: path compression, termination checking and abstraction. Path
compression strengthens the induction hypothesis with a formula that, in essence, removes from con-
sideration program executions with repeated states or more than one initial state. Termination checking
allows it to prove a non-k-inductive property in some cases by realizing that the reachable state space
has been completely explored. Abstraction generates a structural abstraction of the idealized Lustre pro-
gram and performs something similar to a CEGAR loop in both the base case and the induction step,
with the goal of improving the tool’s scalability. See [7] for more information on these and other minor
enhancements.

3 Experimental evaluation

We have evaluated PKIND and its different working modes experimentally against KIND and KIND-INV

using the same benchmark set as in [9].4 That set collects a variety of benchmarks from several sources,
with each benchmark consisting of a Lustre program and a property to be checked for invariance.

Let us call a benchmark valid if its property holds in every reachable state of the associated program,
and invalid otherwise. KIND is able to show 438 of the 941 benchmarks in our set invalid by return-
ing a (separately verified) counter-example trace for the program. KIND reports 309 of the remaining
benchmarks as valid and diverges on the remaining 194 benchmarks, even with very large timeout values.

For the experiments described here the benchmark set is divided in two groups: the 503 valid or
unsolved benchmarks, and the 438 invalid ones. Our tests compare PKIND vs. KIND along two dimen-
sions: precision, measured as the percentage of solved benchmarks, and runtime. For the latter, we were
interested specifically in evaluating how the parallel architecture speeds up k-induction in the case of
invalid benchmarks, and how incremental invariant generation contributes in decreasing solving times
for valid benchmarks. The experiments were run on a 6-core 2.67 GHz Intel Xeon machine, with 6 GB
of physical memory, under RedHat Enterprise Linux 4.0. Version 1.0.9 of the Yices solver was used both
for PKIND and KIND.

3 In our experimental evaluation, however, this enhancement did not seem necessary because in most cases the first few sets
of invariants were enough for the process ind proc to prove the input property.

4 Tools and experimental data can be found at http://clc.cs.uiowa.edu/Kind.

http://clc.cs.uiowa.edu/Kind
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Figure 3: A comparison of generating counter-examples between PKIND -k induct and KIND on
invalid benchmarks. On the left-hand side we compare PKIND -k induct and KIND in BMC mode.
On the right-hand side we compare PKIND -k induct and KIND in inductive mode.

3.1 Precision results

As in [9], we used KIND-INV to generate invariants offline. We first ran KIND-INV on the benchmark
set for 200 seconds. For each of the benchmarks where KIND-INV did not time out, we obtained a set
of invariants, and added them to the program as a single conjunctive assertion. The asserted formula
was the constant true when KIND-INV timed out or ended up discarding all conjectures from the initial
set. Then, we ran KIND in inductive mode with a 100s timeout on each invariant-enhanced benchmark.
KIND’s precision over the 503 valid or unsolved benchmarks grows from 61%, without invariants, to
85%, with the added invariants. For each additional benchmark proved valid, the property goes from
(most likely) not k-inductive for any k to k-inductive for k ≤ 16.

Using the same time out value, in k induct mode PKIND proves valid the same benchmarks proven
by KIND with no invariants. In either no inc invariant and inc invariant mode, PKIND proves
the same benchmarks proven by KIND with invariants, despite the fact that it generates invariants on the
fly, whereas KIND gets them as input.5 Precision is also unchanged when comparing PKIND with KIND

run (in a much faster) BMC mode on the set of 438 invalid benchmarks. Furthermore, in all these cases,
solving times are shortened considerably with PKIND, as discussed below.

3.2 Runtime results

The two scatter plots in Figure 3 compare the runtimes of PKIND -k induct with those of KIND

respectively in BMC mode (left-hand side plot), which performs just bounded model checking, and
inductive mode (right-hand side plot), which performs full k-induction. The timeout for both tools was
200s. As the first plot clearly shows, the runtimes of the two tools are pretty much the same in the first
case. Due to some overhead of the MPI implementation in PKIND, for some benchmarks KIND is slight
faster. The average solving time for PKIND -k induct is 2.34s, while for KIND in BMC mode it is
2.29s. The superiority of PKIND is clearly illustrated with the second plot. For a more quantitative
comparison, both tools are able to produce a counterexample in less than 1s per benchmark for 90%
of all invalid benchmarks. However, PKIND -k induct takes less than 82s to solve any of the invalid
benchmarks, whereas KIND in inductive mode times out on half of them. It is worth stressing that PKIND

-k induct is also superior from a usability perspective because it combines the speed of KIND’s BMC
mode over invalid inputs with the generality and precision of KIND’s inductive mode, without requiring
the user to chose between these two modes.

5 As a precaution against implementation errors, each invariant produced by KIND-INV or by PKIND was independently
and successfully verified by giving it to KIND separately as a property to prove for the program from which it was generated.
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Figure 4: A comparison of solving the benchmarks between PKIND -no inc invariant and PKIND

inc invariant on valid benchmarks. On the left-hand side we compare the two modes on benchmarks
which are valid without the addition of invariants. On the right-hand side we compare the two tools on
the benchmarks previously unsolved. Both plots use a log-log scale over seconds.

Moving to PKIND’s invariant generating modes, since invariants for KIND are generated offline, it
is not possible to do direct runtime comparisons between the two systems over the valid or unsolved
benchmarks. A more interesting comparison is between the two invariant generating modes themselves.
In a nutshell, our results show that the addition of incrementally produced invariants, makes those bench-
marks considerably faster to solve. In more detail, we first compared PKIND -no inc invariant and
PKIND -inc invariant on all previously valid benchmarks, those that can be shown valid without the
addition of invariants. On those benchmarks, the conjunctive invariant produced by the non-incremental
version has no effect on the k-induction loop, because the property is invariably proven before the invari-
ant is generated. In contrast, when invariants are generated incrementally, they are in many cases sent to
the inductive step process early enough to play a role in reducing the overall solving time.

The left-hand side of Figure 4 provides a comparison between the two invariant generation modes.
The plot demonstrates how incremental invariant generation speeds up runtimes. Specifically, the in-
cremental version is able to solve 76% of all the valid benchmarks in less than 0.02 seconds, while the
non-incremental version can do that for only 17% of those benchmarks. Looking at the previously un-
solved benchmarks, with a timeout of 100s, both invariant generation modes solve 66% of them. Again,
however, the incremental version is faster than the non-incremental one although the speed up is less pro-
nounced, as can be seen in the right-hand side plot of Figure 4. In more detail, the incremental version is
able to solve 79% of all newly solved benchmarks in less than 9s, whereas the non-incremental version
is able to solve 73% of them. It is interesting to observe that in a few cases non-incremental invariant
generation is slight faster than the incremental one. The reason for this is that the useful invariant is
one that is k-inductive for a relatively larger k than usual.6 In those cases, incrementally sending and
processing (useless) k-inductive invariants for lower values of k produces a bit of overhead.

With regard to the size of our benchmarks, the invalid ones range from 200 bytes to 40KB of Lustre
source code with no comments and standard use of white space. The average time to solve an invalid
benchmark of size more than 20KB is 9.12 seconds. For the valid benchmarks the size ranges from
400 bytes to 58KB. The average time to solve a valid benchmark of size more than 20KB bytes is 17.6
seconds. Although benchmark sizes may appear small, we stress that the majority of these benchmarks
are infinite-state systems written in a high level specification language, so a benchmark’s size is not a

6 In most benchmarks in our set, adding 0- or 1-inductive invariants is enough to make the property provable.
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good predictor of its difficulty. In fact, looking at runtime data over the whole benchmark set we found
no correlation between benchmark size and solving times.

4 Conclusion and future work

We have described PKIND, a novel parallel k-induction-based model checker. PKIND is designed to keep
interprocess synchronization overheads to a minimum and easily accommodate the concurrent automatic
generation of invariants to bolster the basic k-induction procedure. While any independent invariant
generation techniques could be used in principle in our architecture, we have developed a new one,
based on our previous work, that produces invariants in an incremental fashion to exploit the advantages
of the parallel setting. Our experimental results provide an initial and clear evidence that the architecture
significantly speeds up the verification of safety properties. In addition, due to the incremental invariant
generation, this architecture considerably increases the number of provable benchmarks.

In future work, we plan to study new ways of automatically generating invariants for k-induction,
both in parallel, i.e., using abstract interpretation techniques, and on-demand, in response to counterex-
amples found by the inductive step. We are also working on a new version of PKIND built from scratch
around the architecture discussed here and designed to accept other input languages besides Lustre.
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