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We discuss the design, architecture, and implementation of a toolkit which supports some theories for
distributed interactions. The main design principles of our architecture are flexibility and modularity.
Our main goal is to provide an easily extensible workbench to encompass current algorithms and
incorporate future developments of the theories. With the help of some examples, we illustrate the
main features of our toolkit.

1 Introduction

With the emergence of distributed systems, communication has become one of the most important el-
ements of today’s programming practise. Nowadays, distributed applications typically build up from
(existing) components that are glued together (sometimes dynamically) to form more complex pieces
of software. It is hence natural to model such applications as units of computation interacting through
suitable communication models. An intricacy of communication-centred applications is that interactions
are distributed. Here, the acceptation of distribution has to be taken in a very general sense since interac-
tions are physically and logically distributed; as a matter of fact, components may run remotely and, for
instance, components may belong to different administrative domains.

In order to ensure predictable behaviours of communication-centred applications, it is necessary that
software development is based on solid methodologies. Besides the theoretical results that allow us to
analyse systems and prove their properties, it is also desirable to provide practitioners with a set of tools
to support them in addressing the most common problems (e.g. avoiding synchronisation bugs).

In recent years, session types have appeared as an effective mathematical foundation for designing
and reasoning on distributed interactions. For instance, dyadic session types [13] have been proposed as
a structuring method and a formal basis for the verification of distributed interactions of two participants
(e.g., in client-server architectures). Multiparty sessions [14] generalise session types to support more
than two participants; they have been used in [9] to statically compute upper bounds of the size of buffers
used for asynchronous communications in global interactions. Moreover, dynamic multiparty sessions
have been studied in [6] and [7]. On top of multiparty sessions, in [4], a theory of design-by-contract for
distributed interactions has been introduced. Basically, session types are extended with assertions acting
as pre-/post-conditions or invariants of interactions.

Our main objective is to describe the design principles of the architecture of a modular toolkit which
puts in practise the theories of distributed interactions based on session types. We have developed a
toolkit that accommodates a few main requirements:

• Firstly, the toolkit provides a workbench for theoretical studies so to permit (i) to experiment with
potentially more realistic examples and (ii) to possibly combine several of these methodologies.

• Secondly, our toolkit is easily extensible so to allow researchers to explore new directions as the
theory of distributed interactions develops. For instance, the use of the tool revealed some issues
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in the design of global interaction à-la [4] and triggered the design of additional algorithms to help
the programmer design correct distributed protocols [5].

• Finally, albeit being a prototype for research, our toolkit shapes the basic implementations that can
be used in more realistic frameworks for the development of communication-centric software.

Arguably, most of the research around session types has been mainly devoted to give a precise de-
scription of verification and validation frameworks. In fact, only very few and ad-hoc implementations
have been developed (e.g., [15, 18, 21, 22]).

The main contribution of this paper is the description of the design choice and the implementation of
a modular toolkit that features the main algorithms necessary to analyse systems using theories based on
session types. The most interesting features of our framework are illustrated by means of a few examples.
The toolkit, its documentation, and a few examples are available at [17].
Synopsis § 2 gives background information and a motivating example. § 3 gives more details on the
design principles of our toolkit, its architecture and implementation. § 4 gives illustrative examples of
the tool’s features. § 5 highlights its main advantages. § 6 compares our work to other implementation
of ST. § 7 concludes and highlights our future plans.

2 Background and motivating example

We briefly describe the distinguished aspects common to several theories of distributed interactions. The
design principles of our toolkit hinge on some key elements of session types that uniformly apply to
several theoretical frameworks. The key ingredients of the theories of distributed interactions based on
session types are described below.
Sessions are sets of structured interactions which correspond, for instance, to a complex communication

protocol. Typically sessions are conceived as “correct executions” of a set of distributed interac-
tions, namely those executions that run from the session initialisation to its termination. The basic
idea is that a computation consists of several concurrent sessions that involve some participants.
A main concern is that participants acting in different sessions do not interfere. For instance, a
desirable property to enforce is that a message sent in a session from A and meant for B is not
received by another participant C; however, other relevant properties can be considered as, for in-
stance, progress properties of sessions which guarantee that participants are not stuck because of
communications errors.

Interaction primitives basically include communication mechanisms à-la π-calculus that deal with
sessions as first-class values. Another kind of interaction primitives often present features a se-
lect/branch mechanism which resembles a simplified form of method invocation. For instance,
communication interaction and select/branch in the global calculus [14] notation are

A→ B : k〈sort〉 and A→ B : k{li : Gi}i∈J

In the former, participant A sends a message of type sort to B on the channel k; in the latter A
selects one of the labels li (sending it on k) and, correspondingly, B executes its ith branch Gi.
Communication primitives typically permit delegation, namely the fact that sessions can be ex-
changed so to allow a process to delegate to another process the continuation of the computation.

Typing disciplines guarantee properties of computations. For example, in dyadic session types [13]
the duality principle guarantees that, in a session, the actions of a participant have to be comple-
mented by the other participant (or its delegates). Among the properties checked by type systems,
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progression and some form of correctness properties are paramount. For instance, in [4] a well-
typed system is guaranteed to respect the contract specified by its assertions and, once projected,
the program is guaranteed to be free from “communication-errors”.
Type systems are sometime subject to well-formedness conditions. For instance, global types
in [14] have to be linear in order to be projected onto local types.

We illustrate some theoretical aspects with an example adapted from [14] to the global assertions
in [4]. Intuitively global assertions may be thought of as global types decorated with formulae of a
(decidable) logic. The following is a global assertion1 specifying a protocol with two buyers (B1 and B2)
and a seller (S). The buyers B1 and B2 want to purchase a book from S by combining their money.

G = B1 → S : s〈t : string〉 Lassert t 6= ””M. (1)

S → B1 : b1〈q : int〉 Lassert q > 0M. (2)

B1 → B2 : b2〈c : int〉 Lassert 0 < c≤ qM. (3)

B2 → S : s{ok LM : D,quit LM : end} (4)

The session G above describes the interactions among B1, B2, and S after a session initialisation is
performed2; such initialisation will assign a role to each participant, namely each participant will act
either as the first buyer B1, or the second one B2, or else the seller S. Each one of the interactions
(1÷4) is decorated with an assertion of the form Lassert φM stating a condition φ on the variables of the
protocol (LM abbreviates Lassert trueM). Basically, G can be considered as a global type decorated with
logical formulae.

In (1), B1 and S interact (through s) and exchange the book title t; the assertion decorating (1) states
that t is not the empty string which means that B1 guarantees t 6= ”” while S relies on such assumption. In
(2), S gives B1 a quote q; similarly to (1), the assertion Lassert q > 0M constraints the price to a positive
value and it constitutes an obligation for S and an assumption for B1. In (3), B1 tells B2 its non-negligible
contribution c to the purchase (as B1 guarantees Lassert 0 < c≤ qM). In the last step, B2 may refuse
(selecting label quit) or accept3 the deal (selecting label ok); in the former case the protocol just finishes,
otherwise it continues as:

D = B2→ S : s〈a : string〉Lassert a 6= ””M.S→ B2 : b2〈d : date〉LM

namely B2 and S exchange delivery address and date.
Linearity is a (typically decidable) property ensuring that communications on a common channel are

ordered temporally. Linear types can be projected so to obtain the local types for each participant. In
order to have effective algorithms, the theoretical framework requires the decidability of the logic for
expressing assertions as well as the well-assertedness of global assertions. Informally, a global assertion
is well-asserted when (a) each possible choice a sender makes that satisfy the assertion of its interaction
is not making later senders unable to fulfil their contracts (temporal satisfiability) and (b) participants
state assertions only on known variables (history sensitivity).

Well-asserted and linear global assertions can be projected, similarly to global types, so to obtain
local types, namely the interactions as perceived from the point of view of each participant. Unlike

1 In this paper we deviate from the syntax adopted in [4] for assertions.
2The session initialisation is not described in the global types or global assertions; it is an operation executed by the processes

implementing the type G.
3For simplicity, it is not specified how B2 takes the decision; this can easily be done with suitable assertions on c and q.
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for global types though, projections of global assertions must also “split” assertions in rely/guarantee
propositions to be assigned to each participant. The projections of our example are:

pB1 = s!〈t : string〉 Lassert t 6= ””M;
b1?〈q : int〉 Lassert q > 0∧ t 6= ””M;
b2!〈c:int〉 Lassert q > 0∧0 < c≤ qM

pB2 = b2?〈c:int〉 Lassert φM;
s⊕{ok LM : s!〈a : string〉 Lassert a 6= ””M;

b2?〈d : date〉 Lassert φ ∧a 6= ””M,
quit LM : end}

pS = s?〈string〉 Lassert t 6= ””M;
b1!〈q : int〉 Lassert q > 0M;
s&{ok Lassert ψM : s?〈a : string〉 Lassert ψ ∧a 6= ””M;b2!〈d : date〉 LM,

quit Lassert ψM : end}

where φ = ∃q : int, t : string| 0 < c≤ q ∧ q > 0 ∧ t 6= ””, and
ψ = ∃c : int| 0 < c≤ q ∧ q > 0 ∧ t 6= ””

The behavioural types pB1, pB2, and pS above characterise classes of processes that are “well-
behaved” with respect to the global interactions. For instance, let us consider the process cB1 below.

cB1 = ā[2,3](s,b1,b2). // Session initialisation

s!〈‘‘The art of computer programming’’〉; // Send title to Seller

b1?(quote); // Receive quote from Seller

b2!〈quote/2〉 // Send contribution to Buyer2

The process cB1 starts a session on a declaring to act as the first buyer of the global assertion G above;
this is done by the action ā[2,3](s,b1,b2) that will synchronise with the other two participants (denoted
by 2 and 3) using the session channels s, b1, and b2. It can be proved4 that cB1 has type pB1 which
guarantees that cB1 has a correct interaction with any two other processes having type pB2 and pS. The
rest of the process is an instance of the type pB1 detailing the behaviour of the first buyer.

3 Toolkit design and implementation

3.1 Objectives

The objective of this work is to describe the architecture and the implementation of a modular toolkit
implementing algorithms as those described in § 2. The toolkit we developed supports the following
development methodology (see [23] for a concrete realisation). A team of software architects writes a
global description of the distributed interactions which specifies the intended behaviour of the whole
system. The global description is checked and projected onto each participant. Then, each part of the
system is developed (possibly independently) by a group of programmers. Finally, the pieces of programs
are checked, validated, and possibly monitored during the execution. This methodology is supported by
the theories drafted in § 2 whereby

1. global descriptions are given by global types and global assertions,

2. projections yield the parts of the systems to be developed, and

4We consider here a trivial process for simplicity; there are more complex cases where, for instance, the first buyer delegates
the interactions with the second buyer to another process.
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Figure 1: Architecture

3. compliance of code with the specification is obtained by typing systems (to be matched against the
projection).

It is therefore possible to statically verify properties of designs/implementations and to automatically
generate monitors that control the execution in untrusted environments. Our main driver is that the
architecture has to easily allow our toolkit to be adapted to changes and advancements in the theories.
For instance, it has to consistently integrate the two (equivalent) projection algorithms described in [4],
or be parametric wrt the logic used in the assertion predicates. Note that our approach distinguishes itself
from other works such as [15, 18, 21, 22] by focusing on the tools accompanying the theories and not on
the integration of ST in a programming language.

3.2 Architecture

The architecture of our workbench is illustrated in Figure 1 and consists of two main streams, STREAM 1
and STREAM 2; both streams’ output are used for the code generation activity which combines be-
havioural types and processes to generate safe Haskell code. The two streams correspond to design of
protocols, on the one hand, and participants design and implementation, on the other hand. The input
of STREAM 1 is a global description of the interactions while the input of STREAM 2 is the “program
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code” of each participant of the system, written in a dialect of the π-calculus5. In STREAM 1, global
descriptions are parsed, checked, and then projected onto each participant. In STREAM 2, the code of
participants is parsed, typed, and then validated against the local types obtained in STREAM 1 by project-
ing the global interactions. We give a walk-through of the architecture to illustrate the main components
of the toolkit.

STREAM 1. Taking a global description, such as G in § 2, a parser constructs an abstract tree of the
distributed interactions, while interacting with the user if syntax errors are detected in the description.
The checking module applies a series of algorithms (see (1) in Figure 1) on the tree to check that some
properties are guaranteed. At least, the following algorithms are executed.

• One-time unfolding: recursive types are unfolded one time according to the equi-recursive view of
recursive types. One-time unfolding is necessary before checking for linearity, whose definition
relies on type equality.

• Linearity check: this is necessary to ensure that there is no races on the communication channels.

• Well-assertedness: if the global interactions are decorated with assertions, it has to be checked that
they are well-asserted (cf. § 2) in order to project them and obtain the local types as described
in [4].

Each algorithm notifies the user in case the description does not satisfy the properties, and accordingly,
stop the execution of the process. If the global description is “valid”, the projections (like pB1, pB2, and
pS in § 2) can be calculated. This is done according to the function defined in [4, §4] which builds up on
the projection operation in [14, §4.2].

STREAM 2. A program code (written in a π-calculus-like language, such as cB1 in § 2) is parsed to
check for syntax errors and to build an abstract tree, similarly to STREAM 1. Then, the following steps
are applied on the tree.

• A typing algorithm infers the type of the processes according to a set of typing rules.

• If the processes are asserted, a validator checks the interaction predicates for satisfiability.

• The inferred types (and possibly the assertions) are compared with the projections.

As in STREAM 1, each step of the stream notifies the user in case errors are detected. In particular,
mismatches between a participant’s projection and its corresponding inferred types are explicitly output.

Code generation. In order to illustrate a practical use of our toolkit, we have developed a prototypical
translator which generates Haskell code from the π-calculus-like code representing well-typed partici-
pants of a global interaction. On successful completion, STREAM 1 and STREAM 2 produce two outputs
that are compatible. More precisely, safe Haskell code can be generated from the verified π-calculus-like
code given in STREAM 2 and, possibly, execution monitors6 can be integrated from the projections com-
puted in STREAM 1. This is possible due to the fact that inputs have passed all the checks (i.e. processes
are validated against the projections obtained by the global interactions).

Further details on the code generation are given in § 3.3.

5The program code may be obtained by compiling programs written in full-fledged programming languages extended with
session types like [15]. However, this feature is not yet available in the toolkit.

6Monitors can be automatically generated from global assertions, but they are not yet part of the toolkit.
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3.3 Implementation

An implementation of the toolkit has been developed in Haskell. Haskell has been chosen because a
functional language allows us to keep the implementation close to the underlying theories and is more
suitable for a large class of algorithm in the toolkit. For instance, the typing and projection algorithms
can be straightforwardly implemented by exploiting the pattern matching featured by Haskell. Moreover,
Haskell provides a convenient means to build a modular architecture; in fact, each component of Figure 1
is implemented in a different module. In addition, support of first-class functions allows for the re-use of
different functions in many different contexts (for instance, to realise the parametricity of the toolkit wrt
the assertion logic and use the same typing algorithm for binary and multiparty sessions).

In the following, we discuss the main implementation details of the current version of the toolkit.

Parsing. Stable parsing tools are available for Haskell. The parsers were built using Alex [1] and
Happy [12]. A basic attribute grammar takes care of checking conformance of the code (e.g. basic type
checking of the participants implementations is done at parsing time). From the code input, it generates
an abstract syntax tree (encoded in Haskell types) which is then given to the next algorithm (linearity
check in the multiparty case and typing in the binary case). The languages for global description and local
processes accepted by the toolkit are very similar to the ones defined in [4, 14]. The main differences are
as follows.

• Session request a[2..n](s̃) and session acceptance a[2](s̃) are respectively written as

init:a[P1 . . .Pn](s̃) and join:a[Pi](s̃)

where Pi are participant identifiers. Note that the first participant identifier in the session request
primitive is the initiator’s.

• The language adopted in the toolkit to represent processes requires that each branch construct is
identified by a string which is then used as a prefix for the corresponding label selections; the
syntax for the branch/selection constructs is respectively

channel&id{...} and channel$ [assertion] id.label

This allows us to simplify the typing algorithm. Indeed, without such identifiers, it would be
more complex to infer which branching construct a label is referring to. We illustrate this with an
example; consider the following process

k & id { t1 : P1; s $ [-] l1 ; Q1
t2 : P2; s $ [-] l2 ; Q2
t3 : P3; s $ [-] l3 ; Q3 }

which branches on channel k; if the ith branch is selected, a label is sent on channel s after execut-
ing a process Pi (assuming Pi does not have interactions on s) and finally finishes with Qi.
Let the type of the processes interacting on s be

s ⊕ { l1 : T1, l2 : T2, l3 : T2 }

To type channel s in the branches of the process, the algorithm needs a way to realise that all the
labels li belong to the same branching construct. Since label selection can be done at any place in
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a process (e.g. in the branches of an if-then-else or a branching construct) and typing is done
separately in the branches, one needs a way of gathering all the labels of a same group. Using an
identifier for each branching construct and using it as prefix in label selections allows the algorithm
to directly know which branching construct a select is referring to.

• As in [4], recursive definitions for local processes take two kinds of parameters: expressions and
communication channels. For example,

mu t(e1 . . .en;k1 . . .km)(p1 : s1 . . .pn : sn;k′1 . . .k
′
m).P

is a recursive definition with n “value” parameters and m communication channel parameters. It is
required that the type of each expression ei matches si. The initialisation parameters ei and ki
specify the initial value for the formal parameters pi and k′i. Each channel used in P must be one
the k′is.

Well-assertedness. The logic used for the assertion is based on the Presburger arithmetic [8], since
a decidable logic was necessary to develop an effective algorithm for checking the well-assertedness
condition on global assertions. We have adopted a convenient API [20] implementing the Presburger
arithmetic in Haskell. The well-assertedness algorithm analyses which participants know which variables
to ensure history sensitivity and tests the satisfiability of the assertions as defined in [4] to ensure temporal
satisfiability (cf. § 2). A key part of the algorithm is the verification of temporal-satisfiability in recursive
definitions. It is implemented as follows. Firstly, the algorithm checks whether the invariant is satisfied
by the assertions encountered previously, then it stores the formal parameters and the invariant of the
recursion, and goes on with the verification of the continuation’s temporal satisfiability. When a recursive
call is encountered, the satisfiability of the corresponding invariant is tested in the new context (i.e. the
actual parameters of the recursive call substitute the formal parameters of the recursive definition).

Note that because of the use of the API for the Presburger arithmetic, the assertions one may write
are quite limited, i.e. only predicates involving integers and booleans are supported at the moment. The
well-assertedness algorithm was developed apart of the Presburger arithmetic API, to ease future changes
in the underlying logic used in the assertions. In case users do not want to assert their global description,
all the assertions can be replaced by [-] which stands for True in the language we defined.

Projection. The projection of a global description is done participant-wise. The algorithm outputs a
list of pairs (participant identifier and end-point type). If the description is asserted, then the projected
assertions are computed at the same time. The output of this step is given to the typing algorithm.

Typing algorithm. The typing algorithm has been designed to be as flexible as possible. As an ex-
ample, we use the same core algorithm for both binary and multiparty session typing. To make this
possible, the typing algorithm is abstracted away from two functions, the compatibility and composition
operation on type environments. The former operation is used for testing compatibility between two typ-
ings while the composition operation is used to compose two typing environments.7 To type concurrent

7In the binary case, two typing environments ∆0 and ∆1 are compatible if for every channel typed in ∆0 and ∆1, their types
are the dual of each other. In the multiparty case, ∆0 and ∆1 are compatible if they type different participants for common
channels.

For dyadic session types, if a channel k is typed in two compatible environments ∆0 and ∆1, then the type of k in the
composition ∆0 ◦∆1 becomes⊥ (i.e. the interactions are internal). For multiparty session types, composition consists, basically,
of the union of typing environments.
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branches (i.e. possibly representing different participants), the algorithm first computes the type of each
branch. If the types of all branches can be successfully obtained, the algorithm composes them using the
parameterised operations (provided that the obtained types are compatible).

The core of the algorithm consists of a depth-first traversal of the abstract syntax tree. Each time a
session initiation primitive like init:a[P1 . . .Pn](k̃) or join:a[Pi](k̃) is found, the algorithm types
the channels k̃ (called current channels) in the rest of the tree according to the typing rules specified in
the theory. Using pattern matching, it is straightforward to implement such rules so to maintain a strong
connection between theory and implementation.

An interesting rule is the one for typing recursive definitions. When the algorithm encounters a
recursive definition, e.g.

mu t(~e;~k)(~s : ~S;~h).P

it first verifies that the types of the expressions in ~e match the declaration of the formal parameters (i.e.
~S). The recursion variable, the formal parameters and the continuation are stored in the environment.
Then, it continues the typing of P where the current channels corresponding to the channels in ~k are
replaced by the corresponding channels in ~h.

Once a recursive call is encountered, e.g.

t(~e′; ~k′)

the algorithm ensures, that P[~e′/~s][~k′/~h] type checks, using the information previously stored in the
environment.

In the multiparty case, when a session has been fully typed, its type is compared to the corresponding
projection. This is done using a refinement relation that allows the tool to accept processes with types
that specify a more refined behaviour that the one in the projection. For instance, a process may select
less labels, weaken the predicate for branching and reception, or strengthen the predicates for selection
and sending.

Code generation. The code generation is straightforward and exploits Haskell’s Chan objects for com-
munication channels. In Haskell, Chan is part of the concurrency libraries provided and is an abstract
type for unbounded FIFO channels.

Figure 2 shows some example of generated code for send, receive, branching and recursion respec-
tively.

• Send is simply translated into a call to writeChan which writes a new value on the specified
channel. All values are serialised8 using show as channels accepts only one type of value per
instance.

• Receive is translated to a call to readChan, which reads data from a channel. When retrieving
values from Haskell channels, it is necessary to cast back the string to its actual type (i.e. read
t’::(Int), in the example). This is needed as a Haskell compiler may not be able to infer the
type of the value received. Remarkably, in our case the type is known in advance since the session
was typed. The let...in construct of Haskell is quite useful since it allows us to bind the receive
value to a new variable without having to take into account possible renaming. Indeed, nested

8Note that serialisation in Haskell is supported through the inheritance of the Show and Read classes. Every type inheriting
the Show class has to implement the function show, from which a string representation of the object can be generated. Dually,
a type which inherits Read defines a function read which can extract the data from the string representation. It is the case that
Show and Read can be inherited for most of user defined types.
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Send: s!(‘‘The Art...’’)(t: string)[-]; writeChan s ( show (‘‘The Art...’’));

Receive: b1?(q: int)[-]; t’ <- readChan b1;

(...) let (q) = read t’::(Int)

in

do {(...)}

Branch: s&id{ let brvarid’ = read brvarid::String in

[-] ok: (...) case brvarid’ of

[-] quit: (...) ‘‘idok’’ -> do {(...)}
} ‘‘idquit’’ -> do {(...)}

Recursion: mu t(e1,e2;c1,c2)(p1:int,p2:bool;k1,k2). let t p1 p2 k1 k2 =

(...) (...)

in

t e1 e2 c1 c2

Figure 2: Example of generated code.

let...in blocks declaring the same variable names are allowed and the scope of the binding
corresponds to the one used in our language.

• For branching blocks, one first reads one label on the channel, then a case construct implements
the actual branching.

• Recursive definition are translated into a let...in block where the type variable t is defined as a
function with formal parameters p1, p2, k1 and k2 and body as the continuation of the recursive
definition. In the in part the new function is instantiated with actual parameters e1, e2, c1 and c2.

In order to make the execution of the generated code observable it is possible to make the toolkit print
information each time an action such as send, receive, select and branch is invoked by a participant.

4 Examples

In this section, we give two examples of distributed protocols. The first example is taken from § 2 and
illustrates how the toolkit can be used. The second example gives a more realistic protocol, including a
recursive definition, which is verified by the toolkit.

4.1 Buyer-Seller protocol

We start with the example given in Section 2. Figure 3 shows the input file given to the toolkit. The
first part (lines 1 - 9) represents the global description of the two-buyer protocol (G in § 2), while the
second part (lines 11 - 34) gives an implementation of the participants (Seller, Buyer1, and Buyer2) in
our π-calculus dialect. These processes are meant to be executed in parallel.

Buyer1 (lines 13 - 17, in Figure 3) sends the title of a book, receives its price and, then, sends its
contribution to Buyer2. Buyer2 (lines 19 - 24) receives the contribution that Buyer1 is willing to make.
If it is under 100, it confirms the sale to Seller and sends its address. Seller (lines 26 - 33) receives a
book title, sends the book’s price to Buyer1 and then wait for Buyer2 to confirm, or not, the sale.
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1 Global [ buyerex ] :
B1 −> S : s ( t : string ) [ − ] .
S −> B1 : b1 ( q : int ) [ q > 0 ] .
B1 −> B2 : b2 ( c : int ) [ 0 < c and c <= q ] .
B2 −> S : s : : id{

6 [−] ok : B2 −> S : s ( a : string ) [ − ] .
S −> B2 : b2 ( d : date ) [ − ] . end ,

[−] quit : end

}

11 Process :
{
init : buyerex [ B1 , B2 , S ] ( s , b1 , b2 ) .

s ! ( ” The Art of Computer Programming ” ) ( t : string ) [ − ] ;
b1 ? ( q : int ) [ q > 0 ] ;

16 b2 ! ( q ) ( c : int ) [ 0 < c and c <= q ] ;
end

|
join : buyerex [ B2 ] ( s , b1 , b2 ) .

b2 ? ( c : int ) [ 0 < c ] ;
21 if ( c < 100)

then s$ [−] id . ok ; s ! ( ” my address ” ) ( a : string ) [ − ] ;
b2 ? ( d : date ) [ Exists q : int (0 < c and c <= q ) ] ; end

else s$ [−] id . quit ; end

|
26 join : buyerex [ S ] ( s , b1 , b2 ) .

s ? ( t : string ) [ − ] ;
b1 ! ( 9 9 ) ( q : int ) [ q > 5 0 ] ;
s&id{

[−] ok : s ? ( a : string ) [ − ] ;
31 b2 ! ( 1 1 / 1 2 / 2 0 1 0 ) ( d : date ) [ − ] ; end ,

[−] quit : end

}
}

Figure 3: Buyer-Seller protocol.

The interactions are decorated with the assertions presented in § 2. However because of the limitation
imposed by the API for the Presburger arithmetic, it is currently not possible to define assertion on strings,
such as t 6= ””.

In Figure 3, notice that Seller guarantees a stronger condition for the sending on b1 (see line 28)
compared to its counterpart in the global description (line 4); this is made possible by the refinement
relation defined on local assertions (cf. [4]).

When given the content of Figure 3 as input, the implementation outputs the text given in Figure 4
and generates Haskell code. The toolkit first signals (lines 1- 2) that the parsing was successful and the
global description is well-asserted (and linear). Then, the projections of the protocol (lines 6 - 18) on
each of the participants are given (B1, B2 and S standing for Buyer1, Buyer2 and Seller, respectively).
Finally, the types of the processes, prefixed by the session headings, are printed (lines 22 - 32), which
match the projections output before. Notice that the predicates in the projection of Seller (line 13) and in
the type of its implementation (line 29) are compatible since q > 50 =⇒ q > 0.

When there is a mismatch between the projections and the types inferred from the participants imple-
mentation, the toolkit shows the problematic projection and inferred type. For instance, if one changes
the first interaction of Buyer1 (line 14 in Figure 3) to s!(112)(t:int)[-];, the tool outputs:
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1 Parse Successful .
WellAsserted ? [ True ]

Projections :
∗buyerex :

6 [ s!<t : string>[true ] ; b1?<q : int>[q > 0 ] ; b2!<c : int>[0 < c && c <= q ] ; end ] @B1

[ b2?<c : int>[Exist q : int st . ( 0 < c && c <= q && q > 0 ) ] ; s${
[ true ] ok : s!<a : string>[true ] ; b2?<d : date>[Exist q : int st . ( 0 < c && c <= q && q > 0 ) ] ; end ,
[ true ] quit : end

11 } ] @B2

[ s?<t : string>[true ] ; b1!<q : int>[q > 0 ] ; s&{
[ Exist c : int st . ( 0 < c && c <= q && q > 0 ) ]

ok : s?<a : string>[Exist c : int st . ( 0 < c && c <= q && q > 0 ) ] ; b2!<d : date>[true ] ; end ,
16 [ Exist c : int st . ( 0 < c && c <= q && q > 0 ) ]

quit : end

} ]@S

21 Types :
buyerex [s , b1 , b2 ] : s!<t : string>[true ] ; b1?<q : int>[q > 0 ] ; b2!<c : int>[0 < c && c <= q ] ; end@B1

buyerex [s , b1 , b2 ] : b2?<c : int>[0 < c ] ; s${
[ true ] ok : s!<a : string>[true ] ; b2?<d : date>[Exist q : int st . ( 0 < c && c <= q ) ] ; end ,

26 [ true ] quit : end

}@B2

buyerex [s , b1 , b2 ] : s?<t : string>[true ] ; b1!<q : int>[q > 5 0 ] ; s&{
[ true ] ok : s?<a : string>[true ] ; b2!<d : date>[true ] ; end ,

31 [ true ] quit : end

}@S

Figure 4: Output for Buyer-Seller.

Local type doesn’t match projection for B1!

Type: s!<t:int> [true];b1?<q:int>[q>0];b2!<c:int>[0<c && c<=q];end

Projection: s!<t:string>[true];b1?<q:int>[q>0];b2!<c:int>[0<c && c<=q];end

In addition, if we set the book’s price to 0 in Seller, i.e. we change line 28 to b1!(0)(q:int)[q>50];
in Figure 3. The tool signals that the assertion is not satisfiable:

[Typing-Send] Assertion not satisfiable: true => 0 > 50.

Meaning that in the current assertion environment (which is empty, i.e. equals true), it is not true that
the sent value guarantees the assertion9.

4.2 A guessing game protocol

We use a protocol resembling a simple game where a Generator (G) chooses a natural number which has
to be discovered in less that 10 attempts by a Player (P), according to the hints given by a Server (S).
The code representing the protocol and implementing the participants is given in Figure 5. The first part
(lines 1-9) of Figure 5 represents the global description of the game. First, G chooses a number n > 0 and
sends it to S. Then, P sends a first attempt (line 3) to S. The recursive definition has two parameters: r,

9In the near future, such error messages will accompanied by a line number.
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Global [ a ] :
G −> S : k ( n : int ) [ n > 0 ] .

3 P −> S : l ( x : int ) [ x > 0 ] .
mu rec (x , 0 ) ( r : int @ {P , S} , cpt : int @{P , S} ) [ r > 0 and cpt <= 1 0 ] .
S −> P : h : : id {

[ r > n and cpt < 10] less : P −> S : l ( y : int ) [ y > 0 ] . rec (y , cpt +1 ) ,
[ r < n and cpt < 10] greater : P −> S : l ( z : int ) [ z > 0 ] . rec (z , cpt +1 ) ,

8 [ r == n ] win : end ,
[ cpt >= 10] lose : end }

Process :
{

13 init : a [G , S , P ] ( k , h , l ) .
k ! ( 1 5 ) ( n : int ) [ n > 0 ] ; end

|
join : a [ S ] ( k , h , l ) .

k ? ( n : int ) [ n > 0 ] ;
18 l ? ( x : int ) [ x > 0 ] ;

mu rec (x , 0 ; h , l ) ( r : int , cpt : int ; hf , lf ) .
if ( cpt >= 10)
then hf $ [ cpt >= 10] id . lose ; end

else if ( r > n )
23 then hf $ [ r > n and cpt < 10] id . less ;

lf ? ( y : int ) [ y > 0 and r > n and x > 0 and n > 0 and r > 0 and cpt < 1 0 ] ;
rec (y , cpt+1;hf , lf )

else if ( r < n )
then hf $ [ r < n and cpt < 10] id . greater ;

28 lf ? ( z : int ) [ z > 0 and r < n and x > 0 and n > 0 and r > 0 and cpt < 1 0 ] ;
rec (z , cpt+1;hf , lf )

else hf $ [ r == n ] id . win ; end

|
join : a [ P ] ( k , h , l ) .

33 l ! ( 1 1 ) ( x : int ) [ x > 0 ] ;
mu rec (x , 0 ; h , l ) ( r : int , cpt : int ; hf , lf ) .
hf&id{

[ r > 1] less : lf ! ( r − 1 ) ( y : int ) [ y > 0 ] ; rec (y , cpt+1;hf , lf ) ,
[ r >= 0] greater : lf ! ( r + 1 ) ( z : int ) [ z > 0 ] ; rec (z , cpt+1;hf , lf ) ,

38 [−] win : end ,
[−] lose : end }

}

Figure 5: Protocol description and implementation of a Guessing game.

the current attempt, initially assigned with value x, and cpt the attempt counter, initially assigned with
value 0. Depending on whether r is less than, greater than or equal to n, S sends the corresponding label
to P. If P guesses the correct number in less that 10 attempts, P wins and the session ends. Otherwise, the
session ends after 10 attempts, and P looses.

The second part of Figure 5 gives an implementation of each participants. In our example, G chooses
always 15 for n and S is faithful to the global description (i.e. it is not lying to P). The participant P
always starts with 11 as its first guess, then if S says less (resp. greater), P tries the number minus (resp.
plus) one. Remark that in both recursive definitions of participant S and P, two formal parameters are
used for the communication channels, i.e. hf and lf (alternatively, one could have used the names h and
l again).

The code in Figure 5 can be given as input to the toolkit, which then returns the content of Figure 6.
Lines 4-22 of Figure 6 are the projections for participants G, P, and S computed from the global descrip-
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Parse Successful .
WellAsserted ? [ True ]
Projections :

4 ∗a :
[ k!<n : int>[n>0];end ] @G

[ l!<x : int>[x>0];mu rec (x , 0 ){r : int , cpt : int } [r>0 && cpt<=10].h&{
[ Exist n : int st . (r>n && cpt<10 && x>0 && n>0 && r>0 && cpt<=10)]

9 less : l!<y : int>[y>0];rec (y , cpt +1 ) ,
[ Exist n : int st . (r<n && cpt<10 && x>0 && n>0 && r>0 && cpt<=10)]

greater : l!<z : int>[z>0];rec (z , cpt + 1) ,
[ Exist n : int st . ( r = n && x>0 && n>0 && r>0 && cpt<=10)]win : end ,
[ Exist n : int st . ( cpt >= 10 && x>0 && n>0 && r>0 && cpt<=10)]lose : end

14 } ]@P

[ k?<n : int>[n>0];l?<x : int>[x>0 && n>0];mu rec (x , 0 ){r : int , cpt : int } [r>0 && cpt<=10].h${
[r>n && cpt<10]

less : l?<y : int>[y>0 && r>n && cpt<10 && x>0 && n>0 && r>0 && cpt<=10];rec (y , cpt +1 ) ,
19 [r<n && cpt<10]

greater : l?<z : int>[z>0 && r<n && cpt<10 && x>0 && n>0 && r>0 && cpt<=10];rec (z , cpt +1 ) ,
[ r = n ] win : end ,
[ cpt >= 10] lose : end } ]@S

24 Types :
a [k , h , l ] : k!<n : int>[n>0];end@G

a [k , h , l ] : k?<n : int>[n>0];l?<x : int>[x>0];mu rec (x , 0 ){r : int , cpt : int } [ true ] . h${
[ cpt >= 10] lose : end ,

29 [r>n && cpt<10]
less : l?<y : int>[y>0 && r>n && x>0 && n>0 && r>0 && cpt<10];rec (y , cpt + 1) ,

[r<n && cpt<10]
greater : l?<z : int>[z>0 && r<n && x>0 && n>0 && r>0 && cpt<10];rec (z , cpt +1 ) ,

[ r = n ] win : end }@S
34

a [k , h , l ] : l!<x : int>[x>0];mu rec (x , 0 ){r : int , cpt : int } [ true ] . h&{
[r>1] less : l!<y : int>[y>0];rec (y , cpt + 1) ,
[ r >= 0] greater : l!<z : int>[z>0];rec (z , cpt +1 ) ,
[ true ] win : end ,

39 [ true ] lose : end }@P

Figure 6: Output for Guessing game.

tion of the guessing game. Remarkably, the projection for G is not a recursive type since G is not involved
in the recursion. The rest of Figure 6 consists of the local types for G, S, and P. These have been inferred
from the participants implementation. Notice that the invariants of recursive definitions in local types are
set to true. This is allowed since each local type must be a refinement of its corresponding projection,
which is well-asserted (i.e. it is guaranteed that the invariant is respected). The toolkit also generates
Haskell code implementing the participants, this can be compiled and ran as it is.

5 On featuring modularity

In this section we describe how modularity is featured in our implementation. We mainly envisage four
possible degrees of modularity discussed below.
Notation. All inputs and outputs of the implementation (e.g. global assertions, projections, etc.) are
encoded in Haskell data types that specify an abstract syntax of the supported languages. This allows
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II n1 < n2 and dep ii :: Prefix -> Prefix -> Bool

ni = pi→ p : ki (i=1,2) dep ii (Prefix p1 p k1) (Prefix p2 q k2)

| k1 /= k2 = (q == p)

dep ii (Prefix p1 p k1) (Prefix p2 q k2)

| k1 == k2 = (p1 == p2) && (p == q)

dep ii = False

IO n1 < n2, dep io :: Prefix -> Prefix -> Bool

n1 = p1→ p : k1 and dep io (Prefix p1 p k1) (Prefix q p2 k2)

n2 = p→ p2 : k2 | k1 /= k2 = (q == p)

dep io = False

OO n1 < n2, dep oo :: Prefix -> Prefix -> Bool

ni = p→ pi : ki (i=1,2) dep oo (Prefix p p1 k1) (Prefix q p2 k2)

| k1 == k2 = (q == p)

dep oo = False

where each dep ** p1 p2 assumes that p1 < p2.

Figure 7: Dependency relations implementation.

to possibly support other notations than the ones originally considered. Notably, the implementation
exhibits four data structures to/from which other languages can be translated: global assertions, end-
point assertions (projections), π-calculus dialect (participants implementation), assertion logic.

Languages. An important requirement of our modular approach, is that it has to feature the parametri-
sation of the implementation with respect to the languages used to describe the distributed interactions
and the associated type systems. For instance, the theory described in [4] abstracts from the actual log-
ical language used to express asserted interactions. Notably, depending on the chosen language, ad-hoc
optimisations can be applied.

Algorithms. The tool consists of several algorithms that can be used in a modular way (i.e. the users
will be able to choose which algorithms they need). For instance, several algorithms are described in [4,
§3.3] to check well-assertedness of assertions; in fact, depending on the adopted logic several formulae
manipulation could be applied. Notably, the well-assertedness notion defined in [4] could be replaced by
equivalent ones which exploit optimisations on logical formulae. In this way, one could use the simple
algorithms in theoretical experimentation on simple scenarios, while more efficient algorithms could be
used when considering realistic cases.

Theory. Since the toolkit is developed in a functional language, it allows the theory to be straightfor-
wardly mapped into the programming language. This means that, most of the time, when one wants to
change a rule or a definition this can be done by changing only a few lines of code. We illustrate this with
an example. The definition of the dependency relations ([14, §3.3]) is translated as shown in Figure 7. In
the conclusions of [14], the authors comment the adaptation of the theory to support synchrony. Follow-
ing their idea, this could be done by taking into account output-output dependencies between different
names and adding a new dependency from output to input. In our implementation this change could be
implemented simply by a few modifications of the code in Figure 7. In particular, we would relax the
condition k1 == k2 in OO and add a new dep OI function for output-input dependencies, similar to the
other rules.
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6 Related work

Implementations of session types. A few other implementations of the theories based on session types
exist. We describe them in the following and compare them with our work.

Hu et al. [15] present an implementation of an extension of Java to support distributed programming
based on binary session types. The implementation consists of three main components: an extension
of the language to specify protocols, a pre-processor to translate the specification to Java and a runtime
library which implements the communication channels and runtime checks. Neubauer et al. [18] propose
an encoding of session types in Haskell (in terms of type classes with functional dependencies). This
implementation is quite limited, e.g. it is restricted to one channel. Pucella et al. [21] proposes an
implementation of session types in Haskell which infers protocols automatically. They also claim that
their approach can be applied to other polymorphic, typed languages such as ML and Java. Sackman et
al. [22] propose a full fledged implementation of binary session types in Haskell in the form of an API.
The type inference systems of [21] and [22] are based on Haskell’s type system, i.e. they do not directly
implement the typing rules defined in the theories for session types.

Note that our work tackled the theories for multiparty sessions, while all the other implementations
based on session types consider only two-party sessions.

Another difference between these works and ours is that we have mainly focused on the tools accom-
panying the theories and not on the integration of session types in a programming language. The part
of our work which can be directly compared with these implementations is our Haskell code generator.
However in its current state, it is only a proof-of-concept of the usefulness of the verification tool that are
situated upstream in the toolkit. If we were to generate code for more realistic applications, we would,
e.g., use network connections instead of Haskell Chan. This would notably require a good runtime library
to support, for instance, delegation of channels.

Other theories. We believe that our implementation could also encompass other theories for dis-
tributed interaction. For instance, a sub-typing relation such as the one defined by Gay et al. [11] could
be easily added to the toolkit by using the refinement relation in a new version of the two parameterisable
functions for the binary typing algorithm. In particular, the compatibility function should be relaxed so
to enable compatibility of types. Similarly, to support union types such as in [3], it would requires to add
a few constructs to the accepted language (i.e. to allow the specification of types such as “int ∨ real”)
and a new compatibility function which allows a type containing a union of types to be compatible with
one having one element of it.

On the other hand, theories such as the one developed for the conversation types [7] would be much
harder to integrate in our toolkit. For instance, the notion of (nested) conversation would require to adapt
the language and most of the typing rules. In addition, the form of the types in [7] is quite different from
most of the other theories that we have focused on. However, provided a good mapping between the
theory of multiparty session types [14] and conversation types in terms of channels and conversations,
we believe that an adapted version of apartness and merge relations could be part of the verifications done
in the compatibility function. These two relations are used to test the compatibility of two conversation
types. This would enable, to some extent, the verification of the compatibility of participants without
having a global description.

Applications. The toolkit aims to support a development methodology of communication-centric soft-
ware based on formal theories of distributed interactions where global and local “views” are used to ver-
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ify properties of systems. It is worth mentioning that a similar methodology has recently been adopted
in the SAVARA project [23] where global and local models are used in the development process to
validate requirements against implementations. Noteworthy, SAVARA combines state of the art design
techniques with session types and provides an open environment where tools based on formal theories
can be integrated. We are considering the integration of (part of) our toolkit in SAVARA. In particular,
our toolkit could be used to project the choreography model onto individual services. Namely, SAVARA
uses WS-CDL [16] to represent the choreography model, from which it can generates WS-BPEL [2]
implementations of individual services and BPMN [24] diagrams that may be used to guide the imple-
mentation.

We believe the integration of our tool in SAVARA is feasible and would require the following three
main components. Firstly, a mapping from WS-CDL to global assertions. This should be quite straight-
forward as the global types are very similar to WS-CDL. However, the support for assertions may require
more work as it would demand an extension of WS-CDL with pre-/post-conditions on messages. Sec-
ondly, we need to translate the projections output by our tool to BPEL, BPMN and/or another language,
such as the ones used in SAVARA to design/implement services. Finally, we need some mechanisms to
type check the conformance of services against a choreography. This means that we need a tool which
translates the (partly) implemented services to a language compliant with (the abstract syntax of) our
π-calculus-like language.

Technically, these three mappings should be relatively easy to implement as it amounts to transform
an XML tree to Haskell data types (and vice-versa). However, careful attention is needed when including
the assertions in the notations supported by SAVARA.

7 Conclusions

We have described the architecture and the main implementation aspects of a toolkit for distributed
interactions. The distinguished design principles of the architecture are flexibility and modularity, to
meet the future changes in the theories underlying the toolkit.

The toolkit relies on Cooper’s decision procedure for the Presburger Arithmetic [8], which has a
super-exponential complexity [19] on the size of the logic formulae. This means that the current version
of the algorithm might take a (very) long time to check protocol with very long predicates. However, all
the algorithms of the toolkit itself have a polynomial complexity on the size of the global descriptions
and participant implementations. In addition, the toolkit is designed in such a way that the underlying
logic can be changed easily. Therefore, if a more efficient logic API appears it can easily replace the
current one. To give an idea of the current efficiency of the toolkit, it takes more or less one second
to process the examples of Section 4, but a global description decorated with a 80 line-long assertion
(including quantifiers) takes about 11 minutes.10

Our toolkit is currently under development and we are considering several ways of enhancing it. We
are considering of using Haskell as basis for the input languages. For instance, one could use Haskell
as the language for expressions used, notably, in call such as s!(”myString”). In addition, Haskell types
could be used as basis for the types permitted by the tool.

Extending the input languages to Haskell might reveal a delicate extension. In fact, on the one hand
this would provide the possibility of expressing interesting predicates for the assertions, on the other
hand, global assertions require the logic used to assert interactions to be decidable. In fact, increasing

10All the examples mentioned in this paper have been ran in Ubuntu 10.04 with GHC 6.12.1, on an Intel Core 2 Duo @ 3.16
Ghz machine.



J. Lange, E. Tuosto 109

the expressivity of the input language by allowing Haskell types might compromise the decidability of
the logic.

We intend to study the feasibility of a more realistic code generator, which uses network connections
(i.e. distributed Haskell) instead of FIFO channels; and produces assertion monitor to ensure runtime
checking of assertions.

Another interesting implementation perspective would be to integrate the algorithms featured by our
toolkit in a full-fledged programming language (e.g. Java, similarly to [15]). For example, we conjecture
that global assertions could be implemented in two phases. Firstly, a language-independent part could
take care of the verification and validation tools which guarantee the good behaviour of programs (i.e.
the implementation of the toolkit described here). Secondly, a language-dependent part could extend a
programming language by developing an API which implements the communication primitives (session
initiation, value passing, branch/select and delegation); while a translator to an abstract language (such
as the π-calculus-like language we use) links the API to our toolkit (see faded boxes in Figure 1).

The toolkit turned out to be a remarkably useful tool to identify which part of the theory relies on
the programmers. In particular, while designing tests for the toolkit, we noticed that making a global
description well-asserted was often non-trivial. This led us to design algorithms [5] which, if applica-
ble, solve well-assertedness problems automatically, and give indications to the programmers on where
problems originate. We plan to add these algorithms to the toolkit in the future.
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