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There was a PhD student who says “I found a pair of wooden shpesa coin in the left and a key

in the right. Next morning, | found those objects in the opfgshoes.” We do not claim existence
of such shoes, but propose a similar programming abstraictithe context of typed lambda calculi.
The result, which we call the Amida calculus, extends Abtarisslinear lambda calculus LF and

characterizes Abelian logic.

1 Introduction

We propose a way to unify ML-style programming language$/P&) andrr-calculus [28]. “Well-typed
expressions do not go wrong,” said Milnér_[27]. However, wlo®mmunication is involved, how to
maintain such a typing principle is not yet settled. For eplanHaskell, which has types similar to
the ML-style types, allows different threads to commurecasing a kind of shared data store called an
MVar mv of typeMVar a, with commandgutMVar mv of typea -> I0 () andtakeMVar mv Of type

10 a. The former command consumes an argument of &yaed the consumed argument appears from
the latter command. However, if programmers make mistakese commands can cause a deadlock
during execution even after the program passes type clgckin

In order to prevent this kind of mistakes, a type system cacefthe programmer to use both the
sender and the receiver each once. For doing this, we usedheique of linear types. Linear types are
refinements of the ML-style intuitionistic types. Diffetgnfrom intuitionistic types, linear types can
specify a portion of program to be used just once. Lineardyge used by Wadler [35] and Caires and
Pfenning[[9] to encode session types, but our type systentyparprocesses that Wadler and Pfenning’s
system cannot.

As intuitionistic types are based on intuitionistic lodlioear types are based on linear logic. There
are classical and intuitionistic variants of linear logidsrom the intuitionistic linear logic, our only
addition is the Amida axioni¢ — ) ® (¢ — ¢). We will see that the resulting logic is identical to
Abelian logic [10] up to provability of formulae. In the Amadccalculus, we can expresscalculus-like
processes as macros. From the viewpoint of typed lambdalgaaatural way to add the axiofg —
Y)® (Y — ¢)is to add a pair of primitives andc so that - - ct-- - cu- - - reduces te--u---t---: in words,

c returnsc’s argument and vice versa. In the axiom, we can substitetsitigleton typd. for the general
Y to obtain an axiom standing for the send-receive communitgirimitive pair(¢ — 1) ® (1 — ¢);
the left hand side of type ¢ — 1 is the sending primitive and the right hand sitlef type 1 — ¢ is
the receiving primitive. The sending primitive consumesatadf type¢ and produces a meaningless
data of unit typel. The receiving primitive takes the meaningless data of fiypad produces a data of

type ¢.
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When we want to use these primitives in lambda terms, themeagproblem: what happensda(ct)?

In this case, we do not know the output@mbecause the output afcomes fromc’s input, which is the
output ofc. Fortunately, we just want to know the output@fwhich is the input ot, that is,t. In a
more complicated casgd(c(dt))), we can reason the output ©&s the input ot as the output ofl as
the input ofd as the output of as the input ot as the output ofl as the input ofl, which ist.

Our first contribution is encoding of session types into adintype system. Although the approach
is similar to that of Caires and Pfenning [9] and Wadler [3B¢ Amida calculus has an additional axiom
so that it can type some processes that Caires-Pfenning diek¥éatype systems cannot. In essence, the
axiom allows two processes to wait for one another and thehasge information.

Our second contribution is a side effect of our first contiifiu The type system we developed is a
previously unknown proof system for Abelian logic [10]. mg paper, we introduce the axioms of the
form (¢ — ) @ (Y — @) on top of IMALL, intuitionistic multiplicative additive ear logic.

Our third contribution is the use of conjunctive hypersadse Hypersequents have been around
since Avron|[[3], but in all cases, different components irypdrsequent were interpreted disjunctively.
In our formalization of Abelian logic, we use conjunctivepegysequents, where different components
are interpreted conjunctively. This is the first applicataf such conjunctive hypersequents.

Later in this paper, we address some issues about consigiemeoreni 4.111), complicated protocols
(Sectior’ %) and encoding process calculi (Sedfion 4).

2 Definitions

Types We assume a countably infinite set mbpositional variablesfor which we use letterX,Y
and so on. We define a tygeby BNF: ¢ :=1|X |¢R¢ |¢p —¢ | 0D P |9 & ¢ . Aformulais a
type. As the typing rules (Figuté 1) reveal,is the multiplicative conjunction;—- is the multiplicative
implication, & is the additive disjunction and & is the additive conjunntio

Terms and Free Variables We assume countably infinitely many variabley, z,.... Before defining
terms, following Abramsky’s linear lambda calculus LF [WE definepatternsbinding sets of variables:

* xis a pattern binding 0,
* (x,_) and(_,x) are patterns bindingx},
* X®Y s a pattern bindingx,y}.

All patterns are from Abramsky’s LF [1]. Using patterns, weluctively define germ t with free
variables S We assume countably infinitely maokiannelswith involution satisfyingc # c andc =c.

* x is a term with free variables 0,
* avariablexis a term with free variablegx},

« if t is a term with free variableS, u is a term with free variableS, and moreoveS andS are
disjoint, thent ® u andtu are terms with free variabledU S,

« if t andu are terms with free variables then(t,u) is a term with free variableS,
« if tis a term with free variableS, theninl(t) andinr(t) are terms with free variable3
« if tis a term with free variableSU {x} andxis not inS thenAx.t is a term with free variableS,

« if t is a term with free variableS, pis a pattern binding, u is a term with free variableS U S’
and equalitieSNS’ = SN'S’ = 0 hold, thenJett be pinuis a term with free variableSU ',
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« if t is a term with free variable§, u is a term with free variableS’ U {x}, v is a term with free
variablesS’ U {y}, x,y ¢ S andSNS’ = 0 hold, then

matchtof inl(X).u/inr(y).v

is a term with free variableSu S, and
« if tis a term with free variableS, thenct is also a term with free variablésfor any channet.

Only the last clause is original, introducing channels, clibéire our communication primitives. Note
that a term with free variableSis not a term with free variableS whenSandS are different (even if
Sis a subset 08). In other words, the set of free variable¥ (t) is uniquely defined for a termn We
introduce an abbreviation

igngint=t
ignSp, Sint = letSybexin (ign?int)

inductively for a sequence of term®. Heree stands for the empty sequence. The synigols intended
to be pronounced “ignore.”

Typing Derivations On top of Abramsky’s linear lambda calculus LE [1], we add ke no make
a closed term of typé¢ — ) ® (Y — ¢). A contextl’ is a possibly empty sequence of variables
associated with types where the same variable appears abrmeas A contexk: X,y:Y is allowed, but
x: X, x:Y orx: X,x: X is not a context. Aypersequeris inductively defined ag ::= ¢ | (F'+t:¢ | ©)
whererl is a context. Each Ft: ¢ is called acomponenbf a hypersequent. In this paper, we interpret
the components conjunctively. Differently from the praxdgaperd [3./5,4], here, the hypersequent
¢ | A+ yisinterpreted as the conjunction of componeri@ir — ¢)® (QA — ) where@ I stands
for the @-conjunction of elements df. The conjunctive treatment is our original invention, amdliing
an application of such a treatment is one of our contribstioe name this technigue tleenjunctive
hypersequent We have to note that, for Abelian logic, there is an ordindisjunctive hypersequent
system|[[24] that enjoys cut-elimination. We still claim ttllae conjunctive hypersequents reflect some
computational intuition on concurrently running multiplecesses, all of which are supposed to succeed
(as opposed to the disjunctive interpretation where at @ of which is supposed succeed, e.g. Hirai's
calculus for Godel-Dummett logic [15]).

The typing rules of thémida calculusare in FiguréIl. Most rules are straightforward modification
of Abramsky’s rules([ll]. The Sync rule is original. Rules &RdapL are only applicable to singleton
hypersequents. Whent: ¢ is derivable, the typ@ is inhabited

Example 2.1 (Derivation of the Amida axiom)The type(¢ — @) ® (¢ — ¢) is inhabited by the
following derivation.

AX— . AX—; ;
Merge X:oEXx ¢ Vigrky: g

Sync x:oFx:¢ | y:wl—yﬁtp
xipFex:p |y:@phrcy: ¢
N FAXcx:¢p — @ | y:@Fcy: ¢
®;R FAXCX:¢p —o | FAyCy: () — ¢
F(Axe) @ (AY.CY): (¢ — §) @ (¥ — §)
Another example shows how we can type the ox).
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AX— Merge o' cut olrrto | xo.nruy
X:pFx:¢ / u
ol o ol r.arut/xq:y
e olrxeyuynrte e olrrte | aruy] o 1R
Fxil
oy wxenrt:0 olaruw|rrte ] o *
78 Nl Al u:
o|lrrt:e olrrto | aruy Sync I ¢ _L”
t o | r.z1rignzint:¢ =R olrartoude olrretw|ararg
£ Lgnzint. ’ ey (c andcuniquely introduced here)
oL ﬁlﬁx:d),y:t,UH:Q R ﬁlﬂx:qﬁ%t:w L ﬁlFH:dJlx:t,UAFu:G
ﬁll’,z:¢®wkletzbex®yint:9 ﬁll’k)\x.t:d)—ot,u ﬁll’,f:qﬁ—oLpAFu[(ft)/x]:G
Fr-t:¢ r-u:y ﬁll’,x:qﬁH:G ﬁll’,y:wH:Q
&R _ 0 &l 4
r=(u:¢&y 0| r.zzo& Yt letzbe(x, )int: 0 o r.zzo& Yt letzbe(_ y)int:0
ﬁlr}—t:rp ﬁlrl—u:L/J rx:¢ru:b ry:gkv:o
@®Ro R1 L - - - -
olr-int) ooy olrinru:¢ow [,z:¢ ® ¢ - matchzof inl(x).u/inr(y).v: 6

Figure 1: The typing rules of the Amida calculu8.and¢” stand for hypersequents.

AX— - AX— ;
Merge x.(p'l— xl_.(p' | .y.lt_,UI—.y.t,U
Syno XpEX¢ lyigryy

x:pbFex:y | y:@rcy: ¢

Cut X: ¢ Fclex): ¢

Evaluation As aprogramming language, the Amida calculus is equipp#damn operational semantics
that evaluates some closed hyper-terms into a sequenceadfical forms. Theanonical formsre the
same as those of Abramsky’s LF [1]:

(t,u) * vaw  Axt inl(v) inr(w)

wherev andw are canonical forms artdandu are terms.
An evaluation sequenc€ is defined by the following grammar:

Sui=¢|tyv] &)

wheret is a term andr is a canonical form. Now we define evaluation as a set of etialugequences
(Figure[2). Though most rules are similar to those of AbrarsskF [1], we add the semantics for
channels. It is noteworthy that the results of evaluatienadways canonical forms.

3 Type Safety

When we can evaluate a derivable hypersequent, the resi#toglerivable. Especially, this shows that,
whenever a communicating term is used, the communicating ieused according to the types shown
in the Sync rule occurrence introducing the communicatangt
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Eltdx]ulv Eltdv]ulw &l tyveow| uv/xwyl v
x4 & |igntinu v & toulvew & | lettbex®yinu |} v
Mergeiﬁlij,/ (For any channet, it is not the case thaf containsc and&” containsc.)
AXt ] AXxt
/ !/
Cltiaxt Jubvtvdiw éaltuvlu_uw (&, t andu do not contairc or C.)
Eltulw Elctyw]culv
sltyt|Isys|é - & | tl{to,ta) | ulto/x 4 w
&1sis [tit | & (tu) 4 (L) & | lettbe (x, )inu  w
&t {to,t) | ults/y] 4w Eltiv Eluyw
& | lettbe (_y)inul w & | inl(t) Y inl(v) & | inr(u) | inr(w)
&1t 4iniy) 1 uv/x bw &1 tyinr(v) | Uy bw
& | matchtofinl(x).u/inr(y).u |} w & | matchtofinl(x).u/inr(y).u |} w

Figure 2: The definition of evaluation relation of the Amiddaulus. & is possibly the empty evaluation
sequence.

Theorem 3.1 (Type Preservation of the Amida calculudf terms t,...,t, have a hypersequent

to:do | -~ | Fta:¢nand an evaluation sequenggltvg | --- | tn | v derivable, then

Fvo:gol -~ | +Va:¢nis also derivable.

Proof. By induction on evaluation using the propositions below. allalyze the cases by the last rule.

(Merge) By Propositior 3.2, we can use the induction hypothesis.

(lettbe(x,_)inu) By Propositiori 3.8, we can use the induction hypothesis.

(Other cases) Similar to above. O
Two hypersequent& and &’ arechannel-disjointif and only if it is not the case that’ containsc

and &’ containsc for any channet.

Proposition 3.2(Split). If a type derivation leading t@@ | ¢’ exists for two channel-disjoint hyperse-

guents, bothy’ and ¢” are derivable separately.

Proof. By induction on the type derivation. O

Proposition 3.3(Inversion on &L) If & | T+ lettbe(x,_)inu: O is derivable, then there is a partition
of [ into Mg andl; (up to exchange) such that | ToFt: ¢ & @ | I'1,x: ¢ - u: B is derivable.

Proof. By induction on the original derivation. O

Determinacystates that it || v andt || w hold, thenv andw are identical. Since our evaluation is
given to possibly multiple terms at the same time, it is @asi@rove a more general version.
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Theorem 3.4(General Determinacy of the Amida calculusfto 4 vo | tz dvi | - | tn | vs and
tolwo | ttdwi | -+ | ta U wy hold, then eachjis identical to w.

Proof. By induction on the height of evaluation derivation. Eacimponent in the conclusion has only
one applicable rule. Also, the order of decomposing differgomponents is irrelevant (the crucial
condition is freshness afandcin Figure[2). O

Convergencevould state that whenever a closed tdris typedt t: ¢, then an evaluatioh |} v is
also derivable for some canonical fonm It is a desirable property so that Abramsky [1] proves it for
LF, but there are counter examples against convergencee dirtlida calculus. Consider a typed term
F c(c(inl(x))): 1@ 1 with no evaluation. One explanation for the lack of evaluatis deadlock. This
illustrates that the current form of Amida calculus lackadleck-freedom. In order to avoid the deadlock
and to evaluate this closed term, we can add the followingsuast rule:

Eltyv] uv/xw
& | ut/x w

eval-subst

which enables an evaluatiafc(inl(x))) {} inl(x) . Moreover, the eval-subst rule enables an evaluation
c[C[cv] I} v, which reminds us of the call-with-current-continuatianngtive [31] and shift/reset primi-
tives [12,2]. However, adding the eval-subst rule breaksctirrent proof of Theorei 3.1 (safety), but
with some modifications, the safety property can possiblypitmed. The main difficulty in proving
the safety property can be seen in the form of eval-subst iMeen we only know the conclusion of
an eval-subst occurrence, there are many possible assmsjrtivolving free variables, all of which we
must consider if we are to prove the type safety.

4 Session Types and Processes as Abbreviations

In order to see the usefulness of the communication prigstiwe try implementing a process calculus
and a session type system using the Amida calculus.

Session Types as Abbreviations As an abbreviation, we introdu@ession typesSession types [33,
17] can specify a communication protocol over a channel.foh@ving definitions and the descriptions
are modification from Wadler’s translations and descripiof session types [85]. The notation here is
different from the original notation by Takeuchi, Honda atubo [33].

lpYy=¢ —ouy output a value ofp then behave agp
WYP=90xyY input a value ofp then behave agp

&l ditics =& - & ¢pn, 1={0,...,n} select fromg; with labell;
&{li: diticr =po®---®¢n, 1={0,...,n} offer choice ofg; with labell;
end=1 terminator

wherel is a finite downward-closed set of natural numbers fiRel,2,3}. As Wadler [35] notes, the
encoding looks opposite of what some would expect, but adeif8E] explains, we are typing channels
instead of processes.



Y. Hirai 39

The grammar ¢, :=end | X|'¢ Y |2 Y| &{li: ¢i}ia | &{li: ¢i}icl covers all types. A linear
type @~ possibly with subscript) is generated by this grammar:

¢~ i=end [\~ | WO~ | B{li: & Yier | &{li: & Yiel

We define duals of linear types. Again the definition is alntbstsame as Wadler’s [35] except that
end is self-dual.

'Yo~="2 o~ Wo~ =Yoo~
S T = &b B &8 T = o lh: B
end=end .

Processes as Abbreviations We define the sending and receiving constructs of processlcak ab-
breviations:

x(u).t =t[(xu) /x| sendu through channet and then us&in t
X(y).t = letxbey® xint receivey through channet and usexandy in t
0==x do nothing

We have to be careful about substitution combined with meebbreviations. For example{u).t)[s/x]
is nots(u).t because the latter is not defined. Following the definitjgfy).t)[s/X] is actually(t[xu/x])[s/x] =
t[su/x]. We are going to introduce the name restrictioat after implementing channels.

Below, we are going to justify these abbreviations stdiicahd dynamically.

Process Typing Rules as Abbreviations The session type abbreviation and the processes abboeviati
allow us to use the typing rules in the next proposition.

Proposition 4.1(Process Typing Rules: senders and receiverbgse rules are admissible.

% P, xixHt o, xixkt: At u: O | THt:

recv |y b.x: X ¢ send I X ¢ I v end I ; ¢ ; FO:1
O x:wxExy).t:¢ O | mAx: g x-xu).t:¢ O | T,x:end Fignxint: ¢

Proof. Immediate. O

We note that the types of varialkechange in the rules. This reflects the intuition of sessiqgedsy
the session type of a channel changes after some commonicatturs through the channel.

Example 4.2(Typed communicating terms)Jsing Theoreri 411, we can type processes. Figure 3 con-
tains one process, which sends a channel y through x and thés fer input in a channel’y Here
is another process that takes an inputfom channel ¥ where the input Witself is expected to be a
channel. After receiving \wthe process putl(x) in w'.

1R

R Fx:1 Fox:
e e FignWins:1 R I—inl(*):]ie91
send W:l(1 1) end W (inl(x)).ignWinx:1
wW:l(1@® 1) end,X :end FignX inwW (inl(x)).ignWinx: 1
X: A1 (1@ 1) end) end - X (W).ignX inW (inl(x)).ignWinx: 1

end
recv
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M 1oirziol
q z:1®1ly:endFignyinz: 141
en z:1®1,x:end,y:end Fignxyinz: 141
recv . . AX
dx:end,y:?(leal)endI—y(z).ugnx,ymz:leal y:l(1®1l)endty:{(1d1)end
sen

y:A1® 1) end, x:!(!(1@1) end) end,y : /(1 1) end - x(y).Y (2).ignX,yinz: 1 1

end

Figure 3: A typed process.

Implementing Channels. We introduced primitiveg and c implementing the behavior specified by
(1—-¢)® (¢ —1). These primitives can be seen as channels of session tgpesl and B end.
Indeed, @ end is ¢ ® 1 (which is inter-derivable witil — ¢) and ¥ end is ¢ — 1. We can generalize
this phenomenon to the more complicated sessionliypes

Proposition 4.3 (Session realizers)For any linear type¢™, the hypersequentt: ¢~ | Fu: ¢~ is
derivable for some termst and u.

Proof. Induction on¢™.

AX ——— AX——
(end) Merge Fx:1 F*:1 js what we seek.
Fxd ]| Fx:1
(‘¢ ¢~) By the induction hypothesis; t': ¢~ | F u: ¢~ is derivable. Using this, we can make the
following derivation:

IH
XybExiy Rt~ FUPT
xipkEx:yp | Ftio~ | FU9T
cx: g~ Fxy | Fatiyg | FUI9T
X:gkexi¢p™ | F(ct)ou: ¢yod~
FAXCX: Y — ¢~ | H(ct)oU: @~
(7@ ¢) Symmetric to the above.

AX
Merge
Sync

(@{li: ¢;}) By the induction hypothesis, for eacke I, we have-t:¢; | F u: @ derived. Hence
derivable is-ti: ¢i | i(u):®jei®; wherei(u;) is an appropriate nesting ofl(-), inr(-) andu.
Combining|l | such derivations, we can derive(ti)ici : &ici¢i | (-i(Ui): ®ja®))ia for a fresh
natural numben.

(&{li: ¢i}) Symmetric to above. O

We call the above pafruin the statement theession realizersf ¢~ and denote them by(¢~),<(¢ ™).
Moreover, we use<(¢~) to denote the pair(¢~) @ <(¢~). So far, a free variable with a linear type
represented a channel serving the corresponding sesgientypw, we can substitute the free variables
with the session realizers so that the typed processes taalpcommunicate. If we have two terms
that use free variables of tyge™ and@™~, we can replace those free variables by session realizers.

Corollary 4.4 (Binding both ends of a channel)f & | T,x: ¢~ t: @ | A,y: 9~ - u: 8 is derivable,
thend | THt>(¢™) /X | A u«(¢™)/y]: 6 is also derivable.

1This is impossible using the ordinary linear types.
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gl uv e uw Lovuv oy Tul/zw iy yw

xexhiaxex &) sy uv | ae)yew oy | usu | ety ew bezoyint b w

& I >(¢~) IV I Q™) Iw Ito[\//x]ilv I )\x.cxu)\x.cxl uju I letU ®W bez®yinty || w
& I (™) 4 U I Ap™) Iw I to[V /X § v I Ax.cxd} Ax.cx I cuv I lety @W bez®yinty | w
slec@nuu ] <o) iw Lov/Kiv] Axexuiv | letd @wbezoyint, 4w

glec s ] «o™)iw | idxexu/x bv | ety @w bezoying 4w
TAXCx AXCX & I c(9™))@<(9p™) U oW I to[(Ax.cxju/x] | v I lety @W bez®yinty |} w

& I Ax.ex | Ax.cx I c>(¢™)) @<(¢p™) yU W I to[(Ax.cxju/x] | v I lety @W bez®yints |} w

eval-subst

Figure 4: Proof of Lemmia4l.7. The conclusion is identicaluo goal up to abbreviations.

Now we can define the name restriction operator as an abbogvia
VX: @~ t = let><(@™) bex, @ Xgint
where we assume injections— x_ andx — Xg whose images are disjoint.
Then, in addition to Theorem 4.1, more typing rules are atatel.
Proposition 4.5(Process typing rule: name restrictiofjhe following typing rule is admissible.
Ol x:0~,y: o7ty
O | THvx:d~tx /X[XR/Y]: @

Example 4.6(Connecting processes using session realizétsing the session realizers, we can connect
the processes typed in Exampplel4.2. Indeed,

Fv(x: A(1® 1) end) end).v(y: (1@ 1) end).
(XR(YL)-YR(2).ign XR,YRiINZ) ® (X_(W).ignX_inW (inl(x)).ignWinx) : (1&1)®1

is derivable.

Now we have to check the evaluation of the term in this exantpbe that we prepare a lemma.

Process Evaluation as Abbreviation. The intention of defining(u).to andy(z).t; is mimicking com-
munication in process calculi. When we substitut@ndy with session type realizers, these terms can
actually communicate.

The next lemma can help us evaluate session realizers.

Lemma 4.7. Let t; be a term containing a free variable x andhe a term containing free variables y
and z. The rule

S1e@ )V I <@)dw [t/ yv]ulu | tfu/gw/yw
E1e(ye™) baxex| a(lye™) huaw | (x(u).to)Axex/x bv | (y(2).t)[u @w/yl 4w
is admissible under presence of the eval-subst rule.

Proof. By the derivation in Figurgl4. O

Example 4.8 (Evaluation of communicating processesjere is an example of evaluation using the
eval-subst rule.
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x| %
inl(x) J inl(x) * | * ko
>(end) I * | <(end) || * inl() Jinl(x) | * | = inl(x)  inl(x)
>(end) § % | <(end) | x | inl(x) {inl(x) | * 4 = | inl(x) { inl(x)
¢ >(I(1@ 1) end) J Axex | <(((1d 1) end) Jinl(x)@x* |
(x (inl(%)).ignx_ins) [Ax.ex/x ] I * | (xr(2).ignxrinz)[inl(x) @ % /xg] |} inl(%)
><a(1(1d 1) end) | Ax.cx® (inl(x) @ *) |
(XL(inl(x)).ignXLin*)[AX.CX/X_] @ (Xr(Z).ignXRin Z)[inl (%) @ */Xg] |} * @ inl(x)
v(x: (1 1) end). (X (inl(x)).ignX_in*) ® (Xr(2).ign Xrin2) || * @ inl(x)
The step)> uses Lemma4.7.
Proposition 4.9(Copycatting) For any linear typep~, we can derive x¢~,y: ¢~ +t:1for some termt.

— =<

Proof. By induction on¢ ™. O

4.1 Correctness with Respect to Abelian Logic

We compare the Amida calculus and Abelian logic and discthefact that they are identical.

Theorem 4.10(Completeness of the Amida Calculus for Abelian Logié) formula is a theorem of
Abelian logic if and only if the formula is inhabited in the A& calculus.

Theorem 4.11(Soundness of the Amida Calculus for Abelian Logi&n inhabited type in the Amida
calculus is a theorem of Abelian logic.

Proof. Proofs appear in the author’s thesis|[16]. O

Now we can use some previous literature (Meyer and SlandyafgbCasari[10]) to find some facts.
Corollary 4.12 (Division by two) If ¢ ® ¢ is inhabited, so ig.

Corollary 4.13. The law of excluded middi¢ ® (¢ — 1) and prelinearity(¢ — ) ® (¢ — ¢) are
inhabited in the Amida calculus.

5 Related Work

Metcalfe, Olivetti and Gabbay [24] gave a hypersequentutadcfor Abelian logic and proved cut-
elimination theorem for the hypersequent calculus. Hisnfdation is different from ours because
Metcalfe’s system does not use conjunctive hypersequeBkstahata([32] studied the multiplicative
fragment of Abelian logic, which he called CMLL (compact ttiplicative linear logic). He gave a cat-
egorical semantics for the proofs of a sequent calculussptason of CMLL and then proved that the
cut-elimination procedure of the sequent calculus presetive semanti@s

Kobayashi, Pierce and Turnér [20] developed a type systethdar-calculus processes. Similarly to
the type system presented here, their type system cangpgmis of communication contents through
a name and how many times a name can be used. In some sen$gpaimtstem is more flexible than
the one shown in this paper; their type system allows meltysles of a channel, replicated processes

“Ciabattoni, StraRburger and Ter[ii[11] already pointedtbatfact that Shirahata [82] and Metcalfe, Olivetti and Gab-
bay [25] studied the same logic.
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and weakening [20, Lemma 3.2]. In other respects, the typtesyin [20] is less expressible. That
type system does not have lambda abstractions. Also, imagirib our type system, it is impossible to
substitute a free variable with a process in that type system

Caires and Pfennin@ [9] provide a type system for a fragmemtaalculus. Their type system is, on
some processes, more restrictive than the Amida calculusexample, this escrowing proceBbelow
is not typable in their type systen® = x(y).x(a).y(a).0 . The process first emits a chanmyahrough
channelx and then takes an input frorand outputs it tey. Following the informal description of types
by Caires and Pfennin@l[9], the procé3should be typable asP:: x: (A — 1) ® A . However, such
typing is not possible becaug@ — 1) ® A is not a theorem of dual intuitionistic linear logic (DILL),
which their type system is based on. In our type system, ti@fing sequent is derivable

X:(?Aend)!Aend - v(y: PAend).x(yL).X(a).yr(a).ign X,y ,yrin0:1

The resulting sequent indicates that the process is typaitteone open channel that first emits a
channel that one can receivefrom, and second sends a valuefof This concludes an example of a
term which our type system can type but the type system ine€and Pfenning [9] cannot. However,
we cannot judge their type system to be too restrictive beeae have not yet obtained both type safety
and deadlock-freedom of Amida calculus at the same time.

On the other hand, the most complicated example in Caire®famhing [9], which involves a drink
server, directs us towards a useful extension of the Amittalzes.

Example 5.1(Drink server from Caires and Pfennirig [9] in the Amida cal.)

ServerProto= (N —- | — (N®1))& (N — (I ® 1))
= (IN! Nend)& (INA 1)

N stands for the type of strings and | stands for the type @gens, but following Caires and Pfen-
ning [9], we identify both N and | with. Below, SP abbreviates ServerProto. Here is the procedseof t
server, which serves one client and terminates.

Serv= (s(pn).s(cn).s(rc).ign pn,cn,sin0, s(pn).s(pr).igns, pnin0)
We can derive a sequentSP- Serv. 1. Here is one client:
oL
S:endignsin0:1
Siend,pr:l Fignpr,sin0:1
s: A end s(pr).ignpr,sin0:1 FteaN
s:IN? end F s(tea).s(pr).ign pr,sin0:1
s: ServerProtd- letsbe(_,s)ins(tea).s(pr).ign pr,sin0:1

In words, the client first chooses the server’'s second pabt@chich is price quoting, and asks the price of
the tea, receives the price and terminates. We can combéngetiver with this client. However, since the
Amida calculus lacks the exponential modality, Amida dakgannot type any term witlserverProto,
which the type system of Caires and Pfenning ¢an [9]. In otdedo that, we might want to tolerate
inconsistency and add and v operators from the modal-calculus, like Baelde 6] did, and express
IServerProto agX.(SeverProto X).



44 Session Types in Abelian Logic

Wadler [35] gave a type system for a process calculus basethssical linear logic. Although the
setting is classical, the idea is more or less the same asand Pfenning [9]. Wadler’s type system
cannot type the escrowing process above.

Giunti and Vasconcelos [14] give a type system fecalculus with the type preservation theorem.
Their type system is extremely similar to our type systerhalgh the motivations are different; their
motivation is process calculi while our motivation is cortgtional interpretation of a logic. It will be
worthwhile to compare their system with our type systemelips

6 Some Future Work and Conclusion

Implementation. Since Abelian logic is incompatible with contraction or Weaing, straightforward
implementation the Amida calculus on top of Haskell or OCamlld not be a good way to exploit the
safety of the Amida calculus. One promising framework onclitio implement the Amida calculus is
linear MLE, whose type system is based on linear logic. Another wayiiigyuke type level programming
technique of Haskell. Imai, Yuen and Agusal[19] implemergession types on top of Haskell using the
fact that Haskell types can contain arbitrary trees of symhbus we should be able to use the same
technique to encode the types of Amida calculus in the Hhskwms.

Adding Modalities. A tempting extension is to add modalities representing tsgamd then study the
relationship with the multiparty session typges/[7), 18].

Cut-Elimination. It is easy to see that the prelinearily — ) ® (¢ — ¢) does not have a cut-free
proof. However, since there is a cut-free deduction systambelian logic [24], we consider it natural
to expect the same property for a suitable extension of thelAcalculus.

Continuations. The eval-subst rule enables an evaluat@@cV|] |} v, which reminds us of the call-
with-current-continuation primitive [31] and shift/reg@imitives [12/2]. The appearance of these clas-
sical type system primitives is not surprising because idbdbgic validateg(p — g) — q) — p, which

is a stronger form of the double negation elimination. Ragsve could use the technique of Asai and
Kameyamal[R] to analyze the Amida calculus with eval-sublgt. r

Logic Programming. There are at least two ways to interpret logics computaliypn@ane is proof re-
duction, which is represented Rycalculi. The other is proof searching. We have investigi#tte Amida
calculus, which embodies the proof reduction approachgd@thida axiom. Then what implication does
The Amida axiom have in the proof searching approach? Leitesano example from Kobayashi and
Yonezawal[21, A.2]:

Consumption of a messageby a processn—o B is represented by the following deduction:
(m® (M—B)®C) — (B®C)

whereC can be considered as other processes and messages, orranraami.

3There are no publications but an implementation is availabhttps: //github. com/pikatchu/LinearML .
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Using the Amida axiom, the inverse
(B®C) — (M® (Mm—B))®C

is derivable. This suggests that the Amida axiom statestirat computation is reversible in the context
of proof searching. We suspect that this can be useful witlénealm of reversible computatidn [34].

Conclusion. We found a new axiomatization of Abelian logic: the Amida@ri(¢ — )@ (Y — @)

on top of IMALL ™. The axiomatization has an application for encoding pre®cadculi and session type
systems. The encoding, which we name the Amida calculusysieatra flexibility given by the new
axiom. In the current form, the flexibility comes with the tosconvergence. Though there is a possible
way to obtain convergence by adding a new evaluation rudm,th is still under investigation whether
type safety is preserved.
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A Categorical Considerations

One might want to ask whether we can model the logic with a sgtricmmonoidal closed categorlyi [8]
with identified isomorphismsagcp: (A— B)® (C — D) — (A— D) ® (C — B), with naturality con-
ditions. Before considering equality among morphisms, n@nkthere is a non-trivial example.

Example A.1(Integer Model of[[13, p. 107])The preorder formed by objects as integers and morphisms
as the usual order among integersforms a symmetric monoidal closed category with swaps when w
interpret® as addition and m— n as n—m.

On the other hand, if we take another formulation requiriagural isomorphism&’(C,A) x ¢ (D, B) =
% (D,A) x €(C,B), only singletons can be preorder models becdigseidg) is mapped tq f,g) where
f: A— Bandg: B— Afor any two object® andB.

A straightforward reading of evaluation rules gives somawdomplicated equality conditions for
morphisms. The condition says the following diagram conasut

(A—oB)®(C - D) 22, (A®C) - (B D)

J{UABCD lid_OSB‘D
(A—D)® (C —-B) 2* (A®C) - (D@ B)

wheredagcp is induced by adjunction between and — from a morphism((A — B)® (C — D)) ®
(A®C) — (B®D), which is provided by symmetric monoidal closed properties
Moreover, sincep* = ¢ — 1 has derivable sequents- ¢* ® ¢ and¢ ® ¢* I 1, we can expect the
semantics ofp* to be the dual object of that @f. Indeed, checking one of the coherence condition of
compact closedness is evaluating the below typed term
X:pEXx: ¢ Fx:l
t: ¢ Fx:l xiphFex:1| Fcx:¢
Ft:g | -1  x:¢Fcxi1] zz1kignzinck: ¢
Ft:g | xi¢gFexil | Fignxinck: ¢
Fct:1] ignxincx¢
Fct:1] y:1Fignyinignxincx: ¢

Fignctinign*inck: @

At least, ift |} vis derivable,gnctinign«incx |} vis also derivable.
thv  xx
tyv] «{=
ctx]cxlv x| x -

ct x| ignxincx | v

ignctinign*incx | v
Showing the other direction is more involved because of-subbt rule, but the author expects the case
analysis on possible substitutions will succeed.

B Proof Nets

Toward better understanding the Amida calculus, a teclenaglied proof nets seems promising. Gen-
erally, proof nets are straightforward for the multipligatfragments but complicated when additive and
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exponential connectives are involved. Since the Amidaraxi¢p — ¢) ® ( — ¢) does not contain
additives (& @) or exponentials (1?), we can focus on the multiplicative connectives and®). The
fragment is calledMLL (intuitionistic multiplicative fragment of linear logic)We also use the unitfor
technical reasons. We first describe the IMLL proof nets &edt pproperties. Then we add a new kind
of edges called the Amida edges, which characterizes Abklgic. The Amida links are named after
the Amida lottery (also known as the Ghost Leg) for the sytidagimilarity.

B.1 IMLL Essential Nets

The proof nets for intuitionistic linear logics are calledsential nets This subsection reviews some
known results about the essential nets for intuitionistidtiplicative linear logic (IMLL). The exposition
here is strongly influenced by Murawski and Onhg![30].

We can translate a polarity € {+,—} and an IMLL formula¢ into apolarized MLL formula¢P
following Lamarchel[2R] and Murawski and Ong [30]. We om# ttefinition of polarized MLL formulae
because the whole grammar is exposed in the translatiowbelo

1t — 1t = |

Xt — Xt X' — X~
r¢_ow'|+:r¢'|— 7?+rw'|+ r¢_ow'|—:r¢1+®— W
r¢®w1+:r¢1+ ®+rw1+ POYT =" W .

For example, the Amida axiom can be translated into a pedrdLL formula

(X—Y)® (Y —X)™*
=X —-oYTTY - X*
— (rX1— 75,4- rY1+) ®+ (r‘Yﬁ— 75,4- rX1+)
= (X"®Y ) " (Y BTXT) .

The symboFy is pronounced “parr.”
Any polarized MLL formula can be translated further into aiténrooted tree containing these
branches and polarized atomic formule (X*,1", 1L ~) at the leaves.
+ +

ot 4 %+ i\ f‘

o~ BTt o B YT eTeTYT et e ¢
For brevity, we sometimes write only the top connectiveabéling formulae. In that case, these branch-
ing nodes above are denoted like this.

Y ARVERV AR W}
3+ 3 @t ®"
We call arrows with upward (resp. downward) signsedgeqresp. down-edges The dashed child
of a ®* node p is the node which the dashed line fropreaches. The branching nodes labeled by
B+t %, @1 and®~ are calledoperator nodesA pathfollows solid edges according to the direction of
the edges. Dashed edges are not directed and they are naiheohin paths.
When we add axiom edges andbranches (shown below) to the other operator nodes (shbaowea
we obtain aressential neof ¢. Due to the arbitrariness of choosing axiom edges_afitanches, there
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are possibly multiple essential nets for a formula. Muravaskl Ong[[30] restricts the class of formulae
to linearly balanced formulae so that the essential netiguety determined.

X+ X~
|-
axiom edge
1 -branch

Example B.1(An essential net of the Amida axiomHere is one of the essential nets of the Amida
axiom(X~ BTY )@ (Y- BT XT).

However, the essential net in ExampleB.1 is rejected bydheing correctness criterion.

Definition B.2 (Correct essential netsA correct essential net is an essential net satisfying abkéh
conditions:

1. Any node labeled with X(resp. Y~) is connected to a unique node labeled with fesp. Y").
Any leaf labeled withL ~ is connected to d -branch. 1" is not connected to anything above itself;

2. the directed graph formed by up-edge, down-edge, axigmseahdl -branches is acyclic;

3. for every®*-node p, every path from the root that reaches p’s dashed elfélo passes through
p.
The essential net in Examgdle B.1 is not correct for condifonActually, the Amida axiom does

not have any correct essential net. IMLL sequent calculgstia subformula property so that we can
confirm that the Amida axiom is not provable in IMLL.

Theorem B.3(Essential nets by [22, 30])An IMLL formula¢ is provable in IMLL if and only if there
exists a correct essential net ¢f

Proof. The left to right is relatively easy. For the other way aroubhdmarche([22] uses a common
technique of decomposing an essential net from the bottoamaWkski and Ong [30] chose to reduce the
problem to sequents of special forms called regular. O

Actually, Lamarchel[22] also considers the cut rule (as weladditive operators and exponentials)
in essential nets, thus we can include the following gerexaims (as macros) and cuts (as primitives)
and still use Theorein B.3:

general axiom cut
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B.2 The Amida Nets

Definition B.4 (The Amida nets) For a hypersequent?’, Amida nets of#Z are inductively defined by
the following three clauses:
e an essential net o7 is an Amida net of#;

- for an Amida net o with two differerft up-edges,

€0 ‘61
€0u Clu
€aq
€od €1d

yields an Amida net of#’, where the above component has two pats€1, and aq4€eaeou;
 for an Amida net ofZ with an up-edge,

replacing these with

replacing this with

€a Em

€d
yields an Amida net ofZ’, where the above component has one finite pgtheg and one infinite
path...aﬂeaaﬂea.”_
In these clauses, we call the edges labelgithe Amida edges

Definition B.5 (Correct Amida nets)A correct Amida net is an Amida net satisfying the three dor
in Definition[B.4.

The Amida edge is not merely a crossing of up-edges. Seeffiesatice between

. + )
® P ot Wt

and

) + [+
" p+ Y ®

4The two edges can be connected by a new edge as long as théfjeasnt their relative positions do not matter.



Y. Hirai 51

The difference is the labels at the bottom. Although Amidgesdcross the paths, they do not transfer
labels. This difference of labels makes Amida nets valittedeAmida axiom.

Example B.6 (A correct Amida net for the Amida axiomHere is a correct Amida net for the Amida
axiom(X —Y)® (Y — X).

In terms of the set of paths, the above Amida net is equividdiiie following correct essential net for
(X —oX)® (Y —Y).

B.3 Soundness and Completeness of Amida nets

Theorem B.7(Completeness of Amida netdf a hypersequent? is derivable, there is a correct Amida
net for 7.

Proof. Inductively on hypersequent derivations. The Sync ruledsdlated into a crossing with an
Amida edge:

® Y
Fr-¢ | AFy
Freyg | A-¢
(0 2
where the crossing exchanges the formulae and the Amidaleziges the path connections vertically
straight. O

Theorem B.8(Soundness of Amida netslf there is a correct Amida net for a hypersequeit, then
2 is derivable.

Proof. From a correct Amida net, first we move the Amida edges upwantit they are just below
axiom edgﬁ The moves are as follows.

2} X

®+

Y Yex pO1 YeX

5The idea is similar to the most popular syntactic cut-elimion proofs.
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L3 (ot @t 17) o= Bt

These translations have two properties.

1. When the original (contained in a larger picture) is a@crAmida net, the translation (contained
in the same larger picture) is also a correct Amida net.

2. The end nodes of the translation correspond to the endsroddiee original, and the corresponding
end nodes have the same label (up to logical equivalencelih)Mn case of® translation,¢ and
¢ ®1 are logically equivalent becaudes the unit of®. In case of¥ translation,g and L %% ¢ are
logically equivalent because is the unit of7.

For checking the first condition, it is enough to follow thehma(crossing all Amida edges). For the
second condition, it is enough to follow the vertical edgpwring the Amida edges and-branches.

The ® move introduces Amida edges only above the branching réi#eough the? move intro-
duces an Amida edge below a branching rule, that branchilegiswof @ nature. Also, the’s move
introduces an Amida edge belagraxiom link, which is actually a macro. So we have to contiape
plying the translation moves in the macro. However, siics a strictly smaller subformula ap % x,
this does not cause infinite recursion.

Then, by these translation moves, the whole Amida net isrdposed vertically into three layers.
At the top, there is a layer with only axiom edges. In the médthere is a layer with only vertical edges
and Amida edges. At the bottom, there is a layer that contahsordinary essential net nodes.

Since the middle layer is an Amida lottery, it defines a peatiom. That permutation can be ex-
pressed as a product of transpositions, so that the origimadia lottery is equivalent to an encoding of
a hypersequent derivation that consists of only Sync rules.

After we encode the top and the middle layer into a hypersgaderivation, encoding the bottom
layer can be done in the same way as Lamarche’s approach [22]. O

We wonder whether it is possible to add Amida edges to the IMAlessential nets following
Lamarche[[22]. The additives are notoriously difficult faopf nets and we do not expect the com-
bination of additive connectives and Amida edges can béetlda any straightforward way.
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