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There was a PhD student who says “I found a pair of wooden shoes. I put a coin in the left and a key
in the right. Next morning, I found those objects in the opposite shoes.” We do not claim existence
of such shoes, but propose a similar programming abstraction in the context of typed lambda calculi.
The result, which we call the Amida calculus, extends Abramsky’s linear lambda calculus LF and
characterizes Abelian logic.

1 Introduction

We propose a way to unify ML-style programming languages [29, 23] andπ-calculus [28]. “Well-typed
expressions do not go wrong,” said Milner [27]. However, when communication is involved, how to
maintain such a typing principle is not yet settled. For example, Haskell, which has types similar to
the ML-style types, allows different threads to communicate using a kind of shared data store called an
MVar mv of typeMVar a, with commandsputMVar mv of typea -> IO () andtakeMVar mv of type
IO a. The former command consumes an argument of typea and the consumed argument appears from
the latter command. However, if programmers make mistakes,these commands can cause a deadlock
during execution even after the program passes type checking.

In order to prevent this kind of mistakes, a type system can force the programmer to use both the
sender and the receiver each once. For doing this, we use the technique of linear types. Linear types are
refinements of the ML-style intuitionistic types. Differently from intuitionistic types, linear types can
specify a portion of program to be used just once. Linear types are used by Wadler [35] and Caires and
Pfenning [9] to encode session types, but our type system cantype processes that Wadler and Pfenning’s
system cannot.

As intuitionistic types are based on intuitionistic logic,linear types are based on linear logic. There
are classical and intuitionistic variants of linear logics. From the intuitionistic linear logic, our only
addition is the Amida axiom(ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ). We will see that the resulting logic is identical to
Abelian logic [10] up to provability of formulae. In the Amida calculus, we can expressπ-calculus-like
processes as macros. From the viewpoint of typed lambda calculi, a natural way to add the axiom(ϕ ⊸

ψ)⊗(ψ ⊸ϕ) is to add a pair of primitivesc andc̄ so that· · ·ct · · · c̄u· · · reduces to· · ·u· · · t · · · : in words,
c returns ¯c’s argument and vice versa. In the axiom, we can substitute the singleton type1 for the general
ψ to obtain an axiom standing for the send-receive communication primitive pair(ϕ ⊸ 1)⊗ (1⊸ ϕ);
the left hand sidec of type ϕ ⊸ 1 is the sending primitive and the right hand side ¯c of type 1⊸ ϕ is
the receiving primitive. The sending primitive consumes a data of typeϕ and produces a meaningless
data of unit type1. The receiving primitive takes the meaningless data of type1 and produces a data of
typeϕ .
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supported by Grant-in-Aid for JSPS Fellows 23-6978.
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When we want to use these primitives in lambda terms, there isone problem: what happens to ¯c(ct)?
In this case, we do not know the output ofc because the output ofc comes from ¯c’s input, which is the
output ofc. Fortunately, we just want to know the output of ¯c, which is the input ofc, that is,t. In a
more complicated case ¯c(d̄(c(dt))), we can reason the output of ¯c as the input ofc as the output ofd as
the input ofd̄ as the output ofc as the input of ¯c as the output of̄d as the input ofd, which ist.

Our first contribution is encoding of session types into a linear type system. Although the approach
is similar to that of Caires and Pfenning [9] and Wadler [35],the Amida calculus has an additional axiom
so that it can type some processes that Caires-Pfenning or Wadler’s type systems cannot. In essence, the
axiom allows two processes to wait for one another and then exchange information.

Our second contribution is a side effect of our first contribution. The type system we developed is a
previously unknown proof system for Abelian logic [10]. In this paper, we introduce the axioms of the
form (ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ) on top of IMALL, intuitionistic multiplicative additive linear logic.

Our third contribution is the use of conjunctive hypersequents. Hypersequents have been around
since Avron [3], but in all cases, different components in a hypersequent were interpreted disjunctively.
In our formalization of Abelian logic, we use conjunctive hypersequents, where different components
are interpreted conjunctively. This is the first application of such conjunctive hypersequents.

Later in this paper, we address some issues about consistency (Theorem 4.11), complicated protocols
(Section 4) and encoding process calculi (Section 4).

2 Definitions

Types We assume a countably infinite set ofpropositional variables, for which we use lettersX,Y
and so on. We define a typeϕ by BNF: ϕ ::= 1 | X | ϕ ⊗ϕ | ϕ ⊸ ϕ | ϕ ⊕ϕ | ϕ & ϕ . A formula is a
type. As the typing rules (Figure 1) reveal,⊗ is the multiplicative conjunction,⊸ is the multiplicative
implication,⊕ is the additive disjunction and & is the additive conjunction.

Terms and Free Variables We assume countably infinitely many variablesx,y,z, . . .. Before defining
terms, following Abramsky’s linear lambda calculus LF [1],we definepatternsbinding sets of variables:

• ∗ is a pattern binding /0,

• 〈x, 〉 and〈 ,x〉 are patterns binding{x},

• x⊗y is a pattern binding{x,y}.

All patterns are from Abramsky’s LF [1]. Using patterns, we inductively define aterm t with free
variables S. We assume countably infinitely manychannelswith involution satisfying ¯c 6= c and ¯̄c= c.

• ∗ is a term with free variables /0,

• a variablex is a term with free variables{x},

• if t is a term with free variablesS, u is a term with free variablesS′, and moreoverS andS′ are
disjoint, thent ⊗u andtu are terms with free variablesS∪S′,

• if t andu are terms with free variablesS, then〈t,u〉 is a term with free variablesS,

• if t is a term with free variablesS, theninl(t) andinr(t) are terms with free variablesS,

• if t is a term with free variablesS∪{x} andx is not inS, thenλx.t is a term with free variablesS,

• if t is a term with free variablesS, p is a pattern bindingS′, u is a term with free variablesS′∪S′′

and equalitiesS∩S′′ = S′∩S′′ = /0 hold, then,let t be pinu is a term with free variablesS∪S′′,
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• if t is a term with free variablesS, u is a term with free variablesS′′ ∪{x}, v is a term with free
variablesS′′∪{y}, x,y /∈ S′′ andS∩S′′ = /0 hold, then

match t of inl(x).u/inr(y).v

is a term with free variablesS∪S′′, and

• if t is a term with free variablesS, thenct is also a term with free variablesS for any channelc.

Only the last clause is original, introducing channels, which are our communication primitives. Note
that a term with free variablesS is not a term with free variablesS′ whenSandS′ are different (even if
S is a subset ofS′). In other words, the set of free variablesFV(t) is uniquely defined for a termt. We
introduce an abbreviation

ignε in t ≡ t

igns0,
−→s in t ≡ lets0be∗ in(ign

−→s in t)

inductively for a sequence of terms−→s . Hereε stands for the empty sequence. The symbolign is intended
to be pronounced “ignore.”

Typing Derivations On top of Abramsky’s linear lambda calculus LF [1], we add a rule to make
a closed term of type(ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ). A contextΓ is a possibly empty sequence of variables
associated with types where the same variable appears at most once. A contextx: X,y:Y is allowed, but
x: X,x:Y or x: X,x: X is not a context. Ahypersequentis inductively defined asO ::= ε | (Γ ⊢ t : ϕ O)
whereΓ is a context. EachΓ ⊢ t : ϕ is called acomponentof a hypersequent. In this paper, we interpret
the components conjunctively. Differently from the previous papers [3, 5, 4], here, the hypersequentΓ ⊢
ϕ ∆ ⊢ ψ is interpreted as the conjunction of components:(

⊗

Γ ⊸ ϕ)⊗ (
⊗

∆ ⊸ ψ) where
⊗

Γ stands
for the⊗-conjunction of elements ofΓ. The conjunctive treatment is our original invention, and finding
an application of such a treatment is one of our contributions. We name this technique theconjunctive
hypersequent. We have to note that, for Abelian logic, there is an ordinarydisjunctive hypersequent
system [24] that enjoys cut-elimination. We still claim that the conjunctive hypersequents reflect some
computational intuition on concurrently running multipleprocesses, all of which are supposed to succeed
(as opposed to the disjunctive interpretation where at least one of which is supposed succeed, e.g. Hirai’s
calculus for Gödel-Dummett logic [15]).

The typing rules of theAmida calculusare in Figure 1. Most rules are straightforward modification
of Abramsky’s rules [1]. The Sync rule is original. Rules &R and⊕L are only applicable to singleton
hypersequents. When⊢ t : ϕ is derivable, the typeϕ is inhabited.

Example 2.1 (Derivation of the Amida axiom). The type(ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ) is inhabited by the
following derivation.

Ax
x: ϕ ⊢ x: ϕ Ax

y: ψ ⊢ y: ψ
Merge

x: ϕ ⊢ x: ϕ y: ψ ⊢ y: ψ
Sync

x: ϕ ⊢ cx: ψ y: ψ ⊢ c̄y: ϕ
⊸R

⊢ λx.cx: ϕ ⊸ ψ y: ψ ⊢ c̄y: ϕ
⊸R

⊢ λx.cx: ϕ ⊸ ψ ⊢ λy.c̄y: ψ ⊸ ϕ
⊗R

⊢ (λx.cx)⊗ (λy.c̄y) : (ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ)

Another example shows how we can type the termc̄(cx).



36 Session Types in Abelian Logic

Ax
x:ϕ ⊢ x:ϕ

O O ′
Merge

O O ′

O Γ ⊢ t :ϕ x:ϕ,∆ ⊢ u:ψ
Cut

O Γ,∆ ⊢ u[t/x] :ψ

O Γ,x:ϕ,y:ψ,∆ ⊢ t :θ
IE

O Γ,y:ψ,x:ϕ,∆ ⊢ t :θ

O Γ ⊢ t :ϕ ∆ ⊢ u:ψ O
′

EE
O ∆ ⊢ u:ψ Γ ⊢ t :ϕ O ′

1R
⊢ ∗ :1

O Γ ⊢ t :ϕ
1L

O Γ,z:1⊢ ignzin t :ϕ

O Γ ⊢ t :ϕ ∆ ⊢ u:ψ
⊗R

O Γ,∆ ⊢ t ⊗u:ϕ ⊗ψ

O Γ ⊢ t :ϕ ∆ ⊢ u:ψ
Sync

O Γ ⊢ ct :ψ ∆ ⊢ c̄u:ϕ
(c andc̄ uniquely introduced here)

O Γ,x:ϕ,y:ψ ⊢ t :θ
⊗L

O Γ,z:ϕ ⊗ψ ⊢ letzbex⊗yin t :θ

O Γ,x:ϕ ⊢ t :ψ
⊸R

O Γ ⊢ λx.t :ϕ ⊸ ψ

O Γ ⊢ t :ϕ x:ψ,∆ ⊢ u:θ
⊸L

O Γ, f :ϕ ⊸ ψ ,∆ ⊢ u[( f t)/x] :θ

Γ ⊢ t :ϕ Γ ⊢ u:ψ
&R

Γ ⊢ 〈t,u〉 :ϕ & ψ
O Γ,x:ϕ ⊢ t :θ

&L 0
O Γ,z:ϕ & ψ ⊢ letzbe〈x, 〉 in t :θ

O Γ,y:ψ ⊢ t :θ
&L 1

O Γ,z:ϕ & ψ ⊢ letzbe 〈 ,y〉 in t :θ

O Γ ⊢ t :ϕ
⊕R0

O Γ ⊢ inl(t) :ϕ ⊕ψ

O Γ ⊢ u:ψ
⊕R1

O Γ ⊢ inr(u) :ϕ ⊕ψ

Γ,x:ϕ ⊢ u:θ Γ,y:ψ ⊢ v:θ
⊕L

Γ,z:ϕ ⊕ψ ⊢matchzof inl(x).u/inr(y).v:θ

Figure 1: The typing rules of the Amida calculus.O andO ′ stand for hypersequents.

Ax
x: ϕ ⊢ x: ϕ Ax

y: ψ ⊢ y: ψ
Merge

x: ϕ ⊢ x: ϕ y: ψ ⊢ y: ψ
Sync

x: ϕ ⊢ cx: ψ y: ψ ⊢ c̄y: ϕ
Cut

x: ϕ ⊢ c̄(cx) : ϕ

Evaluation As a programming language, the Amida calculus is equipped with an operational semantics
that evaluates some closed hyper-terms into a sequence of canonical forms. Thecanonical formsare the
same as those of Abramsky’s LF [1]:

〈t,u〉 ∗ v⊗w λx.t inl(v) inr(w)

wherev andw are canonical forms andt andu are terms.
An evaluation sequenceE is defined by the following grammar:

E ::= ε | (t ⇓ v E )

wheret is a term andv is a canonical form. Now we define evaluation as a set of evaluation sequences
(Figure 2). Though most rules are similar to those of Abramsky’s LF [1], we add the semantics for
channels. It is noteworthy that the results of evaluation are always canonical forms.

3 Type Safety

When we can evaluate a derivable hypersequent, the result isalso derivable. Especially, this shows that,
whenever a communicating term is used, the communicating term is used according to the types shown
in the Sync rule occurrence introducing the communicating term.
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∗ ⇓ ∗
E t ⇓ ∗ u⇓ v

E ign t inu⇓ v

E t ⇓ v u⇓ w

E t ⊗u⇓ v⊗w

E t ⇓ v⊗w u[v/x,w/y] ⇓ v′

E let t bex⊗yinu⇓ v′

E E ′
Merge

E E ′ (For any channelc, it is not the case thatE containsc andE ′ contains ¯c.)

λx.t ⇓ λx.t

E t ⇓ λx.t ′ u⇓ v t ′[v/x] ⇓ w

E tu⇓ w

E t ⇓ v u⇓ w

E ct ⇓ w c̄u⇓ v
(E , t andu do not containc or c̄.)

E t ⇓ t ′ s⇓ s′ E ′

E s⇓ s′ t ⇓ t ′ E ′ 〈t,u〉 ⇓ 〈t,u〉
E t ⇓ 〈t0, t1〉 u[t0/x] ⇓ w

E let t be〈x, 〉 inu⇓ w

E t ⇓ 〈t0, t1〉 u[t1/y] ⇓ w

E let t be〈 ,y〉 inu⇓ w

E t ⇓ v

E inl(t) ⇓ inl(v)

E u⇓ w

E inr(u) ⇓ inr(w)

E t ⇓ inl(v) u[v/x] ⇓ w

E match t of inl(x).u/inr(y).u′ ⇓ w

E t ⇓ inr(v) u′[v/y] ⇓ w

E match t of inl(x).u/inr(y).u′ ⇓ w

Figure 2: The definition of evaluation relation of the Amida calculus.E is possibly the empty evaluation
sequence.

Theorem 3.1 (Type Preservation of the Amida calculus). If terms t0, . . . , tn have a hypersequent⊢
t0 : ϕ0 · · · ⊢ tn : ϕn and an evaluation sequence t0 ⇓ v0 · · · tn ⇓ vn derivable, then
⊢ v0 : ϕ0 · · · ⊢ vn : ϕn is also derivable.

Proof. By induction on evaluation using the propositions below. Weanalyze the cases by the last rule.

(Merge) By Proposition 3.2, we can use the induction hypothesis.

(let t be〈x, 〉 inu) By Proposition 3.3, we can use the induction hypothesis.

(Other cases)Similar to above.

Two hypersequentsO andO ′ arechannel-disjointif and only if it is not the case thatO containsc
andO ′ contains ¯c for any channelc.

Proposition 3.2(Split). If a type derivation leading toO O ′ exists for two channel-disjoint hyperse-
quents, bothO andO ′ are derivable separately.

Proof. By induction on the type derivation.

Proposition 3.3(Inversion on &L). If O Γ ⊢ let t be〈x, 〉 inu: θ is derivable, then there is a partition
of Γ into Γ0 andΓ1 (up to exchange) such thatO Γ0 ⊢ t : ϕ & ψ Γ1,x: ϕ ⊢ u: θ is derivable.

Proof. By induction on the original derivation.

Determinacystates that ift ⇓ v andt ⇓ w hold, thenv andw are identical. Since our evaluation is
given to possibly multiple terms at the same time, it is easier to prove a more general version.
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Theorem 3.4(General Determinacy of the Amida calculus). If t0 ⇓ v0 t1 ⇓ v1 · · · tn ⇓ vn and
t0 ⇓ w0 t1 ⇓ w1 · · · tn ⇓ wn hold, then each vi is identical to wi.

Proof. By induction on the height of evaluation derivation. Each component in the conclusion has only
one applicable rule. Also, the order of decomposing different components is irrelevant (the crucial
condition is freshness ofc andc̄ in Figure 2).

Convergencewould state that whenever a closed termt is typed⊢ t : ϕ , then an evaluationt ⇓ v is
also derivable for some canonical formv. It is a desirable property so that Abramsky [1] proves it for
LF, but there are counter examples against convergence of the Amida calculus. Consider a typed term
⊢ c(c̄(inl(∗))) : 1⊕1 with no evaluation. One explanation for the lack of evaluation is deadlock. This
illustrates that the current form of Amida calculus lacks deadlock-freedom. In order to avoid the deadlock
and to evaluate this closed term, we can add the following eval-subst rule:

E t ⇓ v u[v/x] ⇓ w
eval-subst

E u[t/x] ⇓ w
,

which enables an evaluationc(c̄(inl(∗))) ⇓ inl(∗) . Moreover, the eval-subst rule enables an evaluation
c̄[C[cv]] ⇓ v, which reminds us of the call-with-current-continuation primitive [31] and shift/reset primi-
tives [12, 2]. However, adding the eval-subst rule breaks the current proof of Theorem 3.1 (safety), but
with some modifications, the safety property can possibly beproved. The main difficulty in proving
the safety property can be seen in the form of eval-subst rule. When we only know the conclusion of
an eval-subst occurrence, there are many possible assumptions involving free variables, all of which we
must consider if we are to prove the type safety.

4 Session Types and Processes as Abbreviations

In order to see the usefulness of the communication primitives, we try implementing a process calculus
and a session type system using the Amida calculus.

Session Types as Abbreviations As an abbreviation, we introducesession types. Session types [33,
17] can specify a communication protocol over a channel. Thefollowing definitions and the descriptions
are modification from Wadler’s translations and descriptions of session types [35]. The notation here is
different from the original notation by Takeuchi, Honda andKubo [33].

!ϕ ψ ≡ ϕ ⊸ ψ output a value ofϕ then behave asψ
?ϕ ψ ≡ ϕ ⊗ψ input a value ofϕ then behave asψ

⊕{l i : ϕi}i∈I ≡ ϕ0 & · · ·& ϕn, I = {0, . . . ,n} select fromϕi with label l i
&{l i : ϕi}i∈I ≡ ϕ0⊕·· ·⊕ϕn, I = {0, . . . ,n} offer choice ofϕi with label l i

end≡ 1 terminator

whereI is a finite downward-closed set of natural numbers like{0,1,2,3}. As Wadler [35] notes, the
encoding looks opposite of what some would expect, but as Wadler [35] explains, we are typing channels
instead of processes.
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The grammar ϕ ,ψ ::= end | X | !ϕ ψ | ?ϕ ψ | ⊕{l i : ϕi}i∈I | &{l i : ϕi}i∈I covers all types. A linear
type (ϕ∼ possibly with subscript) is generated by this grammar:

ϕ∼ ::= end | !ψ ϕ∼ | ?ψ ϕ∼ | ⊕{l i : ϕ∼
i }i∈I | &{l i : ϕ∼

i }i∈I

We define duals of linear types. Again the definition is almostthe same as Wadler’s [35] except that
end is self-dual.

!ψ ϕ∼ = ?ψ ϕ∼ ?ψ ϕ∼ = !ψ ϕ∼

⊕{l i : ϕ∼
i }i∈I = &{l i : ϕ∼

i }i∈I &{l i : ϕ∼
i }i∈I =⊕{l i : ϕ∼

i }i∈I

end= end .

Processes as Abbreviations We define the sending and receiving constructs of process calculi as ab-
breviations:

x〈u〉. t ≡ t[(xu)/x] sendu through channelx and then usex in t

x(y). t ≡ letxbey⊗xin t receivey through channelx and usex andy in t

0≡ ∗ do nothing

We have to be careful about substitution combined with process abbreviations. For example,(x〈u〉. t)[s/x]
is nots〈u〉. t because the latter is not defined. Following the definition,(x〈u〉. t)[s/x] is actually(t[xu/x])[s/x] =
t[su/x]. We are going to introduce the name restrictionνx.t after implementing channels.

Below, we are going to justify these abbreviations statically and dynamically.

Process Typing Rules as Abbreviations The session type abbreviation and the processes abbreviation
allow us to use the typing rules in the next proposition.

Proposition 4.1(Process Typing Rules: senders and receivers). These rules are admissible.

O y:ψ ,x: χ ⊢ t :ϕ
recv

O x: ?ψ χ ⊢ x(y). t :ϕ
O Γ,x: χ ⊢ t :ϕ ∆ ⊢ u:ψ

send
O Γ,∆,x: !ψ χ ⊢ x〈u〉. t :ϕ

O Γ ⊢ t : ϕ
end

O Γ,x: end ⊢ ignxin t :ϕ
⊢ 0:1

Proof. Immediate.

We note that the types of variablex change in the rules. This reflects the intuition of session types:
the session type of a channel changes after some communication occurs through the channel.

Example 4.2(Typed communicating terms). Using Theorem 4.1, we can type processes. Figure 3 con-
tains one process, which sends a channel y through x and then waits for input in a channel y′. Here
is another process that takes an input w′ from channel x′, where the input w′ itself is expected to be a
channel. After receiving w′, the process putsinl(∗) in w′.

1R
⊢ ∗ : 1end

w′ : end ⊢ ignw′ in∗ : 1

1R
⊢ ∗ : 1⊕R

⊢ inl(∗) : 1⊕1
send

w′ : !(1⊕1) end ⊢ w′〈inl(∗)〉. ignw′ in∗ : 1
end

w′ : !(1⊕1) end,x′ : end ⊢ ignx′ inw′〈inl(∗)〉. ignw′ in∗ : 1
recv

x′ : ?(!(1⊕1) end) end ⊢ x′(w′). ignx′ inw′〈inl(∗)〉. ignw′ in∗ : 1
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Ax
z: 1⊕1⊢ z: 1⊕1

end
z: 1⊕1,y: end ⊢ ignyinz: 1⊕1

end
z: 1⊕1,x: end,y: end ⊢ ignx,y inz: 1⊕1

recv
x: end,y: ?(1⊕1) end ⊢ y(z). ignx,yinz: 1⊕1

Ax
y′ : !(1⊕1) end ⊢ y′ : !(1⊕1) end

send
y: ?(1⊕1) end,x: !(!(1⊕1) end) end,y′ : !(1⊕1) end ⊢ x〈y〉.y′(z). ignx,yinz: 1⊕1

Figure 3: A typed process.

Implementing Channels. We introduced primitivesc and c̄ implementing the behavior specified by
(1 ⊸ ϕ)⊗ (ϕ ⊸ 1). These primitives can be seen as channels of session types ?ϕ end and !ϕ end.
Indeed, ?ϕ end is ϕ ⊗1 (which is inter-derivable with1⊸ ϕ) and !ϕ end is ϕ ⊸ 1. We can generalize
this phenomenon to the more complicated session types1.

Proposition 4.3 (Session realizers). For any linear typeϕ∼, the hypersequent⊢ t : ϕ∼ ⊢ u: ϕ∼ is
derivable for some terms t and u.

Proof. Induction onϕ∼.

(end)
Ax

⊢ ∗ : 1 Ax
⊢ ∗ : 1Merge

⊢ ∗ : 1 ⊢ ∗ : 1
is what we seek.

(!ψ ϕ∼) By the induction hypothesis,⊢ t ′ : ϕ∼ ⊢ u′ : ϕ∼ is derivable. Using this, we can make the
following derivation:

Ax
x: ψ ⊢ x: ψ

IH
⊢ t ′ : ϕ∼ ⊢ u′ : ϕ∼

Merge
x: ψ ⊢ x: ψ ⊢ t ′ : ϕ∼ ⊢ u′ : ϕ∼

Sync
cx: ϕ∼ ⊢ x: ψ ⊢ c̄t′ : ψ ⊢ u′ : ϕ∼

⊗R
x: ψ ⊢ cx: ϕ∼ ⊢ (c̄t′)⊗u′ : ψ ⊗ϕ∼

⊢ λx.cx: ψ ⊸ ϕ∼ ⊢ (c̄t′)⊗u′ : ψ ⊗ϕ∼

.

(?ψ ϕ) Symmetric to the above.

(⊕{l i : ϕi}) By the induction hypothesis, for eachi ∈ I , we have⊢ ti : ϕi ⊢ ui : ϕi derived. Hence
derivable is⊢ ti : ϕi ⊢ i(ui) :⊕ j∈I ϕ j wherei(ui) is an appropriate nesting ofinl(·), inr(·) andui .
Combining|I | such derivations, we can derive⊢ 〈ti〉i∈I : & i∈I ϕi 〈⊢ i(ui) :⊕ j∈I ϕ j〉i∈I for a fresh
natural numbern.

(&{l i : ϕi}) Symmetric to above.

We call the above pairt,u in the statement thesession realizersof ϕ∼ and denote them by⊲(ϕ∼),⊳(ϕ∼).
Moreover, we use⊲⊳(ϕ∼) to denote the pair⊲(ϕ∼)⊗ ⊳(ϕ∼). So far, a free variable with a linear type
represented a channel serving the corresponding session type. Now, we can substitute the free variables
with the session realizers so that the typed processes can actually communicate. If we have two terms
that use free variables of typeϕ∼ andϕ∼, we can replace those free variables by session realizers.

Corollary 4.4 (Binding both ends of a channel). If O Γ,x: ϕ∼ ⊢ t : ψ ∆,y: ϕ∼ ⊢ u: θ is derivable,
thenO Γ ⊢ t[⊲(ϕ∼)/x] : ψ ∆ ⊢ u[⊳(ϕ∼)/y] : θ is also derivable.

1This is impossible using the ordinary linear types.
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λx.cx⇓ λx.cx

λx.cx⇓ λx.cx

E ⊲(ϕ∼) ⇓ v′ ⊳(ϕ∼) ⇓ w′ t0[v′/x] ⇓ v u⇓ u′ t1[u′/z][w′/y] ⇓ w

E ⊲(ϕ∼) ⇓ v′ ⊳(ϕ∼) ⇓ w′ t0[v′/x] ⇓ v u⇓ u′ letu′⊗w′
bez⊗yint1 ⇓ w

E ⊲(ϕ∼) ⇓ v′ ⊳(ϕ∼) ⇓ w′ t0[v′/x] ⇓ v λx.cx⇓ λx.cx u⇓ u′ letu′⊗w′
bez⊗yint1 ⇓ w

E c̄(⊲(ϕ∼)) ⇓ u′ ⊳(ϕ∼) ⇓ w′ t0[v′/x] ⇓ v λx.cx⇓ λx.cx cu⇓ v′ letu′⊗w′
bez⊗yin t1 ⇓ w

E c̄(⊲(ϕ∼)) ⇓ u′ ⊳(ϕ∼) ⇓ w′ t0[v′/x] ⇓ v (λx.cx)u ⇓ v′ letu′⊗w′
bez⊗yin t1 ⇓ w

eval-subst
E c̄(⊲(ϕ∼)) ⇓ u′ ⊳(ϕ∼) ⇓ w′ t0[(λx.cx)u/x] ⇓ v letu′⊗w′

bez⊗yin t1 ⇓ w

E c̄(⊲(ϕ∼))⊗⊳(ϕ∼) ⇓ u′⊗w′ t0[(λx.cx)u/x] ⇓ v letu′⊗w′
bez⊗yint1 ⇓ w

E λx.cx⇓ λx.cx c̄(⊲(ϕ∼))⊗⊳(ϕ∼) ⇓ u′⊗w′ t0[(λx.cx)u/x] ⇓ v letu′⊗w′
bez⊗yint1 ⇓ w

Figure 4: Proof of Lemma 4.7. The conclusion is identical to our goal up to abbreviations.

Now we can define the name restriction operator as an abbreviation:

νx: ϕ∼.t ≡ let⊲⊳(ϕ∼)bexL ⊗xR in t

where we assume injectionsx 7→ xL andx 7→ xR whose images are disjoint.
Then, in addition to Theorem 4.1, more typing rules are available.

Proposition 4.5(Process typing rule: name restriction). The following typing rule is admissible.

O Γ,x: ϕ∼,y: ϕ∼ ⊢ t : ψ
O Γ ⊢ νx: ϕ∼.t[xL/x][xR/y] : ψ

Example 4.6(Connecting processes using session realizers). Using the session realizers, we can connect
the processes typed in Example 4.2. Indeed,

⊢ν(x: ?(!(1⊕1) end) end).ν(y: !(1⊕1) end).

(xR〈yL〉.yR(z). ignxR,yR inz)⊗
(

xL(w
′). ignxL inw′〈inl(∗)〉. ignw′ in∗

)

: (1⊕1)⊗1

is derivable.

Now we have to check the evaluation of the term in this example. For that we prepare a lemma.

Process Evaluation as Abbreviation. The intention of definingx〈u〉. t0 andy(z). t1 is mimicking com-
munication in process calculi. When we substitutex andy with session type realizers, these terms can
actually communicate.

The next lemma can help us evaluate session realizers.

Lemma 4.7. Let t0 be a term containing a free variable x and t1 be a term containing free variables y
and z. The rule

E ⊲(ϕ∼) ⇓ v′ ⊳(ϕ∼) ⇓ w′ t0[v′/x] ⇓ v u⇓ u′ t1[u′/z][w′/y] ⇓ w

E ⊲(!ψ ϕ∼) ⇓ λx.cx ⊳(!ψ ϕ∼) ⇓ u′⊗w′ (x〈u〉. t0)[λx.cx/x] ⇓ v (y(z). t1)[u′⊗w′/y] ⇓ w

is admissible under presence of the eval-subst rule.

Proof. By the derivation in Figure 4.

Example 4.8 (Evaluation of communicating processes). Here is an example of evaluation using the
eval-subst rule.
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⊲(end) ⇓ ∗ ⊳(end) ⇓ ∗

∗ ⇓ ∗

inl(∗) ⇓ inl(∗) ∗ ⇓ ∗

inl(∗) ⇓ inl(∗) ∗ ⇓ ∗

∗ ⇓ ∗

inl(∗) ⇓ inl(∗)

⊲(end) ⇓ ∗ ⊳(end) ⇓ ∗ inl(∗) ⇓ inl(∗) ∗ ⇓ ∗ inl(∗) ⇓ inl(∗)
♦

⊲(!(1⊕1) end) ⇓ λx.cx ⊳(!(1⊕1) end) ⇓ inl(∗)⊗∗

(xL〈inl(∗)〉. ignxL in∗)[λx.cx/xL] ⇓ ∗ (xR(z). ignxR inz)[inl(∗)⊗∗/xR] ⇓ inl(∗)

⊲⊳(!(1⊕1) end) ⇓ λx.cx⊗ (inl(∗)⊗∗)

(xL〈inl(∗)〉. ignxL in∗)[λx.cx/xL]⊗ (xR(z). ignxR inz)[inl(∗)⊗∗/xR] ⇓ ∗⊗ inl(∗)

ν(x: !(1⊕1) end).(xL〈inl(∗)〉. ignxL in∗)⊗ (xR(z). ignxR inz) ⇓ ∗⊗ inl(∗)

The step♦ uses Lemma 4.7.

Proposition 4.9(Copycatting). For any linear typeϕ∼, we can derive x: ϕ∼,y: ϕ∼ ⊢ t : 1 for some term t.

Proof. By induction onϕ∼.

4.1 Correctness with Respect to Abelian Logic

We compare the Amida calculus and Abelian logic and discoverthe fact that they are identical.

Theorem 4.10(Completeness of the Amida Calculus for Abelian Logic). A formula is a theorem of
Abelian logic if and only if the formula is inhabited in the Amida calculus.

Theorem 4.11(Soundness of the Amida Calculus for Abelian Logic). An inhabited type in the Amida
calculus is a theorem of Abelian logic.

Proof. Proofs appear in the author’s thesis [16].

Now we can use some previous literature (Meyer and Slaney [26] and Casari [10]) to find some facts.

Corollary 4.12 (Division by two). If ϕ ⊗ϕ is inhabited, so isϕ .

Corollary 4.13. The law of excluded middleϕ ⊗ (ϕ ⊸ 1) and prelinearity(ϕ ⊸ ψ)⊕ (ψ ⊸ ϕ) are
inhabited in the Amida calculus.

5 Related Work

Metcalfe, Olivetti and Gabbay [24] gave a hypersequent calculus for Abelian logic and proved cut-
elimination theorem for the hypersequent calculus. His formulation is different from ours because
Metcalfe’s system does not use conjunctive hypersequents.Shirahata [32] studied the multiplicative
fragment of Abelian logic, which he called CMLL (compact multiplicative linear logic). He gave a cat-
egorical semantics for the proofs of a sequent calculus presentation of CMLL and then proved that the
cut-elimination procedure of the sequent calculus preserves the semantics2.

Kobayashi, Pierce and Turner [20] developed a type system for theπ-calculus processes. Similarly to
the type system presented here, their type system can specify types of communication contents through
a name and how many times a name can be used. In some sense, thattype system is more flexible than
the one shown in this paper; their type system allows multiple uses of a channel, replicated processes

2Ciabattoni, Straßburger and Terui [11] already pointed outthe fact that Shirahata [32] and Metcalfe, Olivetti and Gab-
bay [25] studied the same logic.
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and weakening [20, Lemma 3.2]. In other respects, the type system in [20] is less expressible. That
type system does not have lambda abstractions. Also, in contrast to our type system, it is impossible to
substitute a free variable with a process in that type system.

Caires and Pfenning [9] provide a type system for a fragment of π-calculus. Their type system is, on
some processes, more restrictive than the Amida calculus. For example, this escrowing processP below
is not typable in their type system:P= x〈y〉.x(a).y〈a〉.0 . The process first emits a channely through
channelx and then takes an input fromx and outputs it toy. Following the informal description of types
by Caires and Pfenning [9], the processP should be typable as⊢ P :: x : (A⊸ 1)⊗A . However, such
typing is not possible because(A ⊸ 1)⊗A is not a theorem of dual intuitionistic linear logic (DILL),
which their type system is based on. In our type system, the following sequent is derivable

x: (?A end)!Aend ⊢ ν(y: ?Aend).x〈yL〉.x(a).yR〈a〉. ignx,yL,yR in0:1

The resulting sequent indicates that the process is typablewith one open channelx that first emits a
channel that one can receiveA from, and second sends a value ofA. This concludes an example of a
term which our type system can type but the type system in Caires and Pfenning [9] cannot. However,
we cannot judge their type system to be too restrictive because we have not yet obtained both type safety
and deadlock-freedom of Amida calculus at the same time.

On the other hand, the most complicated example in Caires andPfenning [9], which involves a drink
server, directs us towards a useful extension of the Amida calculus.

Example 5.1(Drink server from Caires and Pfenning [9] in the Amida cal.).

ServerProto= (N ⊸ I ⊸ (N⊗1))& (N ⊸ (I ⊗1))

= (!N !I ?N end)& (!N ?I 1)

N stands for the type of strings and I stands for the type of integers, but following Caires and Pfen-
ning [9], we identify both N and I with1. Below, SP abbreviates ServerProto. Here is the process of the
server, which serves one client and terminates.

Serv= 〈s(pn).s(cn).s〈rc〉. ign pn,cn,sin0, s(pn).s〈pr〉. igns, pnin0〉

We can derive a sequent s: SP⊢ Serv: 1. Here is one client:

⊢ 0:1
s: end ⊢ ignsin0:1

s: end, pr : I ⊢ ign pr,sin0:1
s: ?I end ⊢ s(pr). ign pr,sin0:1 ⊢ tea: N

s: !N ?I end ⊢ s〈tea〉.s(pr). ign pr,sin0:1
s: ServerProto⊢ letsbe〈 ,s〉 ins〈tea〉.s(pr). ign pr,sin0:1

In words, the client first chooses the server’s second protocol, which is price quoting, and asks the price of
the tea, receives the price and terminates. We can combine the server with this client. However, since the
Amida calculus lacks the exponential modality, Amida calculus cannot type any term with!ServerProto,
which the type system of Caires and Pfenning can [9]. In orderto do that, we might want to tolerate
inconsistency and addµ and ν operators from the modalµ-calculus, like Baelde [6] did, and express
!ServerProto asνX.(SeverProto⊗X).
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Wadler [35] gave a type system for a process calculus based onclassical linear logic. Although the
setting is classical, the idea is more or less the same as Caires and Pfenning [9]. Wadler’s type system
cannot type the escrowing process above.

Giunti and Vasconcelos [14] give a type system forπ-calculus with the type preservation theorem.
Their type system is extremely similar to our type system although the motivations are different; their
motivation is process calculi while our motivation is computational interpretation of a logic. It will be
worthwhile to compare their system with our type system closely.

6 Some Future Work and Conclusion

Implementation. Since Abelian logic is incompatible with contraction or weakening, straightforward
implementation the Amida calculus on top of Haskell or OCamlwould not be a good way to exploit the
safety of the Amida calculus. One promising framework on which to implement the Amida calculus is
linear ML3, whose type system is based on linear logic. Another way is using the type level programming
technique of Haskell. Imai, Yuen and Agusa [19] implementedsession types on top of Haskell using the
fact that Haskell types can contain arbitrary trees of symbols; thus we should be able to use the same
technique to encode the types of Amida calculus in the Haskell types.

Adding Modalities. A tempting extension is to add modalities representing agents and then study the
relationship with the multiparty session types [7, 18].

Cut-Elimination. It is easy to see that the prelinearity(ϕ ⊸ ψ)⊕ (ψ ⊸ ϕ) does not have a cut-free
proof. However, since there is a cut-free deduction system for Abelian logic [24], we consider it natural
to expect the same property for a suitable extension of the Amida calculus.

Continuations. The eval-subst rule enables an evaluation ¯c[C[cv]] ⇓ v, which reminds us of the call-
with-current-continuation primitive [31] and shift/reset primitives [12, 2]. The appearance of these clas-
sical type system primitives is not surprising because Abelian logic validates((p⊸ q)⊸ q)⊸ p, which
is a stronger form of the double negation elimination. Possibly we could use the technique of Asai and
Kameyama [2] to analyze the Amida calculus with eval-subst rule.

Logic Programming. There are at least two ways to interpret logics computationally. One is proof re-
duction, which is represented byλ -calculi. The other is proof searching. We have investigated the Amida
calculus, which embodies the proof reduction approach to the Amida axiom. Then what implication does
The Amida axiom have in the proof searching approach? Let us cite an example from Kobayashi and
Yonezawa [21, A.2]:

Consumption of a messagemby a processm⊸B is represented by the following deduction:

(m⊗ (m⊸ B)⊗C)⊸ (B⊗C)

whereC can be considered as other processes and messages, or an environment.

3There are no publications but an implementation is available athttps://github.com/pikatchu/LinearML .
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Using the Amida axiom, the inverse

(B⊗C)⊸ (m⊗ (m⊸ B))⊗C

is derivable. This suggests that the Amida axiom states thatsome computation is reversible in the context
of proof searching. We suspect that this can be useful withinthe realm of reversible computation [34].

Conclusion. We found a new axiomatization of Abelian logic: the Amida axiom (ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ)
on top of IMALL−. The axiomatization has an application for encoding process calculi and session type
systems. The encoding, which we name the Amida calculus, shows extra flexibility given by the new
axiom. In the current form, the flexibility comes with the cost of convergence. Though there is a possible
way to obtain convergence by adding a new evaluation rule, then, it is still under investigation whether
type safety is preserved.

Acknowledgements. The author thanks Tadeusz Litak for encouragements and information on rele-
vant research. The author also thanks Takeuti Izumi, who asked about changing a disjunction⊕ into a
conjunction⊗ after the author talked about(ϕ ⊸ ψ)⊕ (ψ ⊸ ϕ), a variant of which is used to model
asynchronous communication in Hirai [15]. Anonymous refrees’ careful comments and the workshop
participants’ direct questions improved the presentationof this paper.
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A Categorical Considerations

One might want to ask whether we can model the logic with a symmetric monoidal closed category [8]
with identified isomorphismsσABCD: (A⊸ B)⊗ (C ⊸ D)→ (A⊸ D)⊗ (C ⊸ B), with naturality con-
ditions. Before considering equality among morphisms, we know there is a non-trivial example.

Example A.1(Integer Model of [13, p. 107]). The preorder formed by objects as integers and morphisms
as the usual order among integers≤ forms a symmetric monoidal closed category with swaps when we
interpret⊗ as addition and m⊸ n as n−m.

On the other hand, if we take another formulation requiring natural isomorphismsC (C,A)×C (D,B)∼=
C (D,A)×C (C,B), only singletons can be preorder models because〈idA, idB〉 is mapped to〈 f ,g〉 where
f : A→ B andg: B→ A for any two objectsA andB.

A straightforward reading of evaluation rules gives somewhat complicated equality conditions for
morphisms. The condition says the following diagram commutes:

(A⊸ B)⊗ (C⊸ D)
dABCD−−−−→ (A⊗C)⊸ (B⊗D)





y

σABCD





y

id⊸sB,D

(A⊸ D)⊗ (C⊸ B)
dADCB−−−−→ (A⊗C)⊸ (D⊗B)

wheredABCD is induced by adjunction between⊗ and⊸ from a morphism((A ⊸ B)⊗ (C ⊸ D))⊗
(A⊗C)→ (B⊗D), which is provided by symmetric monoidal closed properties.

Moreover, sinceϕ∗ ≡ ϕ ⊸ 1 has derivable sequents1⊢ ϕ∗⊗ϕ andϕ ⊗ϕ∗ ⊢ 1, we can expect the
semantics ofϕ∗ to be the dual object of that ofϕ . Indeed, checking one of the coherence condition of
compact closedness is evaluating the below typed term

t : ϕ ⊢ ∗ : 1
⊢ t : ϕ ⊢ ∗ : 1

x: ϕ ⊢ x: ϕ ⊢ ∗ : 1

x: ϕ ⊢ cx: 1 ⊢ c̄∗ : ϕ
x: ϕ ⊢ cx: 1 z: 1⊢ ignzin c̄∗ : ϕ

⊢ t : ϕ x: ϕ ⊢ cx: 1 ⊢ ign∗ in c̄∗ : ϕ
⊢ ct : 1 ign∗ in c̄∗ϕ

⊢ ct : 1 y: 1⊢ ignyin ign∗ in c̄∗ : ϕ
⊢ ignct in ign∗ in c̄∗ : ϕ

.

At least, if t ⇓ v is derivable,ignct in ign∗ in c̄∗ ⇓ v is also derivable.

t ⇓ v ∗ ⇓ ∗

t ⇓ v ∗ ⇓ ∗

ct ⇓ ∗ c̄∗ ⇓ v ∗ ⇓ ∗

ct ⇓ ∗ ign∗ in c̄∗ ⇓ v
ignct in ign∗ in c̄∗ ⇓ v

.

Showing the other direction is more involved because of eval-subst rule, but the author expects the case
analysis on possible substitutions will succeed.

B Proof Nets

Toward better understanding the Amida calculus, a technique called proof nets seems promising. Gen-
erally, proof nets are straightforward for the multiplicative fragments but complicated when additive and
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exponential connectives are involved. Since the Amida axiom (ϕ ⊸ ψ)⊗ (ψ ⊸ ϕ) does not contain
additives (&,⊕) or exponentials (!,?), we can focus on the multiplicative connectives (⊸ and⊗). The
fragment is calledIMLL (intuitionistic multiplicative fragment of linear logic). We also use the unit1 for
technical reasons. We first describe the IMLL proof nets and their properties. Then we add a new kind
of edges called the Amida edges, which characterizes Abelian logic. The Amida links are named after
the Amida lottery (also known as the Ghost Leg) for the syntactic similarity.

B.1 IMLL Essential Nets

The proof nets for intuitionistic linear logics are calledessential nets. This subsection reviews some
known results about the essential nets for intuitionistic multiplicative linear logic (IMLL). The exposition
here is strongly influenced by Murawski and Ong [30].

We can translate a polarityp∈ {+,−} and an IMLL formulaϕ into apolarized MLL formula_ϕ ^
p

following Lamarche [22] and Murawski and Ong [30]. We omit the definition of polarized MLL formulae
because the whole grammar is exposed in the translation below:

_1^
+ = 1+ _1^

− =⊥−

_X^
+ = X+

_X^
− = X−

_ϕ ⊸ ψ ^
+ = _ϕ ^

−
`

+
_ψ ^

+
_ϕ ⊸ ψ ^

− = _ϕ ^
+⊗−

_ψ ^
−

_ϕ ⊗ψ^
+ = _ϕ ^

+⊗+
_ψ ^

+
_ϕ ⊗ψ^

− = _ϕ ^
−
`

−
_ψ ^

− .

For example, the Amida axiom can be translated into a polarized MLL formula

_(X ⊸Y)⊗ (Y ⊸ X)^+

= _X ⊸Y^
+⊗+

_Y ⊸ X^
+

=
(

_X^
−
`

+
_Y^

+
)

⊗+
(

_Y^
−
`

+
_X^

+
)

=
(

X−
`

+Y+
)

⊗+
(

Y−
`

+ X+
)

.

The symbol̀ is pronounced “parr.”
Any polarized MLL formula can be translated further into a finite rooted tree containing these

branches and polarized atomic formulae (X−,X+,1+,⊥−) at the leaves.

ϕ−

`
+ ψ+ ϕ−

`
− ψ− ϕ+

⊗
+ ψ+ ϕ+

⊗
− ψ−

ψ+ϕ− ψ+
ϕ− ψ− ψ−ϕ+ ϕ+

For brevity, we sometimes write only the top connectives of labeling formulae. In that case, these branch-
ing nodes above are denoted like this.

`
+

`
−

⊗
+

⊗
−

+− + +− − + −

We call arrows with upward (resp. downward) signsup-edges(resp. down-edges). The dashed child
of a `+ node p is the node which the dashed line fromp reaches. The branching nodes labeled by
`+,`−,⊗+ and⊗− are calledoperator nodes. A path follows solid edges according to the direction of
the edges. Dashed edges are not directed and they are not contained in paths.

When we add axiom edges and⊥-branches (shown below) to the other operator nodes (shown above)
we obtain anessential netof ϕ . Due to the arbitrariness of choosing axiom edges and⊥-branches, there
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are possibly multiple essential nets for a formula. Murawski and Ong [30] restricts the class of formulae
to linearly balanced formulae so that the essential net is uniquely determined.

X
+

X
−

axiom edge
⊥-branch

⊥
−

Example B.1 (An essential net of the Amida axiom). Here is one of the essential nets of the Amida
axiom(X−`+Y+)⊗+ (Y−`+ X+).

⊗
+

`
+

X
−

X
+Y

+
Y

−

`
+

However, the essential net in Example B.1 is rejected by the following correctness criterion.

Definition B.2 (Correct essential nets). A correct essential net is an essential net satisfying all these
conditions:

1. Any node labeled with X+ (resp. Y−) is connected to a unique node labeled with X− (resp. Y+).
Any leaf labeled with⊥− is connected to a⊥-branch.1+ is not connected to anything above itself;

2. the directed graph formed by up-edge, down-edge, axiom edges and⊥-branches is acyclic;

3. for every`+-node p, every path from the root that reaches p’s dashed child also passes through
p.

The essential net in Example B.1 is not correct for condition3. Actually, the Amida axiom does
not have any correct essential net. IMLL sequent calculus has the subformula property so that we can
confirm that the Amida axiom is not provable in IMLL.

Theorem B.3(Essential nets by [22, 30]). An IMLL formulaϕ is provable in IMLL if and only if there
exists a correct essential net ofϕ .

Proof. The left to right is relatively easy. For the other way around, Lamarche [22] uses a common
technique of decomposing an essential net from the bottom. Murawski and Ong [30] chose to reduce the
problem to sequents of special forms called regular.

Actually, Lamarche [22] also considers the cut rule (as wellas additive operators and exponentials)
in essential nets, thus we can include the following generalaxioms (as macros) and cuts (as primitives)
and still use Theorem B.3:

ϕ+ ϕ−

general axiom cut

ϕ+ ϕ−

.
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B.2 The Amida Nets

Definition B.4 (The Amida nets). For a hypersequentH , Amida nets ofH are inductively defined by
the following three clauses:

• an essential net ofH is an Amida net ofH ;

• for an Amida net ofH with two different4 up-edges,

e0 e1

replacing these with

e0d e1d

e0u e1u

ea

yields an Amida net ofH , where the above component has two paths e0deae1u and e1deae0u;

• for an Amida net ofH with an up-edge,

e

replacing this with

eu

em

ed

ea

yields an Amida net ofH , where the above component has one finite path edeaeu and one infinite
path · · ·emeaemea · · · .

In these clauses, we call the edges labeledea theAmida edges.

Definition B.5 (Correct Amida nets). A correct Amida net is an Amida net satisfying the three conditions
in Definition B.4.

The Amida edge is not merely a crossing of up-edges. See the difference between
ϕ+ ψ+

ϕ+
ψ+

and

ϕ+ ψ+

ϕ+ψ+

.

4The two edges can be connected by a new edge as long as they are different; their relative positions do not matter.
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The difference is the labels at the bottom. Although Amida edges cross the paths, they do not transfer
labels. This difference of labels makes Amida nets validatethe Amida axiom.

Example B.6(A correct Amida net for the Amida axiom). Here is a correct Amida net for the Amida
axiom(X ⊸Y)⊗ (Y ⊸ X).

⊗
+

`
+

X
−

X
+Y

+
Y

−

`
+

In terms of the set of paths, the above Amida net is equivalentto the following correct essential net for
(X ⊸ X)⊗ (Y ⊸Y).

⊗
+

`
+

X
−

X
+Y

+
Y

−

`
+

B.3 Soundness and Completeness of Amida nets

Theorem B.7(Completeness of Amida nets). If a hypersequentH is derivable, there is a correct Amida
net forH .

Proof. Inductively on hypersequent derivations. The Sync rule is translated into a crossing with an
Amida edge:

Γ ⊢ ϕ ∆ ⊢ ψ
Γ ⊢ ψ ∆ ⊢ ϕ

7→

ϕ ψ

ϕψ

where the crossing exchanges the formulae and the Amida edgekeeps the path connections vertically
straight.

Theorem B.8(Soundness of Amida nets). If there is a correct Amida net for a hypersequentH , then
H is derivable.

Proof. From a correct Amida net, first we move the Amida edges upwardsuntil they are just below
axiom edges5. The moves are as follows.

⊗
+

⊗
+

ϕ ϕψ χ
ψ χ

ψ ⊗ χ ϕ⊗ 1 ψ ⊗ χϕ

⊗
+

1
+

5The idea is similar to the most popular syntactic cut-elimination proofs.
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`
+

ϕ+ χ
+

ϕ+
ψ−

`
+ χ+

`
+

`
+

ψ−

ψ−

`
+ χ+

⊥
−

⊥
−

`
+ (ϕ+

⊗
+
1
+)

ϕ+

χ
+

⊗
+

⊗
+

ψ−

1
+

ψ−

`
−

⊥
−

1
+

These translations have two properties.

1. When the original (contained in a larger picture) is a correct Amida net, the translation (contained
in the same larger picture) is also a correct Amida net.

2. The end nodes of the translation correspond to the end nodes of the original, and the corresponding
end nodes have the same label (up to logical equivalence in IMLL). In case of⊗ translation,ϕ and
ϕ ⊗1 are logically equivalent because1 is the unit of⊗. In case of̀ translation,ϕ and⊥`ϕ are
logically equivalent because⊥ is the unit of`.

For checking the first condition, it is enough to follow the paths (crossing all Amida edges). For the
second condition, it is enough to follow the vertical edges ignoring the Amida edges and⊥-branches.

The⊗ move introduces Amida edges only above the branching rules.Although the` move intro-
duces an Amida edge below a branching rule, that branching rule is of ⊗ nature. Also, thè move
introduces an Amida edge belowψ-axiom link, which is actually a macro. So we have to continueap-
plying the translation moves in the macro. However, sinceψ is a strictly smaller subformula ofψ ` χ ,
this does not cause infinite recursion.

Then, by these translation moves, the whole Amida net is decomposed vertically into three layers.
At the top, there is a layer with only axiom edges. In the middle, there is a layer with only vertical edges
and Amida edges. At the bottom, there is a layer that containsonly ordinary essential net nodes.

Since the middle layer is an Amida lottery, it defines a permutation. That permutation can be ex-
pressed as a product of transpositions, so that the originalAmida lottery is equivalent to an encoding of
a hypersequent derivation that consists of only Sync rules.

After we encode the top and the middle layer into a hypersequent derivation, encoding the bottom
layer can be done in the same way as Lamarche’s approach [22].

We wonder whether it is possible to add Amida edges to the IMALL− essential nets following
Lamarche [22]. The additives are notoriously difficult for proof nets and we do not expect the com-
bination of additive connectives and Amida edges can be treated in any straightforward way.
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