
N. Yoshida, W. Vanderbauwhede (Eds.): Programming Language
Approaches to Concurrency- and Communication-cEntric
Software 2013 (PLACES’13)
EPTCS 137, 2013, pp. 63–78, doi:10.4204/EPTCS.137.6

Coinductive Big-Step Semantics for Concurrency

Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

tarmo@cs.ioc.ee

In a paper presented at SOS 2010 [13], we developed a framework for big-step semantics for in-
teractive input-output in combination with divergence, based on coinductive and mixed inductive-
coinductive notions of resumptions, evaluation and termination-sensitive weak bisimilarity. In con-
trast to standard inductively defined big-step semantics, this framework handles divergence properly;
in particular, runs that produce some observable effects and then diverge, are not “lost”. Here we
scale this approach for shared-variable concurrency on a simple example language. We develop the
metatheory of our semantics in a constructive logic.

1 Introduction

The purpose of this paper is to advocate two ideas. First, big-step operational semantics can handle diver-
gence as well as small-step semantics, so that both terminating and diverging behaviors can be reasoned
about uniformly. Big-step semantics that account for divergence properly are achieved by working with
coinductive semantic entities (transcripts of possible infinite computation paths or nonwellfounded com-
putation trees) and coinductive evaluation. Second, contrary to what is so often stated, concurrency is
not inherently small-step, or at least not more inherently than any kind of effect produced incrementally
during a program’s run (e.g., interactive output). Big-step semantics for concurrency can be built by
borrowing the suitable denotational machinery, except that we do not want to use domains and fixpoints
to deal with partiality, but coinductively defined sets and corecursion. In this paper, we use resumptions,
more specifically coinductive resumptions.

We build on our previous work [13] and develop two resumption-based big-step semantics for a
simple imperative language with shared-variable concurrency. The metatheory of these semantics—e.g.,
the equivalence of evaluation in the big-step semantics to maximal multi-step reduction in a reference
small-step semantics—is entirely constructive—meaning that we can compute evaluations from maximal
multi-step reductions and vice versa. Moreover, evaluation is deterministic and can be turned into a
computable function.

The idea that divergence can be properly accounted for by switching to coinductively defined se-
mantic entities such as possibly infinitely delayed states or possibly infinite traces is due to Capretta [3].
The deeper underlying theory is based on completely iterative monads and has been treated in detail by
Goncharov and Schröder [7].

Leroy and Grall [9] attempted to use coinductive big-step semantics to reason about both terminat-
ing and diverging program runs in the Compcert project on a formally certified compiler, but ran into
certain semantic anomalies (proving the big-step and small-step semantics equivalent required the use
of excluded middle, which should not be needed; infinite loops were not specifically arranged to be pro-
ductive, with the effect that infinite loops with no observable effects led to finite traces, to which other
traces could be appended). (Cf. also the simultaneous work by Cousot and Cousot [5].) Nakata and
Uustalu [11] fixed the anomalies and arrived at a systematic account of trace-based big-step semantics
for divergence in a purely sequential, side-effect-free setting (in relational and also functional styles).

http://dx.doi.org/10.4204/EPTCS.137.6

64 Coinductive Big-Step Semantics for Concurrency

Further [12, 13], they also developed a matching Hoare logic and a resumption-based big-step semantics
for a combination of interactive input/output with divergence. Danielsson [6] has promoted especially
functional-style coinductive big-step semantics. Ancona [2] used a coinductive big-step semantics of
Java to show it type-sound in a sense that covers also divergence: if a program is type-sound, it produces
a trace.

The tool of resumptions was originated by Plotkin [14] and has since been developed and used
by several authors [4, 8]. An inductive trace-based big-step semantics for a concurrent language (not
handling divergence) has appeared in the work of Mitchell [10].

The paper is organized as follows. In Section 2, we introduce our example language with pre-emptive
scheduling, give it two resumption-based big-step semantics and relate them to a small-step semantics.
In Section 3, we discuss notions of equivalence of resumptions. In Section 4, we show that our semantics
can also be formulated functionally rather than relationally. In Section 5, we discuss the major alternative
to resumptions—traces. We conclude in Section 6.

In Appendix A, we consider cooperative scheduling.
Haskell implementations of the functional-style semantics of Section 4 are available online at http:

//cs.ioc.ee/~tarmo/papers/, to be completed with an Agda formalization of the whole paper.

2 An example language and resumption-based semantics

2.1 Syntax

We look at a minimal language with shared-variable concurrency (cf. Amadio [1]) whose statements are
given inductively by the grammar

s ::= x := e | skip | s0;s1 | if e then st else s f | while e do st | s0 ‖ s1 | atomic s | await e do s

The intention is that s0 ‖ s1 is parallel composition of s0 and s1 (in particular, it terminates when both
branches have terminated). The statement atomic s is executed by running s atomically; the statement
await e do s is executed by waiting until e is true (other computations can have their chance in the
meantime) and then running s atomically. Throughout the paper proper, scheduling is preemptive, with
only assignments and boolean guards atomic implicitly.

In Appendix A, we look at a cooperative scheduling interpretation of the same syntax.

2.2 Big-step semantics

We will first introduce a semantics that captures all runs of a statement from a state until the closest
control release points in one step. (In the next section, we will introduce a semantics that deals with
return of control.)

The central semantic entities of this semantics are resumptions (computation trees). Resumptions are
defined coinductively by the following rules (in this text, inductive definitions are shown by single rule
lines, coinductive definitions are indicated by double rule-lines).

σ : state
ret σ : res

r : res
δ r : res

r0 : res r1 : res
r0 + r1 : res

s : stmt σ : state
yield s σ : res

The resumption ret σ denotes a computation that terminated in a state σ . The resumption δ r is a
computation that first produces an unit delay (makes an internal small step) and continues then as r.

http://cs.ioc.ee/~tarmo/papers/
http://cs.ioc.ee/~tarmo/papers/

T. Uustalu 65

The resumption r0 + r1 is a choice between two resumptions r0 and r1. The resumption yield s σ is a
computation that has released control in a state σ and will further execute a statement s when (and if) it
regains control (notice the presence of a syntactic entity here!). The definition being coinductive has the
effect that resumptions can be non-wellfounded, i.e., computations can go on forever.

E.g., the following is a resumption that involves some internal small steps, two choices; one path
terminates, one diverges, one suspends:

δ
3 (δ 2 (ret [x 7→ 5])+δ

4 (δ ∞ +δ (yield x := x+7 [x 7→ 3]))

(by δ ∞ we mean the diverging resumption defined corecursively by δ ∞ = δ δ ∞).
Evaluation of a statement s relates a (pre-)state to a (post-)resumption and is defined coinductively

by the rules

x := e,σ ⇒ δ (ret σ [x 7→ JeK σ]) skip,σ ⇒ ret σ

s0,σ ⇒ r s1,r⇒seq r′

s0;s1,σ ⇒ r′

σ |= e

if e then st else s f ,σ ⇒ δ (yield st σ)

σ 6|= e

if e then st else s f ,σ ⇒ δ (yield s f σ)

σ |= e

while e do st ,σ ⇒ δ (yield (st ;while e do st) σ)

σ 6|= e

while e do st ,σ ⇒ δ (ret σ)

s0,σ ⇒ r0 s1,r0⇒parR r′0 s1,σ ⇒ r1 s0,r1⇒parL r′1
s0 ‖ s1,σ ⇒ r′0 + r′1

s,σ ⇒ r r r′

atomic s,σ ⇒ r′

σ |= e s,σ ⇒ r r r′

await e do s,σ ⇒ δ r′
σ 6|= e

await e do s,σ ⇒ δ (yield (await e do s) σ)

We have made sure that internal small steps take their time by inserting unit delays at all places where
assignments or boolean guards are evaluated. This makes evaluation deterministic, allowing us to turn it
into a function, as we will see later in Sec. 4. The yields in the rules for await, if and while signify control
release points. Control release also occurs at the “midpoint” of evaluation of any sequential or parallel
composition (i.e., at the termination of the first resp. faster statement). This is handled by the ret rules
for sequential and parallel extensions of evaluation.

Sequential extension of evaluation relates a (pre-)resumption (the resumption present before some
statement is evaluated) to a (post-)resumption (the total resumption after). It is defined coinductively by
the rules

s,ret σ ⇒seq yield s σ

s,r⇒seq r′

s,δ r⇒seq δ r′
s,r0⇒seq r′0 s,r1⇒seq r′1

s,r0 + r1⇒seq r′0 + r′1 s,yield s0 σ ⇒seq yield (s0;s) σ

Essentially, sequential extension of evaluation is a form of coinductive prefix closure of evaluation. But,
in addition, the ret rule inserts a control release between the termination of the first statement and the start
of the second statement of a sequential composition. In the case of a yield pre-resumption, we simply
grow the residual statement.

Parallel extension of evaluation, which also relates a resumption to a resumption, is for evaluating
a given statement in parallel with a given resumption. The idea is to create an opportunity for the given
statement to start when (and if) the resumption terminates or releases control. Also this relation is defined
coinductively. Also here, in the base case (where the given resumption has terminated), we have a control

66 Coinductive Big-Step Semantics for Concurrency

release point.

s,ret σ ⇒parR yield s σ

s,r⇒parR r′

s,δ r⇒parR δ r′
s,r0⇒parR r′0 s,r1⇒parR r′1

s,r0 + r1⇒parR r′0 + r′1 s,yield s0 σ ⇒parR yield (s0 ‖ s) σ

s,ret σ ⇒parL yield s σ

s,r⇒parL r′

s,δ r⇒parL δ r′
s,r0⇒parL r′0 s,r1⇒parL r′1

s,r0 + r1⇒parL r′0 + r′1 s,yield s1 σ ⇒parL yield (s ‖ s1) σ

Finally, closing a resumption makes sure it does not release control. This is done by (repeatedly)
“stitching” a resumption at every control release point by evaluating the residual statement from the state
at this point. The corresponding relation between two resumptions is defined coinductively by

ret σ ret σ

r r′

δ r δ r′
r0 r′0 r1 r′1
r0 + r1 r′0 + r′1

s,σ ⇒ r r r′

yield s σ δ r′

In the last rule, the constructor yield does not disappear without leaving a trace, it is replaced with delay,
corresponding to an internal small step.

To give only two smallest examples, for s = x := 1 ‖ (x := x+2;x := x+2), σ = [x 7→ 0], we have

s,σ ⇒ δ (yield (x := x+2;x := x+2) [x 7→ 1])+δ (yield (x := 1 ‖ x := x+2) [x 7→ 2])

while
atomic s,σ ⇒ δ

5(ret [x 7→ 5])+δ
2(δ 3(ret [x 7→ 3])+δ

3(ret [x 7→ 1]))

For s = (await x = 0 do x := 1) ‖ x := 2, σ = [x 7→ 0], we have

s,σ ⇒ δ
2(yield x := 2 [x 7→ 1])+δ

1(yield (await x = 0 do x := 1) [x 7→ 2])

whereas
atomic s,σ ⇒ δ

4(ret [x 7→ 2])+δ
∞

In this semantics there is no fairness, all schedules are considered. The resumption for statement
atomic (x := 1 ‖ while x = 0 do skip) and state [x 7→ 0] contains a path that never terminates. Note that
fairness is a property of a path in a resumption, not of a resumption. Being an inductive property, fairness
cannot be refuted based on an initial segment of a path, so unfair paths cannot be cut out of a resumption.

2.3 Giant-step semantics

An alternative to what we have considered in the previous section is to run statements beyond control
release points for any states that control may potentially be returned in, i.e., for all states.

This leads to what we call a giant-step semantics here in order to have a different name for it.1

In this semantics, resumptions are purely semantic, they do not contain any statement syntax. They
are defined as before, except that the yield constructor is typed differently.

σ : state
ret σ : resg

r : res
δ r : resg

r0 : resg r1 : resg

r0 + r1 : resg

k : state→ resg σ : state

yield k σ : resg

1One might, of course, argue, that what I have called the “big-step” semantics here should be called “medium-step”, and the
“giant-step” semantics should be called “big-step”. I would not disagree at all. My choice of terminology here was motivated
by the intuition that “big-step” evaluation should run a statement to its completion. When a statement’s run has reached a
control release point, it is complete in the sense that it cannot run further on its own; what will happen further depends on the
scheduler (it might even be unfair and not return control to it at all). Note, however, that big-step and giant-step evaluation
agree fully for statements of the form atomic s.

T. Uustalu 67

yield k σ is a resumption that has released control in a given state σ and, when returned control in some
state σ ′, will continue as k σ ′. We call functions from states to resumptions continuations.

Evaluation is defined essentially as before, but with appropriate adjustments, as what were residual
statements must now be evaluated.

x := e,σ ⇒g δ (ret σ [x 7→ JeK σ])

skip,σ ⇒g ret σ

s0,σ ⇒g r s1,r⇒seq
g r′

s0;s1,σ ⇒g r′

σ |= e ∀σ ′.st ,σ
′⇒g k σ ′

if e then st else s f ,σ ⇒g δ (yield k σ)

σ 6|= e ∀σ ′.s f ,σ
′⇒g k σ ′

if e then st else s f ,σ ⇒g δ (yield k σ)

σ |= e ∀σ ′. st ,σ
′⇒g k σ ′ ∀σ ′. while e do st ,k σ ′⇒seq

g k′ σ ′

while e do st ,σ ⇒g δ (yield k′ σ)

σ 6|= e

while e do st ,σ ⇒g δ (ret σ)

s0,σ ⇒g r0 ∀σ ′.s1,σ
′⇒g k1 σ ′ k1,r0�R

g r′0 s1,σ ⇒g r1 ∀σ ′.s0,σ
′⇒g k0 σ ′ k0,r1�L

g r′1
s0 ‖ s1,σ ⇒g r′0 + r′1
s,σ ⇒g r r g r′

atomic s,σ ⇒g r′

σ |= e s,σ ⇒g r r g r′

await e do s,σ ⇒g δ r′
σ 6|= e ∀σ ′. await e do s,σ ′⇒g k σ ′

await e do s,σ ⇒g δ (yield k σ)

In sequential extension of evaluation, the rule for yield is now similar to those for δ and +, so we
are dealing with a proper coinductive prefix closure of the evaluation relation modulo the extra yield
constructor in the ret rule to cater for control release at the midpoint of evaluation of a sequential com-
position.

∀σ ′. s,σ ′⇒g k σ ′

s,ret σ ⇒seq
g yield k σ

s,r⇒seq
g r′

s,δ r⇒seq
g δ r′

s,r0⇒seq
g r′0 s,r1⇒seq

g r′1
s,r0 + r1⇒seq

g r′0 + r′1

∀σ ′. s,k σ ′⇒seq
g k′σ ′

s,yield k σ ⇒seq
g yield k′ σ

Instead of parallel extension of evaluation, we define merging a continuation into a resumption.

k,ret σ �R
g yield k σ

k,r�R
g r′

k,δ r�R
g δ r′

k,r0�R
g r′0 k,r1�R

g r′1

k,r0 + r1�R
g r′0 + r′1

∀σ ′. k,k0 σ ′�R
g k′0 σ ′ ∀σ ′. k0,k σ ′�L

g k′1 σ ′

k,yield k0 σ �R
g yield (λσ ′.k′0 σ ′+ k′1 σ ′) σ

k,ret σ �L
g yield k σ

k,r�L
g r′

k,δ r�L
g δ r′

k,r0�L
g r′0 k,r1�L

g r′1

k,r0 + r1�L
g r′0 + r′1

∀σ ′. k1,k σ ′�R
g k′0 σ ′ ∀σ ′. k,k1 σ ′�L

g k′1 σ ′

k,yield k1 σ �L
g yield (λσ ′.k′0 σ ′+ k′1 σ ′) σ

Here, in the rules for yield, we construct continuations corresponding to evaluating suitable ‖ statements
from any given states.

Closing a resumption is straightforward. To close a yield resumption, we apply the given continuation

68 Coinductive Big-Step Semantics for Concurrency

to the given state, close the resulting resumption and add a unit delay.

ret σ g ret σ

r g r′

δ r g δ r′
r0 g r′0 r1 g r′1
r0 + r1 g r′0 + r′1

k σ g r

yield k σ g δ r

For example, s = x := 1 ‖ (x := x+2;x := x+2), σ = [x 7→ 0], we have

s,σ ⇒g δ (yield (λσ ′.δ (yield (λσ ′′.δ (ret σ ′′[x 7→ σ ′′ x+2])) [x 7→ σ ′ x+2])) [x 7→ 1])
+δ (yield (λσ ′.δ (yield (λσ ′′.δ (ret σ ′′[x 7→ σ ′′ x+2])) [x 7→ 1])

+δ (yield (λσ ′′.δ (ret [x 7→ 1])) [x 7→ σ ′ x+2])) [x 7→ 2])

2.4 Small-step semantics

To validate the big-step semantics of Sec. 2.2, we can compare it to a small-step semantics.

To get a close match with the big-step semantics, where we capture all runs of a program in a single
resumption, we give a (perhaps somewhat nonstandard) small-step semantics that makes it possible to
keep track of all runs of a statement at once.

This semantics works with extended configurations. They are defined as follows. (We use the nota-
tion of an inductive definition, but in fact this datatype is a simple disjoint union.)

σ : state
ret σ : xcfg

s : stmt σ : state
δ (s,σ) : xcfg

s0 : stmt σ0 : state s1 : stmt σ1 : state
(s0,σ0)+(s1,σ1) : xcfg

s : stmt σ : state
yield s σ : xcfg

ret σ is a terminated computation. δ (s,σ) is a computation that after an internal step is in a state σ and
has s to execute yet. (s0,σ0)+(s1,σ1) is a computation that makes a choice and is then in a state σ0 with
s0 to execute or in a state σ1 with s1 to execute. yield s σ is a computation that has released control in a
state σ and has s to execute when (and if) it regains control.

Reduction relates a state to an extended configuration and is defined inductively(!). So small steps
are justified by finite derivations.

x := e,σ → δ (skip,σ [x 7→ JeK σ])

skip,σ → ret σ

s0,σ → ret σ ′

s0;s1,σ → yield s1σ ′
s0,σ → δ (s′0,σ

′)

s0;s1,σ → δ (s′0;s1,σ
′)

s0,σ → (s00,σ0)+(s01,σ1)

s0;s1,σ → (s00;s1,σ0)+(s01;s1,σ1)

s0,σ → yield s′0 σ ′

s0;s1,σ → yield (s′0;s1) σ ′

σ |= e
if e then st else s f ,σ → δ (skip;st ,σ)

σ 6|= e
if e then st else s f ,σ → δ (skip;s f ,σ)

σ |= e
while e do st ,σ → δ (skip;(st ;while e do st),σ)

σ 6|= e
while e do st ,σ → δ (skip,σ)

T. Uustalu 69

s0 ‖ s1,σ → (s0 T s1,σ)+(s0 U s1,σ)

s0,σ → ret σ ′

s0 T s1,σ → yield s1σ ′
s0,σ → δ (s′0,σ

′)

s0 T s1,σ → δ (s′0 T s1,σ
′)

s0,σ → (s00,σ0)+(s01,σ1)

s0 T s1,σ → (s00 T s1,σ0)+(s01 T s1,σ1)

s0,σ → yield s′0 σ ′

s0 T s1,σ → yield (s′0 ‖ s1) σ ′

s1,σ → ret σ ′

s0 U s1,σ → yield s0σ ′
s1,σ → δ (s′1,σ

′)

s0 U s1,σ → δ (s0 U s′1,σ
′)

s1,σ → (s10,σ0)+(s11,σ1)

s0 U s1,σ → (s0 U s1,σ10)+(s0 U s1,σ11)

s1,σ → yield s′1 σ ′

s0 U s1,σ → yield (s0 ‖ s′1) σ ′

s,σ → ret σ ′

atomic s,σ → ret σ ′
s,σ → δ (s′,σ ′)

atomic s,σ → δ (atomic s′,σ ′)

s,σ → (s0,σ0)+(s1,σ1)

atomic s,σ → (atomic s0,σ0)+(atomic s1,σ1)

s,σ → yield s′ σ ′

atomic s,σ → δ (atomic s′,σ ′)

σ |= e
await e do s,σ → δ (atomic s,σ)

σ 6|= e
await e do s,σ → δ (skip;await e do s,σ)

Notice that skip;s differs from s by allowing a control release before s is started. To use some device
like this is unavoidable, if we want the reduction relation to capture exactly one small step leading to
a configuration. We have also used auxiliary statement forms s0 T s1 and s0 U s1 which are like parallel
composition except that s0 resp. s1 makes the first small step.

Maximal multi-step reduction relates a state to a resumption and is defined coinductively:

s,σ → ret σ ′

s,σ →m ret σ ′
s,σ → δ (s′,σ ′) s′,σ ′→m r

s,σ →m δ r

s,σ → (s0,σ0)+(s1,σ1) s0,σ0→m r0 s1,σ1→m r1

s,σ →m r0 + r1

s,σ → yield s′ σ ′

s,σ →m yield s′ σ ′

It applies single-step reduction repeatedly as many times as possible viewing ret and yield configurations
as terminal and develops a resumption.

Evaluation of the big-step semantics agrees with maximal multi-step reduction: s,σ ⇒ r iff s,σ →m

r.

A variation of maximal multi-step reduction that also reduces under yields develops a resumption of
the giant-step semantics of Sec. 2.3.

s,σ → ret σ ′

s,σ →m
g ret σ ′

s,σ → δ (s′,σ ′) s′,σ ′→m
g r

s,σ →m
g δ r

s,σ → (s0,σ0)+(s1,σ1) s0,σ0→m
g r0 s1,σ1→m

g r1

s,σ →m
g r0 + r1

s,σ → yield s′ σ ′ ∀σ ′′.s′,σ ′′→m
g k σ ′′

s,σ →m
g yield k σ ′

Evaluation of the giant-step semantics agrees with this variation of maximal multi-step reduction:
s,σ ⇒g r iff s,σ →m

g r.

70 Coinductive Big-Step Semantics for Concurrency

3 Equivalences of resumptions

When are two resumptions to be considered equivalent? This depends on the purpose at hand. The finest
sensible notion is strong bisimilarity defined for big-step resumptions coinductively by the rules

ret σ ∼ ret σ

r ∼ r∗
δ r ∼ δ r∗

r0 ∼ r0∗ r1 ∼ r1∗
r0 + r1 ∼ r0∗+ r1∗ yield s σ ∼ yield s σ

Classically, this predicate is just equality of big-step resumptions. But in intensional type theory, propo-
sitional equality is stronger; strong bisimilarity as just defined does not imply propositional equality2.

Strong bisimilarity in the sense just defined may feel entirely uninteresting. Yet it is meaningful and
important constructively. E.g., big-step evaluation is deterministic up to strong bisimilarity, but not up to
propositional equality.

For giant-step resumptions, strong bisimilarity is defined by the rules

ret σ ∼g ret σ

r ∼g r∗
δ r ∼g δ r∗

r0 ∼g r0∗ r1 ∼g r1∗

r0 + r1 ∼g r0∗+ r1∗

∀σ ′.k σ ′ ∼g k∗ σ ′

yield k σ ∼g yield k∗ σ

The useful coarser notions ignore order and multiplicity of choices (strong bisimilarity as in process
algebras), exact durations of finite delays (termination-sensitive weak bisimilarity) or both. The defini-
tion of termination-sensitive weak bisimilarity requires combining or mixing induction and coinduction,
with several caveats to avoid. First, it is easy to misdefine weak bisimilarity so that it equates any resump-
tion with the divergent resumption and therefore all resumptions. Second, a fairly attractive definition
fails to give reflexivity without the use of excluded middle, which is a warning that the definition is not
the “right one” from the constructive point of view.

Let us look at the definition of weak bisimilarity for big-step resumptions. First we define conver-
gence of a resumption inductively by the rules

ret σ ↓ ret σ

r ↓ r′

δ r ↓ r′
r0 ↓ r′0 r1 ↓ r′1
r0 + r1 ↓ r′0 + r′1 yield s σ ↓ yield s σ

Intuitively, a resumption r converges to another resumption r′ if r′ is a ret, + or yield resumption and can
be obtained from r by removing a finite number of initial unit delays.

We also define divergence coinductively by the rule

r ↑
δ r ↑

Now termination-sensitive weak bisimilarity is defined coinductively by the rules

r ↓ r′ r′ ∼= r′∗ r∗ ↓ r′∗
r ≈ r∗
r ≈ r∗

δ r ≈ δ r∗

using an auxiliary predicate defined as a disjunction by the rules

ret σ ∼= ret σ

r0 ≈ r0∗ r1 ≈ r1∗
r0 + r1 ∼= r0∗+ r1∗ yield s σ ∼= yield s σ

2This phenomenon is similar to extensional function equality, i.e., propositional equality of two functions on all arguments:
it does not imply propositional equality of the functions.

T. Uustalu 71

While it might seem reasonable to replace the second rule in the definition of weak bisimilarity by

r ↑ r∗ ↑
r ≈ r∗

it is actually not a good idea in a constructive setting (classically one gets an equivalent definition).
Constructively, it is not the case that any resumption would either converge or diverge (it takes the lesser
principle of omniscience, a weak instance of excluded middle to prove this). Therefore, we would not be
able to prove weak bisimilarity reflexive.

4 Functional-style semantics

Since we collect the possible executions of a statement into a single computation tree and divergence is
represented by infinite delays, evaluation of the big-step semantics is deterministic (up to strong bisimi-
larity of big-step resumptions) and total: on one hand, for any r, r∗, if s,σ ⇒ r and s,σ ⇒ r∗, then r∼ r∗,
and on the other, there exists r such that s,σ ⇒ r. This means that the evaluation relation can be turned
into a function. As a result, from the constructive point of view, evaluations can not only be checked, but
also computed—which is only good of course.

Here is an equational specification of this function that can be massaged into an honest definition by
structural corecursion.
Evaluation:

eval (x := e) σ = δ (ret σ [x 7→ JeK σ])
eval skip σ = ret σ

eval (s0;s1) σ = evalseq s1 (eval s0 σ)
eval (if e then st else s f) σ = if JeK σ then δ (yield st σ) else δ (yield st σ)
eval (while e do st) σ = if JeK σ then δ (yield (st ;while e do st) σ) else δ (ret σ)
eval (s0 ‖ s1) σ = evalparR s1 (eval s0 σ)+ evalparL s0 (eval s1 σ)
eval (atomic s) σ = close (eval s σ)
eval (await e do s) σ = if JeK σ then δ (close (eval s σ)) else δ (yield (await e do s) σ)

Sequential extension of evaluation:

evalseq s (ret σ) = yield s σ

evalseq s (δ r) = δ (evalseq s r)
evalseq s (r0 + r1) = evalseq s r0 + evalseq s r1
evalseq s (yield s0 σ) = yield (s0;s) σ

Parallel extension of evaluation:

evalparR s (ret σ) = yield s σ

evalparR s (δ r) = δ (evalparR s r)
evalparR s (r0 + r1) = evalparR s r0 + evalparR s r1
evalparR s (yield s0 σ) = yield (s0 ‖ s) σ

evalparL s (ret σ) = yield s σ

evalparL s (δ r) = δ (evalparL s r)
evalparL s (r0 + r1) = evalparL s r0 + evalparL s r1
evalparL s (yield s1 σ) = yield (s ‖ s1) σ

72 Coinductive Big-Step Semantics for Concurrency

Closing a resumption:
close (ret σ) = ret σ

close (δ r) = δ (close r)
close (r0 + r1) = close r0 + close r1
close (yield s σ) = δ (close (eval s σ))

Functional and relational evaluation of the big-step semantics agree: eval s σ ∼ r iff s,σ ⇒ r.
Similarly, evaluation of the giant-step semantics is deterministic and total and can be turned into a

function.
Evaluation:

evalg (x := e) σ = δ (ret σ [x 7→ JeK σ])
evalg skip σ = ret σ

evalg (s0;s1) σ = evalseqg s1 (evalg s0 σ)

evalg (if e then st else s f) σ = if JeK σ then δ (yield (evalg st) σ) else δ (yield (evalg st) σ)
evalg (while e do st) σ = if JeK σ then δ (yield (evalseqg (while e do st)◦ evalg st) σ)

else δ (ret σ)
evalg (s0 ‖ s1) σ = mergeRg (evalg s1) (evalg s0 σ)+mergeLg (evalg s0) (evalg s1 σ)

evalg (atomic s) σ = closeg (evalg s σ)
evalg (await e do s) σ = if JeK σ then δ (closeg (evalg s σ))

else δ (yield (evalg (await e do s)) σ)

Sequential extension of evaluation:

evalseqg s (ret σ) = yield (evalg s) σ

evalseqg s (δ r) = δ (evalseqg s r)
evalseqg s (r0 + r1) = evalseqg s r0 + evalseqg s r1

evalseqg s (yield k σ) = yield (evalseqg s◦ k) σ

Merge of a continuation into a resumption:

mergeRg k (ret σ) = yield k σ

mergeRg k (δ r) = δ (mergeRg k r)
mergeRg k (r0 + r1) = mergeRg k r0 +mergeRg k r1

mergeRg k (yield k0 σ) = yield (λσ ′. mergeRg k (k0 σ ′)+mergeLg k0 (k σ ′)) σ

mergeLg k (ret σ) = yield k σ

mergeLg k (δ r) = δ (mergeLg k r)
mergeLg k (r0 + r1) = mergeLg k r0 +mergeLg k r1

mergeLg k (yield k1 σ) = yield (λσ ′. mergeRg k1 (k σ ′)+mergeLg k (k1 σ ′)) σ

Closing a resumption:
closeg (ret σ) = ret σ

closeg (δ r) = δ (closeg r)
closeg (r0 + r1) = closeg r0 + closeg r1
closeg (yield k σ) = δ (closeg(k σ))

Functional and relational evaluation of the giant-step semantics agree: evalg s σ ∼g r iff s,σ ⇒g r.
The reduction relation of the small-step semantics is also deterministic and total and can thus be

turned into a function. We refrain from spelling out the details here.

T. Uustalu 73

5 Trace-based semantics

A trace-based big-step semantics is obtained from the resumption-based big-step semantics straightfor-
wardly by removing the + constructor of resumptions, splitting the evaluation rule for ‖ into two rules
(thereby turning evaluation nondeterministic) and removing the rules for + in the definitions of extended
evaluations and closing. Because of the nondeterminism, trace-based evaluation cannot be turned into a
function. But it is still total, as any scheduling leads to a valid trace. Differently from standard inductive
big-step semantics, divergence from endless work or waiting does not lead to a “lost trace”.

In detail, the different ingredients of the semantics are defined as follows.
Traces:

σ : state
ret σ : trace

t : trace
δ t : trace

s : stmt σ : state
yield s σ : trace

Evaluation:

x := e,σ ⇒ δ (ret σ [x 7→ JeK σ]) skip,σ ⇒ ret σ

s0,σ ⇒ t s1, t⇒seq t ′

s0;s1,σ ⇒ t ′

σ |= e

if e then st else s f ,σ ⇒ δ (yield st σ)

σ 6|= e

if e then st else s f ,σ ⇒ δ (yield s f σ)

σ |= e

while e do st ,σ ⇒ δ (yield (st ;while e do st) σ)

σ 6|= e

while e do st ,σ ⇒ δ (ret σ)

s0,σ ⇒ t s1, t⇒parR t ′

s0 ‖ s1,σ ⇒ t ′
s1,σ ⇒ t s0, t⇒parL t ′

s0 ‖ s1,σ ⇒ t ′
s,σ ⇒ t t t ′

atomic s,σ ⇒ t ′

σ |= e s,σ ⇒ t t t ′

await e do s,σ ⇒ δ t ′
σ 6|= e

await e do s,σ ⇒ δ (yield (await e do s) σ)

Sequential extension of evaluation:

s,ret σ ⇒seq yield s σ

s, t⇒seq t ′

s,δ t⇒seq δ t ′ s,yield s0 σ ⇒seq yield (s0;s) σ

Parallel extension of evaluation:

s,ret σ ⇒parR yield s σ

s, t⇒parR t ′

s,δ t⇒parR δ t ′ s,yield s0 σ ⇒parR yield (s0 ‖ s) σ

s,ret σ ⇒parL yield s σ

s, t⇒parL t ′

s,δ t⇒parL δ t ′ s,yield s1 σ ⇒parL yield (s ‖ s1) σ

Closing a trace:

ret σ ret σ

t t ′

δ t δ t ′
s,σ ⇒ t t t ′

yield s σ δ t ′

The giant-step case is more interesting. In giant-step resumptions, we had two kinds of branching:
in addition to the binary branching of +, the branching over all states of yield. For a trace-based giant-
step semantics, we would like to have a fully linear concept of traces with neither kind of branching.
Evaluation must then not only “guess” which part of a parallel composition gets to make the first small
step, but also which state control is regained in after suspension.

74 Coinductive Big-Step Semantics for Concurrency

Accordingly, we define traces without a + constructor. Moreover, we modify the typing of yield.

σ : state
ret σ : traceg

t : traceg

δ t : traceg

σ ′ : state t : traceg σ : state

yield (σ ′, t) σ : traceg

The idea is to have the trace yield (σ ′, t) σ to stand for a computation that is suspended in state σ .
Control is returned to it in state σ ′ and then it continues as recorded in trace t.

Evaluation is defined as for the resumption-based semantics, but there are two rules for parallel
composition and in the rules where a yield trace is produced σ ′ is quantified existentially in premises
rather than universally.

x := e,σ ⇒g δ (ret σ [x 7→ JeK σ])

skip,σ ⇒g ret σ

s0,σ ⇒g t s1, t⇒seq
g t ′

s0;s1,σ ⇒g t ′

σ |= e st ,σ
′⇒g t

if e then st else s f ,σ ⇒g δ (yield (σ ′, t) σ)

σ 6|= e s f ,σ
′⇒g t

if e then st else s f ,σ ⇒g δ (yield (σ ′, t) σ)

σ |= e st ,σ
′⇒g t while e do st , t⇒seq

g t ′

while e do st ,σ ⇒g δ (yield (σ ′, t) σ)

σ 6|= e

while e do st ,σ ⇒g δ (ret σ)

s0,σ ⇒g t0 s1,σ
′⇒g t1 (σ ′, t1), t0�R

g t ′

s0 ‖ s1,σ ⇒g t ′
s1,σ ⇒g t1 s0,σ

′⇒g t0 (σ ′, t0), t1�L
g t ′

s0 ‖ s1,σ ⇒g t ′

s,σ ⇒g t t g t ′

atomic s,σ ⇒g t ′

σ |= e s,σ ⇒g t t g t ′

await e do s,σ ⇒g δ t ′
σ 6|= e await e do s,σ ′⇒g t

await e do s,σ ⇒g δ (yield (σ ′, t) σ)

Similar considerations apply to sequential extension of evaluation—

s,σ ′⇒g t

s,ret σ ⇒seq
g yield (σ ′, t) σ

s, t⇒seq
g t ′

s,δ t⇒seq
g δ t ′

s, t⇒seq
g t ′

s,yield (σ ′, t) σ ⇒seq
g yield (σ ′, t ′) σ

—and to merging a continuation into a trace—

k,ret σ �R
g yield k σ

k, t�R
g t ′

k,δ t�R
g δ t ′

k, t�R
g t ′

k,yield (σ ′, t) σ �R
g yield (σ ′, t ′) σ

k, t�L
g t ′

(σ ′, t),yield k σ �R
g yield (σ ′, t ′) σ

k,ret σ �L
g yield k σ

k, t�L
g t ′

k,δ t�L
g δ t ′

k, t�R
g t ′

(σ ′, t),yield k σ �L
g yield (σ ′, t ′) σ

k, t�L
g t ′

k,yield (σ ′, t) σ �L
g yield (σ ′, t ′) σ

Closing a trace is defined as follows. Closing a yield trace can only succeed if the control release and
grab states coincide, i.e., the grab state has been guessed correctly for the closed-system situation.

ret σ g ret σ

t g t ′

δ t g δ t ′
t g t ′

yield (σ , t) σ g δ t ′

T. Uustalu 75

6 Conclusion

We have shown that, with coinductive denotations and coinductive evaluation, it is possible to give simple
and meaningful big-step descriptions of semantics of languages with concurrency. The key ideas remain
the same as in the purely sequential case. Most importantly, due care must be taken of the possibilities
of divergence. In particular, even diverging loops or await statements must be productive (by growing
resumptions or traces by unit delays). Finite delays can then be equated by a suitable notion of weak
bisimilarity.

Although we could not delve into this topic here, our definitions and proofs benefit heavily from the
fact that the datatype of resumptions is a monad, in fact a completely iterative monad, and moreover a
free one (as long as we equate only strongly bisimilar resumptions).

With Wolfgang Ahrendt and Keiko Nakata, we have devised a coinductive big-step semantics for
ABS, an exploratory object-oriented language with an intricate concurrency model, developed in the
FP7 ICT project HATS. ABS has cooperative scheduling of tasks (method invocations) communicating
via shared memory (fields) within every object and preemptive scheduling of objects communicating via
asynchronous method calls and futures. This work will be reported elsewhere.

Acknowledgements This work was first presented at the SEFM 2011 Summer School in Montevideo
in November 2011. I thank the organizers for the invitation.

This research was supported by the EU FP7 ICT project HATS, the ERDF financed CoE project
EXCS, the Estonian Science Foundation grant no. 9475 and the Estonian Ministry of Education and
Research target-financed research theme no. 0140007s12.

References

[1] R. Amadio (2012): Operational methods for concurrency. Draft lecture notes. URL http://www.pps.

univ-paris-diderot.fr/~amadio/Ens/concurrency.pdf

[2] D. Ancona (2012): Soundness of object-oriented languages with coinductive big-step semantics. In: J. Noble
(ed.) Proc. of 26th Europ. Conf. on Object-Oriented Programming, ECOOP 2012 (Beijing, June 2012). Lect.
Notes in Comput. Sci. 7313. Springer, Berlin, pp. 459–483. doi: 10.1007/978-3-642-31057-7 21

[3] V. Capretta (2005): General recursion via coinductive types. Log. Methods in Comput. Sci. 1(2), article 1.
doi: 10.2168/lmcs-1(2:1)2005

[4] P. Cenciarelli & E. Moggi (1993): A syntactic approach to modularity in denotational semantics. In: Proc.
of 5th Biennial Meeting on Category Theory and Computer Science, CTCS ’93 (Amsterdam, Sept. 1993).
Tech. report, CWI, Amsterdam.

[5] P. Cousot & R. Cousot (2009): Bi-inductive operational semantics. Inf. and Comput. 207(2), pp. 258–283.
doi: 10.1016/j.ic.2008.03.025

[6] N. A. Danielsson (2012): Operational semantics using the partiality monad. In: Proc. of 17th ACM SIG-
PLAN Int. Conf. on Functional Programming, ICFP ’12 (Copenhagen, Sept. 2012). ACM Press, New York,
pp. 127–138. doi: 10.1145/2364527.2364546

[7] S. Goncharov & L. Schröder (2011): A coinductive calculus for asynchronous side-effecting processes. In:
O. Owe, M. Steffen & J. A. Telle (eds.) Proc. of 18th Int. Symp. on Fundamentals of Computation The-
ory, FCT 2011 (Oslo, Aug. 2011). Lect. Notes in Comput. Sci. 6914. Springer, Berlin, pp. 276–287. doi:
10.1007/978-3-642-22953-4 24

http://www.pps.univ-paris-diderot.fr/~amadio/Ens/concurrency.pdf
http://www.pps.univ-paris-diderot.fr/~amadio/Ens/concurrency.pdf
http://dx.doi.org/10.1007/978-3-642-31057-7_21
http://dx.doi.org/10.2168/lmcs-1(2:1)2005
http://dx.doi.org/10.1016/j.ic.2008.03.025
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1007/978-3-642-22953-4_24
http://dx.doi.org/10.1007/978-3-642-22953-4_24

76 Coinductive Big-Step Semantics for Concurrency

[8] W. L. Harrison (2006): The essence of multitasking. In: M. Johnson & V. Vene (eds.) Proc. of 11th Int. Conf.
on Algebraic Methdology and Software Technology, AMAST 2006 (Kuressaare, July 2006). Lect. Notes in
Comput. Sci. 4019. Springer, Berlin, pp. 158–172. doi: 10.1007/11784180 14

[9] X. Leroy & H. Grall (2009): Coinductive big-step operational semantics. Inf. and Comput. 207(2), pp. 285–
305. doi: 10.1016/j.ic.2007.12.004

[10] K. Mitchell (1994): Concurrency in a natural semantics. Report ECS-LFCS-94-311. Univ. of Edinburgh.
[11] K. Nakata & T. Uustalu (2009): Trace-based coinductive operational semantics for While: big-step and

small-step, relational and functional styles. In: S. Berghofer, T. Nipkow, C. Urban & M. Wenzel (eds.) Proc.
of 22nd Int. Conf. on Theorem Proving in Higher-Order Logics, TPHOLs 2009 (Munich, Aug. 2009). Lect.
Notes in Comput. Sci. 5674. Springer, Berlin, pp. 375–390. doi: 10.1007/978-3-642-03359-9 26

[12] K. Nakata & T. Uustalu (2010): A Hoare logic for the coinductive trace-based big-step semantics of While.
In: A. D. Gordon (ed.) Proc. of 19th Europ. Symp. on Programming, ESOP 2010 (Paphos, March 2010).
Lect. Notes in Comput. Sci. 6012. Springer, Berlin, pp. 488–506. doi: 10.1007/978-3-642-11957-6 26

[13] K. Nakata & T. Uustalu (2010). Resumptions, weak bisimilarity and big-step semantics for While with in-
teractive I/O: an exercise in mixed induction-coinduction. In: L. Aceto & P. Sobocinski (eds.) Proc. of 7th
Wksh. on Structural Operational Semantics, SOS 2010 (Paris, Aug. 2010). Electron. Proc. in Theor. Comput.
Sci. 32. Open Publishing Assoc., Sydney, pp. 57–75. doi: 10.4204/eptcs.32.5

[14] G. D. Plotkin (1976): A powerdomain construction. SIAM J. of Comput. 5(3), pp. 452–487. doi:
10.1137/0205035

A Resumption-based semantics for cooperative scheduling

Here we give the syntax of Section 2.1 a cooperative scheduling interpretation.
It might be argued that this interpretation is more foundational than the pre-emptive scheduling

interpretation—all control release is explicit and is only due to await statements. Hence all yields stem
from evaluation of await statements.

A.1 Big-step semantics

Evaluation:

x := e,σ ⇒ δ (ret σ [x 7→ JeK σ]) skip,σ ⇒ ret σ

s0,σ ⇒ r s1,r⇒seq r′

s0;s1,σ ⇒ r′

σ |= e st ,σ ⇒ r

if e then st else s f ,σ ⇒ δ r

σ 6|= e s f ,σ ⇒ r

if e then st else s f ,σ ⇒ δ r

σ |= e st ,σ ⇒ r while e do st ,r⇒seq r′

while e do st ,σ ⇒ δ r′
σ 6|= e

while e do st ,σ ⇒ δ (ret σ)

s0,σ ⇒ r0 s1,r0⇒parR r′0 s1,σ ⇒ r1 s0,r1⇒parL r′1
s0 ‖ s1,σ ⇒ r′0 + r′1

s,σ ⇒ r r r′

atomic s,σ ⇒ r′

σ |= e s,σ ⇒ r r r′

await e do s,σ ⇒ δ r′
σ 6|= e

await e do s,σ ⇒ δ (yield (await e do s) σ)

Sequential extension of evaluation:

s,σ ⇒ r
s,ret σ ⇒seq r

s,r⇒seq r′

s,δ r⇒seq δ r′
s,r0⇒seq r′0 s,r1⇒seq r′1

s,r0 + r1⇒seq r′0 + r′1 s,yield s0 σ ⇒seq yield (s0;s) σ

http://dx.doi.org/10.1007/11784180_14
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.1007/978-3-642-11957-6_26
http://dx.doi.org/10.4204/eptcs.32.5
http://dx.doi.org/10.1137/0205035
http://dx.doi.org/10.1137/0205035

T. Uustalu 77

Parallel extension of evaluation:

s,σ ⇒ r

s,ret σ ⇒parR r

s,r⇒parR r′

s,δ r⇒parR δ r′
s,r0⇒parR r′0 s,r1⇒parR r′1

s,r0 + r1⇒parR r′0 + r′1 s,yield s0 σ ⇒parR yield (s0 ‖ s) σ

s,σ ⇒ r

s,ret σ ⇒parL r

s,r⇒parL r′

s,δ r⇒parL δ r′
s,r0⇒parL r′0 s,r1⇒parL r′1

s,r0 + r1⇒parL r′0 + r′1 s,yield s1 σ ⇒parL yield (s ‖ s1) σ

Closing a resumption:

ret σ ret σ

r r′

δ r δ r′
r0 r′0 r1 r′1
r0 + r1 r′0 + r′1

s,σ ⇒ r r r′

yield s σ δ r′

A.2 Giant-step semantics

Evaluation:

x := e,σ ⇒g δ (ret σ [x 7→ JeK σ]) skip,σ ⇒g ret σ

s0,σ ⇒g r s1,r⇒seq
g r′

s0;s1,σ ⇒g r′

σ |= e st ,σ ⇒g r

if e then st else s f ,σ ⇒g δ r

σ 6|= e s f ,σ ⇒g r

if e then st else s f ,σ ⇒g δ r

σ |= e st ,σ ⇒g r while e do st ,r⇒seq
g r′

while e do st ,σ ⇒g δ r′
σ 6|= e

while e do st ,σ ⇒g δ (ret σ)

s0,σ ⇒g r0 ∀σ ′.s1,σ
′⇒g k1 σ ′ k1,r0�R

g r′0 s1,σ ⇒g r1 ∀σ ′.s0,σ
′⇒g k0 σ ′ k0,r1�L

g r′1
s0 ‖ s1,σ ⇒g r′0 + r′1
s,σ ⇒g r r g r′

atomic s,σ ⇒g r′

σ |= e s,σ ⇒g r r g r′

await e do s,σ ⇒g δ r′
σ 6|= e ∀σ ′. await e do s,σ ′⇒g k σ ′

await e do s,σ ⇒g δ (yield k σ)

Sequential extension of evaluation:

s,σ ⇒g r

s,ret σ ⇒seq
g r

s,r⇒seq
g r′

s,δ r⇒seq
g δ r′

s,r0⇒seq
g r′0 s,r1⇒seq

g r′1
s,r0 + r1⇒seq

g r′0 + r′1

∀σ ′. s,k σ ′⇒seq
g k′σ ′

s,yield k σ ⇒seq
g yield k′ σ

Merging a continuation into a resumption:

k,ret σ �R
g k σ

k,r�R
g r′

k,δ r�R
g δ r′

k,r0�R
g r′0 k,r1�R

g r′1

k,r0 + r1�R
g r′0 + r′1

∀σ ′. k,k0 σ ′�R
g k′0 σ ′ ∀σ ′. k0,k σ ′�L

g k′1 σ ′

k,yield k0 σ �R
g yield (λσ ′.k′0 σ ′+ k′1 σ ′) σ

k,ret σ �L
g k σ

k,r�L
g r′

k,δ r�L
g δ r′

k,r0�L
g r′0 k,r1�L

g r′1

k,r0 + r1�L
g r′0 + r′1

∀σ ′. k1,k σ ′�R
g k′0 σ ′ ∀σ ′. k,k1 σ ′�L

g k′1 σ ′

k,yield k1 σ �L
g yield (λσ ′.k′0 σ ′+ k′1 σ ′) σ

Closing a resumption:

ret σ g ret σ

r g r′

δ r g δ r′
r0 g r′0 r1 g r′1
r0 + r1 g r′0 + r′1

k σ g r

yield k σ g δ r

78 Coinductive Big-Step Semantics for Concurrency

A.3 Small-step semantics

Reduction:

x := e,σ → δ (skip,σ [x 7→ JeK σ])

skip,σ → ret σ

s0,σ → ret σ ′ s1,σ
′→ c

s0;s1,σ → c

s0,σ → δ (s′0,σ
′)

s0;s1,σ → δ (s′0;s1,σ
′)

s0,σ → (s00,σ0)+(s01,σ1)

s0;s1,σ → (s00;s1,σ0)+(s01;s1,σ1)

s0,σ → yield s′0 σ ′

s0;s1,σ → yield (s′0;s1) σ ′

σ |= e
if e then st else s f ,σ → δ (st ,σ)

σ 6|= e
if e then st else s f ,σ → δ (s f ,σ)

σ |= e
while e do st ,σ → δ (st ;while e do st ,σ)

σ 6|= e
while e do st ,σ → δ (skip,σ)

s0 ‖ s1,σ → (s0 T s1,σ)+(s0 U s1,σ)

s0,σ → ret σ ′ s1,σ
′→ c

s0 T s1,σ → c

s0,σ → δ (s′0,σ
′)

s0 T s1,σ → δ (s′0 T s1,σ
′)

s0,σ → (s00,σ0)+(s01,σ1)

s0 T s1,σ → (s00 T s1,σ0)+(s01 T s1,σ1)

s0,σ → yield s′0 σ ′

s0 T s1,σ → yield (s′0 ‖ s1) σ ′

s1,σ → ret σ ′ s0,σ
′→ c

s0 U s1,σ → c

s1,σ → δ (s′1,σ
′)

s0 U s1,σ → δ (s0 U s′1,σ
′)

s1,σ → (s10,σ0)+(s11,σ1)

s0 U s1,σ → (s0 U s1,σ10)+(s0 U s1,σ11)

s1,σ → yield s′1 σ ′

s0 U s1,σ → yield (s0 ‖ s′1) σ ′

s,σ → ret σ ′

atomic s,σ → ret σ ′
s,σ → δ (s′,σ ′)

atomic s,σ → δ (atomic s′,σ ′)

s,σ → (s0,σ0)+(s1,σ1)

atomic s,σ → (atomic s0,σ0)+(atomic s1,σ1)

s,σ → yield s′ σ ′

atomic s,σ → δ (atomic s′,σ ′)

σ |= e
await e do s,σ → δ (atomic s,σ)

σ 6|= e
await e do s,σ → δ (suspend;await e do s,σ)

suspend,σ → yield skip σ

Here suspend is an auxiliary statement form that we need for giving the reduction rule for await. It
releases control immediately (differently from await true do skip which makes a small internal step
first).

	1 Introduction
	2 An example language and resumption-based semantics
	2.1 Syntax
	2.2 Big-step semantics
	2.3 Giant-step semantics
	2.4 Small-step semantics

	3 Equivalences of resumptions
	4 Functional-style semantics
	5 Trace-based semantics
	6 Conclusion
	A Resumption-based semantics for cooperative scheduling
	A.1 Big-step semantics
	A.2 Giant-step semantics
	A.3 Small-step semantics

