Communicating machines as a dynamic binding mechanism

of services
Ignacio Vissani Carlos Gustavo Lopez Pombo
Department of computing Department of computing Consejo Nacional de Investigaciones
School of Science School of Science Cientificas y Tecnologicas
Universidad de Buenos Aires Universidad de Buenos Aires
i vi ssani @Ic. uba. ar cl ponrbo@lc. uba. ar

Emilio Tuosto

Department of Computer Science
University of Leicester

enmilio@eicester. ac. uk

Distributed software is becoming more and more dynamic ppstt applications able to respond and
adapt to the changes of their execution environment. Ftarnieg service-oriented computigOC)
envisages applications as services running over globa#jlable computational resources where
discovery and binding between them is transparently perédrby a middlewareAsynchronous Re-
lational Networks(ARNS) is a well-known formal orchestration model, basechgpergraphs, for
the description of service-oriented software artefactisor€ography and orchestration are the two
main design principles for the development of distributeftvgare. In this work, we proposgom-
municating Relational NetworK€RNs), which is a variant of ARNs, but relies on choreograph
for the characterisation of the communicational aspects safftware artefact, and for making their
automated analysis more efficient.

1 Introduction and motivation

Distributed software is becoming more and more dynamic ppstt applications able to respond and
adapt to the changes of their execution environment. Faoarice,service-oriented computingsOC)
envisages applications as services running over globadlifadle computational resources; at run-time,
services search for other services to bind to and use. Sefta@hitects and programmers have no
control as to the nature of the components that an applitatia bind to due to the fact that the discovery
and binding are transparently performed by a middleware.

Choreography and orchestration are the two main designiplés for the development of distributed
software (see e.g..[[6]). Coordination is attained in thetecase by amrchestrator specifying (and
possibly executing) the distributed work-flow. Choreodmaeatures the notion ajlobal view that is
a holistic specification describing distributed interac amenable of being “projected” onto the con-
stituent pieces of software. In an orchestrated model, iftalmited computational components coordi-
nate with each other by interacting with a special compagribatorchestratorwhich at run time decides
how the work-flow has to evolve. For example the orchestrataa service offering the booking of
a flight and a hotel may trigger a service for hotel and one fghtflbooking in parallel, wait for the
answers of both sites, and then continue the execution. hogeographed model, the distributed com-
ponents autonomously execute and interact with each othtredbasis of a local control flow expected

*This work has been supported by the European Union Seveathdwork Programme under grant agreement no. 295261
(MEALS)

S. J. Gay and J. Alglave (Eds.): Programming Language Apgpesato
Concurrency- and Communication-Centric Software (PLACBS5).
EPTCS 203, 2016, pp. 85398, d0i:10.4204/EPTCS.203.7

http://dx.doi.org/10.4204/EPTCS.203.7

86 Communicating machines as a dynamic binding mechanisnrates

to comply with their role as specified in the “global viewpir-or example, the choreography of hotel-
flight booking example above could specify that the flightmer interacts with the hotel service which
in turns communicates the results to the buyer.

We use Asynchronous relational networks (ARNS) [8] as thesbaf our approach. In ARNSs, sys-
tems are formally modelled as hypergraphs obtained by atimgehyperarcs which represent units of
computation and communication. More precisely, hyperaresnterpreted as either processgeryices
or unit of computation) or as communication channels (uhica@mmunication). The nodes can only
be adjacent to: 1. one process hyperarc and one communidataerarc, meaning that the computa-
tion formalised by the process hyperarc is bound througltémemunication channel formalised by the
communication hyperarc, 2. one process hyperarc, meamigt is aprovides-pointhrough which the
computation formalised by the process hyperarc can be bimuad activity that requires that particular
service, or 3. one communication hyperarc, meaning thatdaréquires-pointto which a given service
can be bound using one of its provides-points. The rationalénd this separation is that a provides-
point yields the interface through which a service expdgdunctionality while a requires-point is the
interface through which an activity expects certain serti provide a functionality. Composition of
services can then be understood as fusing a provides-pamawequires-point in a way that the service
exported by the former satisfies the expectations of therJatsually formalised as contracts in some
formal language.

Hyperarcs are labelled with (Muller) automata; in the casgrocess hyperarcs, automata formalise
the interactions carried out by that particular serviceleytm the case of communication hyperarcs, they
represent the orchestrator coordinating the behaviouneoparticipants of the communication. In fact,
the automator\ associated to a communication hyperarc coordinates tlegses bound to its ports by,
at each time, interacting with one of the processes and idgcidepending on the stafeis in, what is
the next interaction (if any) to execute. The global behawad the system is then obtained by composing
the automata associated to process and communicationdnggein the forthcoming sections we will
introduce a running example to show how definitions work aoraceetely discuss the contributions of
the present work.

As anticipated, the composition of ARNSs yields a semantiinidmn of a binding mechanism of
services in terms of “fusion” of provides-points and regaipoints. Once coalesced, the nodes become
“internal”, that is they are no longer part of the interfaced &annot be used for further bindings. In
existing works, like[[8], the binding is subject to an entaint relation betweelnear temporal logid7]
theories attached to the provides- and requires-pointscirabe checked by resorting to any decision
procedure for LTL (for example, [4])

Although the orchestration model featured by ARNSs is rathgressive and versatile, we envisage
two drawbacks:

1. the binding mechanism based on LTL-entailment estaddisin asymmetric relation between
requires-point and provides-point as it formalises a motibtrace inclusion; also,

2. including explicit orchestrators (the automata labglihe communication hyperarcs), in the com-
position, together with the computational units (the awtariabelling the process hyperarcs) in-
creases the size of the resulting automaton making the sigahore expensive.

In the present work we proposeommunicating Relational NetworK€RNSs), a variant of ARNs
relying on choreographies to overcome those issues, whevélps-points are labelled wiGommuni-
cating Finite State Maching2] declaring the behaviour (from the communication pecsige) exported
by the service, and communication hyperarcs are labelléd @ibbal Graphs[3] declaring the global
behaviour of the communication channel. In this way, ouppsal blends the orchestration framework

Vissani, Lopez Pombo, Tuosto 87

of ARNs with a choreography model based on global graphs amghinicating machines. Unlike most
of the approaches in the literature (where choreographyoactiestration are considered antithetical),
we follow a comprehensive approach showing how choreogrbped mechanisms could be useful in
an orchestration model.

The present work is organised as follows; in Secfibn 2 weideothe formal definitions of most of
the concepts used along this paper. Such definitions astrdbed with a running example introduced in
SectiorB. In Sectiohl4 we introduce the main contributiothaf paper, being the definition of CRNs,
we show how they are used to rewrite the running example andisgess several aspects regarding the
design-time checking to assert internal coherence of @syihe run-time checking ruling the binding
mechanism and the cost of software analysis. Finally, ini®@#8 we draw some conclusions and discuss
some further research directions.

2 Preliminaries

In this section we present the preliminary definitions us$edughout the rest of the present work. We
first summarise communicating machines and global graptewimg definitions from[[5] and from [3].
Finally we introduce some basic definitions in order to pne2eRNs; the definitions here are adapted
from [8].

2.1 Communicating machines and global graphs

Communicating machines were introduced.ih [2] to model dadyscommunication protocols in terms
of finite transition systems capable of exchanging messtigeagh some channels. We fix a finite set
Msg of messageans a finite set of participants.

Definition 1 ([2]) Acommunicating finite state machina Msg (CFSMs, for short) is a finite transition
systemQ, C,qo, Msg,d) where

* Qis a finite set of states;

« C={pqeP?|p#q)is asetof channels;

* o€ Qis an initial state;

¢ cQx(Cx{!,?} xMsg) xQ is a finite set oftransitions

A communicating systens a mapSassigning a CFSMy(p) to eachp € P. We write ¢e S(p) when q is
a state of the machin®(p) and likewise and ¢ S(p) when t is a transition o8(p).

The execution of a system is defined in terms of transitiomwdxen configurations as follows:

Definition 2 Theconfigurationof communicating syste8is a pair s= (a,\Tv) whereq = (qp)p€ where

0p € X(p) for eachp e P andw = (W,,q)pqec with wpq € Msg™. A configuration §= (q',w’) is reachable

from another configurations(g,w) by thefiring of the transitiort (written s> §) if there existsn € Msg
such that either:

1. t=(dp,pq'm,qy) € J, and

(@) o, =gy forall p’#p; and
(b) W =Wpq-m and W, ., = Wyq for all p'q” # pq; or

2. t=(0q,Pq?m,) € & and

88 Communicating machines as a dynamic binding mechanisnrates

(@) o, =gy forall p’#q; and
(b) MW, =Wpq and W, = Wyq for all p'q’ # pq

A global graphis a finite graph whose nodes are labelled over thé s€tO,®, 4,0} U {s—>r:m|
s,r € P Am e Msg} according to the following definition.

Definition 3 A global graph(over P and Msg) is a labelled graphVV,A,A\) with a set ofvertexesv, a
set ofedgesAcV xV, andlabelling functionA :V — L such thatA~1(Q) is a singleton and, for each
veV

1. if A(v) is of the forms — r : m then v has a unique incoming and unique outgoing edges,
2. if A(v) € {¢&,m} then v has at least one incoming edge and one outgoing edge and
3. A(v) = © then v has zero outgoing edges.

Labels — r: m represents an interaction where machireends a message to machiner. A vertex
with label O reperesents the source of the global graphrepresents the termination of a branch or of
a threadm indicates forking or joining threads, arg marks vertexes corresponding to branch or merge
points, or to entry points of loops.

In the following we use a projection algorithm that given alil graph retrieves communicating
machines for each of its participants. Undestranding sigdrithm is not necessary for the sake of this
paper and the interested reader is referredlto [5] for itsdiefn.

2.2 Asynchronous relational networks

A Muller automaton is a finite state automaton where finakestatre replaced by a family of states to
define an acceptance condition on infinite words.

Definition 4 (Muller automaton) A Muller automatorover a finite set A ofictionsis a structure of the
form (Q,A,A, 1, F) , where

1. Qis afinite set (obtate}
2. Ac QxAxQis atransition relatior{we write pi> g when(p,1,q) €4),
3. 1c Qs the set ofnitial states and

4. F c 29 is the set offinal-state sets

We say that an automatactceptsan inifinite tracew = gp N 01 5, ifand only if ¢ € | and there
exists i> 0 and Se F such that for all £ S, the seUicjaq;-s{]} is infinite.

Asynchronous relational networks are hypergraphs comgpbrtsthat can be thought of as com-
munication end-points through which messages can be sentégeived from other ports.

Definition 5 (Port) A portis a structurert = (1", 71") wherert™, i~ are disjoint finite sets of messages.
We say that two ports are disjoint when they are formed by coptwise disjoint sets of messages. The
actions overtare Ay ={m!|mem }u{mj|mem}.

The computational agents of ARNs gm®cesse$ormalised as a set of ports togetherr with a Muller
automaton describing the communication pattern of thetagen

Definition 6 (Process) A process(y,/\) consists of a sey of pairwise disjoint ports and a Muller au-
tomaton/ over the set of actions A UpeyAr.

Vissani, Lopez Pombo, Tuosto 89

Processes are connected throwgimnectionswvhose basic role is to establish relations among the
messages that processes exchange on the ports of procegsssranunication hyperedges. Intuitively,
one can thing of the messages used by processes and comtionniogeredges as 'local’ messages
whose 'global’ meaning is established by connections.

Definition 7 (Connection) Given a set of pairwise disjoint portg an attachment injectiomon y is a
pair (M, i) where and a finite set M of messages an€{ i} ey is a family of finite partial injections
UM = mu . We say thatM, i, A} is a connectionon y iff (M,) is an attachment injection op
and a Muller automatom\ over {m!|me M}u{mj| me M} such that:

p(m)e U ppi(f) and ppt(m)e U wEph(n).
frey~{m} frey~{m}

for eachrre y.

Definition 8 (Asynchronous Relational Network [8]) Let M be a finite set of messages. Asyn-
chronous relational net on M is a structure{X,P,C, { 7Ty} xex, { Uc }cecs { Y} xexs {/\e }ecPuc) CONSisting
of

 a hypergraph(X,E), where X is a (finite) set ghointsand E= PuC is a set ofhyperedgegnon-
empty subsets of X) partitioned intomputation hyperedggs: P andcommunication hyperedges
c € C such that no adjacent hyperedges belong to the same partidind

« three labelling functions that assign

(a) a port 1, with messages in M to each point X,
(b) aprocesgy,,Ap) to each hyperedge ¢P such thaty, ¢ {71y }xx, and
(c) aconnection M, Uc,/\¢) to each hyperedgeaC.

An ARN with no provides-point is calleattivity and formalises the notion of a software artefact that
can execute, while an ARN that has at least one provideg-poaalled aserviceand can only execute
provided it is bound through one of them to a requires-pofraroactivity.

3 The running example

The following running example will help us to present intwits behind the definitions, and later, to
introduce and motivate our contributions. Consider aniegpbn providing the service of hotel reser-
vation and payment processing. A client activiyavelClient asks for hotel options made available by a
providerHotelsService returning a list of offers. If the client accepts any of thiedd, therHotelsService
calls for a payment processing servizgymentProcessService which will ask the client for payment de-
tails, and notifyHotelsService whether the payment was accepted or rejected. FindbyelsService
notifies the outcome of the payment process to the client.

Figured 1[P, anf]3 show the ARNSs (including the automata)thfe TravelClient, HotelsService,
andPaymentProcessService respectively. The ARN in Fid.]1(a) represents an activitsnposed with a
communication channel. More preciselyavelClient (in the solid box on the left) represents a process
hyperedge whose Muller automato\isc (depicted in Fig.1L(b)). The solid “y-shaped” contour entsra
ing the three dashed boxes represents a communicationdugmeunsed to specify the two requires-points
(i.e., HS andPPS) of the component necessary to fulfill its goals. Note thahstiRN does not provide
itself any service to other components and that the dashetigt®the outgoing and incoming messages
expected (respectively denoted by names prefixed by '+’ draigns).

90 Communicating machines as a dynamic binding mechanisnrates

It is worth remarking that communication hyperarcs in ARNald/ the coordination mechanism
among a number of services. In fact, a communication hypenaables the interaction among the ser-
vices that bind to its requires-points suchTasvelClient, HotelsService, andPaymentProcessService in
our example. The coordination is specified through a Mullgomaton associated with the communi-
cation hyperarc that acts as the orchestrator of the sarviceur running example, the communication
hyperarc of Figl 1 is labeled with the automatte of Fig.[d(c) where, for readability and conciseness,
the dotted and dashed edges stand for the paths

bookHotels! bookHotelsj hotels! hotels;

and
accept! acceptj askForPayment! askForPaymentj paymentData! paymentDataj

respectively. As we will see, such automaton correspon@sgiobal choreography when replacing the
binding mechanism of ARNs with choreography-based meshasi The transitions of the automata are
labelled with input/output actions; according to the usdi@Ns notation, a labain! stands for the ouput
of messagen while labelmj stands for the input of message

Figured 2 and]3 represent two services with their automasp (Ays andAppg) and their provides-
point (resp.HS andPPS) not bound to any communication channel yet.

The composition of ARNs yields a semantic definition of a bigdmechanism of services in terms
of “fusion” of provides-points and requires-points. Monegisely, the binding is subject to an entail-
ment relation betweelear temporal logid[7] theories attached to the provides- and requires-pa@ists
illustrated in the following section.

4 Communicating Relational Networks

As we mentioned before, even when the orchestration modeiried by ARNS is rather expressive and
versatile, we envisage two drawbacks which now can be piedém more detail.

4.1 On the binding mechanism

If we consider the binding mechanism based on LTL entailrpesgented in previous works, the relation
between requires-point and provides-point is establisheth asymmetric way whose semantics is read
as trace inclusion. This asymmetry leads to undesiredtigihsa For instance, if we return to our running
example, a contract stating that the outcome of an execigieitheracceptor rejectof a payment could
be specified by assigning the LTL formula

& ((—acceptv —reject) A -(—accepta —reject))

to the requires-poinPS of Fig.[d(a). Likewise, one could specify a contract for thevides-pointPPS
of the ARN in Fig[3(b) stating that payments are always tefgby including the formufa

& (-rejecta - —accep)

Linthese examples we use two propositiaeptandreject forcing us to include in the specification their complenaepnt
behaviour, but making the formulae easier to read.

Vissani, Lopez Pombo, Tuosto

HS
: + bookHotels 1
! - hotels '
1 + accept ' aymentRe jected;
' + decline)
1
ﬁ 1 — askForPayment ! bookHotels!
1
; °
S . L CR— : + accepted ! % D reservations 81
! — bookHotels ' | + rejected 1 £ 3@
"+ hotels ' | — reservations 1 5 el
! " . 1 Eo] . = =
Travel : — accept : | — paymentRejected , hotelsij - § §
Client 1 — decline ! CcC g 73
| + pleasePay | Nce) % o 2
N1c '- paymentData ' = % =
|+ reservation§ ! !+ askForPayment g accept! 8
L+ PaymentRejected | 1 - pleasePay 8 pleasePay; | *
= | + paymentData =
Q 1 — accepted r
pte
| - rejected (b) Muller automatom\t¢

(a) TheTravelClient activity

-bookHotelsj

paymentRejected; reservationsij

paymentRe jected!
-paymentRe jectedt(

rejected;j

rejected!

—-(acceptedl re jected)
(c) Muller automatom\cc.

Figure 1: TheTravelClient activity together with the Muller automata.

92

Communicating machines as a dynamic binding mechanisnrates

S-S

1 + bookHotels |

| = hotels '

| accept | Hotels
| + decline \ X

! — askForPayment : Service
| + accepted 1

| + rejected ' s

1 — reservations !

- paymentRejected :

(a) TheHotelsService participant

paymentRe jected!

-bookHotelsj declinej -(acceptjvdeclinej)

rejectedj

acce pti/.\ askForPayment!

-(acceptedy rejected)

(g

accepted;

reservations!

(b) Muller automatom\y s

Figure 2: TheHotelsService participant together with the machihiz

PPS
! + askForPayment ! Payment
' pleasePay ! Process
, + paymentData | Service
- ac_cepted :
| — rejected . Apps

(a) ThePaymentProcessService participant

-askForPayment; -paymentDataj

Kr‘Q askForPayment; ~ pleasePay!/Q paymentData;
) N\ N\

rejected!
(b) Muller automatom\ppg that only reject paymens

Figure 3: ThePaymentProcessService participant.

Vissani, Lopez Pombo, Tuosto 93

It is easy to show that
O(-rejecta~—accep) LTt o ((~acceptv —reject) A -(—acceptr —reject))

by resorting to any decision procedure for LTL (see for ins&g [4]). The intuition is that every state
satisfying-rejecta - — acceptalso satisfieg—acceptv —reject) A —(—acceptr —reject) so if the former
eventually happens, then also the latter.

The reader should note that this scenario leads us to aceeptiae provider that, even when it can
appropriately ensure a subset of the expected outcomemtogumaranty that all possible outcomes will
eventually be produced.

Communicating Relational Networkse defined exactly as ARNs but with the definitiorGafnnec-
tion based on global graphs where, given a set of ports, the nmesssag related to the messages in the
ports, and the participants are identified by the ports tledras.

Definition 9 (Connection) We say thatM, u,I") is aconnectioron y iff (M, 1) is an attachment injec-
tion ony and T is a global graph where the set of participants{is;} =, exchanging messages in M
such that:

p(m)e U opRMt) and pgt(m)e UJopgpt(T).

frey~{m} frey~{m}
for eachrre y.

Definition 10 (Communicating relational network) A communicating relational net is a structure
(X,P,C,y,M, u,A\) consisting of:
 a hypergraph(X,E), where X is a (finite) set ghointsand E= PuC is a set ofhyperedgegnon-
empty subsets of X) partitioned intomputation hyperedggs: P andcommunication hyperedges
c e C such that no adjacent hyperedges belong to the same partaind

« three labelling functions that assign
(a) a port M to each point x X,
(b) aprocesyy,,Ap) to each hyperedge ¢P, and
(c) aconnection Mg, Uc,/\¢) to each hyperedgeaC.

Figured 4 andl5 show the communicating machines and globphgrthat can be used to redefine
the same services of the running example presented il Sieat & CRNs.

The machine in Fig.l4(a) specifies that upon reception bbakHotelmessage from the client,
HotelsService sends back a list diotels if the client accepts then computation continues, othestihe
HotelsService returns to its initial state, etc.. Also, Figs. 4(b) and (epitt the communicating machines
associated to the provides-points of servitkselsService and PaymentProcessService, respectively.
From the point of view of the requires-points, the expecteldaviour of the participants of a commu-
nication is declared by means of a choreography associateshtmunication hyperarcs. We illustrate
such graphs by discussing the choreography in[Fig. 5 (quorekng to the automaton in Fig. 1(c)). The
graph dictates that first client aftbtelsService interact to make the request and receive a list of avail-
able hotels, then the client decides whether to accept dinddbe offer, etc. Global graphs are a rather
convenient formalism to express distributed choices (dsasgarallel computations) of work-flows. As
we mentioned before, an interesting feature of global giafthat they can easily show branch/merge
points of distributed choices; for instance, in the globap of Fig[b branching points merge in the

94 Communicating machines as a dynamic binding mechanisnrates

TcHs!bookHotels
HsTc?hotels
HsTc?paymentRejected TcHs!accept HsTc?reservations

PpsTc?pleasePay

TcPps!paymentData

HsTc!hotels

HsTclpaymentReject: HsTclreservations

TcHs?accept

HsPps!askForPaymerijt
(b) Communicating machine for the pdt6

HsPps?askForPaymen

PpsHslrejected PpsTc!pleasePay PpsHslaccepted

TcPps?paymentData

O
(c) Communicating machine for the pdtPS

Figure 4: Communicating machines labelling the pdres HS andPPS.

Vissani, Lopez Pombo, Tuosto 95

T
5

(Tc — Hs : bookHotels

Hs - Tc: hotels

+ |

Tc - Hs:accept ‘Tc - Hs: decling-

'Hs — Pps : askForPayment

(Pps — Tc: pleasePay

(Tc— Pps: paymentData

)¢ |

(Pps —Hs:accepted (Pps — Hs: rejected

L Hs - Tc: reservations Hs — Tc: paymentRejected——

Figure 5: Global graph of the running example

loop-back node underneath the initial node.

Based on Definition 10, we can define two new binding mechanisyrexploiting the “top-down”
(projection) and “bottom-up” (synthesis) nature offergdchoreographies.

Top-Down According to the first mechanism, provides-points are boiancequires-points when the
projections of the global graph attached to the commuminaiiyperarc are bisimilar to the corre-
sponding communicating machine (exposed on the providegspof services being evaluated for
binding).

Bottom-Up The second mechanism is more flexible and it is based on atratgorithm to synthe-
sise choreographies out of communicating machines [5]. eMwecisely, one checks that the
choreographies synthesised from the communicating meshassociated to the provides-points
of services being evaluated for binding are isomorphic o dhe labelling the communication
hyperarc.

For example, the projections of the global graph of Eig. iwéspect to the componeristelsService
and PaymentProcessService yields the communicating machines in Figurés 4(b)[dnd &spectively;
so, when adopting the first criterion, the binding is possidnid it is guaranteed to be well-behaved (e.g.,
there will be no deadlocks or unspecified receptions [2Jkebiise, when adopting the second criterion,
the binding is possible because the synthesis of the machirfég.[4 yields the global graph of F[g. 5.

In this way, our approach combines choreography and onettiest by exploiting their complemen-
tary characteristics at two different levels. On the onedhaervices use global graphs to declare the
behaviour expected from the composition of all the parties$ @se communicating machines to declare
their exported behaviour. On the other hand, the algorithwaslable on choreographies are used for

96 Communicating machines as a dynamic binding mechanisnrates

checking the run-time conditions on the dynamic binding.

The resulting choreography-based semantics of bindingagtees properties of the composition
of services that are stronger than those provided by théitmadl binding mechanism of ARNs, and
yielding a more symmetric notion of interoperability beemeactivities and services.

4.2 Comparison of the analysis and the binding mechanism

Among the many advantages of developing software usingdbtools, is the possibility of providing
analysis as a means to cope with (critical) requirementss approach generally involves the formal
description of the software artefact through some kind ofreect describing its behaviour. As we men-
tioned before, in SOC, services are described by means iofcetracts associated to their provides-
and requires-points, playing the role that in structurespamming play post- and pre-conditions of
functions, respectively. From this point of view, analgsmsoftware artefact requires:

« the verification of the computational aspects of a serviith vespect to its contracts, yielding a
coherence conditignwhose checking takes place at design-time, and

« the verification of the satisfaction of a property by an\atstiwith respect to a given service
repository, yielding auality assessmewf the software artefact, whose checking takes place also
at design-time.

On the other hand, service-oriented software artefactgneethe run-time checking associated to the
binding mechanismin order to decide whether a given service taken from thesipry provides the
service required by an executing activity.

Table[1 shows a comparison of the procedures that have togdermented for checking the coher-
ence condition of a service, the quality assessment of &seoviented software artefact with respect to
a particular repository, and for obtaining a binding med$rarfor both of the approaches, the one based
on ARNSs, and the one based on CRNSs.

5 Concluding Remarks

We propose the use of communicating relational networksfasnaal model for service-oriented soft-
ware design. CRNs are a variant of ARNs that harnesses thesiration perspective underlying ARNs
with a choreography viewpoint for characterising the béhavof participants (services) over a com-
munication channel. The condition for binding a providesfs of services to the requires-points of
a communication channel of an activity relies on checkingydbmpliance of the local perspective of
the process, declared as communicating machines, withltf@lgview implicit in the choreography
associated to the communication channel. The binding nmézina of ARNS (i.e., the inclusion of the
set of traces of the provides-point of the service bound ésit of traces allowed by the requires-point
of the activity) yields an asymmetric acceptance conditi@ur approach provides a more symmetric
mechanism based on rely-guarantee types of contracts.

Our framework requires the definition of a criterion to eltdibthe coherence among the Muller
automatom\ of a process hyperedge and the communicating machinedatssbio its provides-points.
This criterion, checked only at design time, is the bisinitjaof the communicating machine projected
from A\ and the ones associated to the provides-points. The remddiai with Muller automata should
note that defining such projection is not trivial when theoaudta are defined over a powerset of ac-
tions. The definition of the projection from Muller autom&becommunicating machine is conceptually
straightforward (although technically not trivial) if teeitomata are defined over sets of actions (instead

Vissani, Lopez Pombo, Tuosto

Formalisation

Coherence Condition

Quality assessmen

t Binding Mechanism

whereA|, is the pro-
jection of Muller au-
tomatonA\ over the al-
phabet of portrr, Ay
is the communicatior
machine labelling port
mand~ denotes bisim-
ilarity.

ARNSs
[T Am L
{A/\p ':LTL rr[}r[eyp mePuC i . .
where 11 is a provides point
wherepeP, (yp,Ap) is of a service,p is a requires
a processAn, the set point of an activity, and
of traces of the Muller, andrl , their LTL contract re-
automaton/Ap and T spectively.
is the LTL contract as-
sociated to portr.
CRNs Top-Down:
[1An
{/\’pn“An}neyp meP Glp~» Ar

where 11 is a provides point
of a service,p is a requires
point of an activity,G¢|p, is
the projection of the global

graph G; over the language

of the port p, Ay is the
communication machine Ig
belling port T and~ denotes
bisimilarity.

Bottom-Up:
S({-Arr}nel'l) =G
where I is the set of

provides-points of the sef
vices to be bound@G; is the

global graph associated to

ceC, o) is the algorithm
for synthesising choreogra
phies from communication
machines|([5] and: denotes
isomorphism.

Table 1: Comparison of the procedures for the approachesiib@®\RNs and CRNs

97

of powersets of them). Altough this is enough for the purpasfehis paper, a better solution would be
to extend communicating machines so to preserve the sasaritMuller automata even when they are
defined on powersets of actions. This is however more chiilign(as the reader familiar with Muller
automata would recognise) and it is left as a future line séagch.

We strived here for simplicity suggesting trivial acce®iconditions. For instance, in the “bottom-
up” binding mechanism we required that the exposed glotzdtgcoincides (up to isomorphism) to the

98 Communicating machines as a dynamic binding mechanisnrates

synthesised one. In general, one could extend our work wilttemconditions using more sophisticated
relations between choreographies. For instance, one ceqlire that the interactions of the synthesised
graph can be simulated by the ones of the declared globahgrap

We also envisage benefits that the orchestration model of AétId bring into the choreography
model we use (similarly to what suggested(inh [1]). In patdcuwe argue that the 'incremental binding’
naturally featured in the ARN model could be integrated wlith choreography model of global graphs
and communicating machines. This would however requirembdifications of algorithms based on
choreography to allow incremental synthesis of choreduesp

References

[1] Davide Basile, Pierpaolo Degano, Gian Luigi Ferrari & ionTuosto (2014):From Orchestration to Chore-
ography through Contract Automatin: Proceedings 7th Interaction and Concurrency Experie@te 2014,
Berlin, Germany, 6th June 2014p. 67-85, di:10.4204/EPTCS.1€6.8.

[2] Daniel Brand & Pitro Zafiropulo (1983)0n Communicating Finite-State Machine3ACM 30(2), pp. 323—
342, doi:10.1145/322374.322380.

[3] Pierre-Malo Deniélou & Nobuko Yoshida (2012Yultiparty Session Types Meet Communicating Automata
In: ESOR pp. 194-213, doi:10.1007/978-3-642-28869€2

[4] Yonit Kesten, Zohar Manna & Hugh McGuireand Amir Pnudl®@3): A Decision Algorithm for Full Propo-
sitional Temporal Logicln: CAV, pp. 97-109, dci:10.1007/3-540-56923.7

[5] Julien Lange, Emilio Tuosto & Nobuko Yoshida (2015From Communicating Machines to Graphical
Choreographies In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sympasion Prin-
ciples of Programming Languages, POPL 2015, Mumbai, Indé&quary 15-17, 2015pp. 221-232,
doii10.1145/2676726.2676964.

[6] Chris Peltz (2003): Web services orchestration and choreographyComputer36(10), pp. 46-52,
doii10.1109/MC.2003.1236471.

[71 Amir Pnueli (1981):The temporal semantics of concurrent prograni$ieoretical Computer Sciend8(1),
pp. 45-60, dai:10.1016/0304-3975(81)90110-9.

[8] lonut Tutu & José Luis Fiadeiro (2013)A Logic-Programming Semantics of Servicds: CALCO, pp.
299-313, doi:10.1007/978-3-642-4020&-7.

http://dx.doi.org/10.4204/EPTCS.166.8
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/3-540-56922-7_9
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1016/0304-3975(81)90110-9
http://dx.doi.org/10.1007/978-3-642-40206-7_22

	1 Introduction and motivation
	2 Preliminaries
	2.1 Communicating machines and global graphs
	2.2 Asynchronous relational networks

	3 The running example
	4 Communicating Relational Networks
	4.1 On the binding mechanism
	4.2 Comparison of the analysis and the binding mechanism

	5 Concluding Remarks

