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Distributed software is becoming more and more dynamic to support applications able to respond and
adapt to the changes of their execution environment. For instance,service-oriented computing(SOC)
envisages applications as services running over globally available computational resources where
discovery and binding between them is transparently performed by a middleware.Asynchronous Re-
lational Networks(ARNs) is a well-known formal orchestration model, based onhypergraphs, for
the description of service-oriented software artefacts. Choreography and orchestration are the two
main design principles for the development of distributed software. In this work, we proposeCom-
municating Relational Networks(CRNs), which is a variant of ARNs, but relies on choreographies
for the characterisation of the communicational aspects ofa software artefact, and for making their
automated analysis more efficient.

1 Introduction and motivation

Distributed software is becoming more and more dynamic to support applications able to respond and
adapt to the changes of their execution environment. For instance,service-oriented computing(SOC)
envisages applications as services running over globally available computational resources; at run-time,
services search for other services to bind to and use. Software architects and programmers have no
control as to the nature of the components that an application can bind to due to the fact that the discovery
and binding are transparently performed by a middleware.

Choreography and orchestration are the two main design principles for the development of distributed
software (see e.g., [6]). Coordination is attained in the latter case by anorchestrator, specifying (and
possibly executing) the distributed work-flow. Choreography features the notion ofglobal view, that is
a holistic specification describing distributed interactions amenable of being “projected” onto the con-
stituent pieces of software. In an orchestrated model, the distributed computational components coordi-
nate with each other by interacting with a special component, the orchestrator, which at run time decides
how the work-flow has to evolve. For example the orchestratorof a service offering the booking of
a flight and a hotel may trigger a service for hotel and one for flight booking in parallel, wait for the
answers of both sites, and then continue the execution. In a choreographed model, the distributed com-
ponents autonomously execute and interact with each other on the basis of a local control flow expected
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to comply with their role as specified in the “global viewpoint”. For example, the choreography of hotel-
flight booking example above could specify that the flight service interacts with the hotel service which
in turns communicates the results to the buyer.

We use Asynchronous relational networks (ARNs) [8] as the basis of our approach. In ARNs, sys-
tems are formally modelled as hypergraphs obtained by connecting hyperarcs which represent units of
computation and communication. More precisely, hyperarcsare interpreted as either processes (services
or unit of computation) or as communication channels (unit of communication). The nodes can only
be adjacent to: 1. one process hyperarc and one communication hyperarc, meaning that the computa-
tion formalised by the process hyperarc is bound through thecommunication channel formalised by the
communication hyperarc, 2. one process hyperarc, meaning that it is aprovides-pointthrough which the
computation formalised by the process hyperarc can be boundto an activity that requires that particular
service, or 3. one communication hyperarc, meaning that it is arequires-pointto which a given service
can be bound using one of its provides-points. The rationalebehind this separation is that a provides-
point yields the interface through which a service exports its functionality while a requires-point is the
interface through which an activity expects certain service to provide a functionality. Composition of
services can then be understood as fusing a provides-point with a requires-point in a way that the service
exported by the former satisfies the expectations of the latter, usually formalised as contracts in some
formal language.

Hyperarcs are labelled with (Muller) automata; in the case of process hyperarcs, automata formalise
the interactions carried out by that particular service while, in the case of communication hyperarcs, they
represent the orchestrator coordinating the behaviour of the participants of the communication. In fact,
the automatonΛ associated to a communication hyperarc coordinates the processes bound to its ports by,
at each time, interacting with one of the processes and deciding, depending on the stateΛ is in, what is
the next interaction (if any) to execute. The global behaviour of the system is then obtained by composing
the automata associated to process and communication hyperarcs. In the forthcoming sections we will
introduce a running example to show how definitions work and concretely discuss the contributions of
the present work.

As anticipated, the composition of ARNs yields a semantic definition of a binding mechanism of
services in terms of “fusion” of provides-points and requires-points. Once coalesced, the nodes become
“internal”, that is they are no longer part of the interface and cannot be used for further bindings. In
existing works, like [8], the binding is subject to an entailment relation betweenlinear temporal logic[7]
theories attached to the provides- and requires-points that can be checked by resorting to any decision
procedure for LTL (for example, [4])

Although the orchestration model featured by ARNs is ratherexpressive and versatile, we envisage
two drawbacks:

1. the binding mechanism based on LTL-entailment establishes an asymmetric relation between
requires-point and provides-point as it formalises a notion of trace inclusion; also,

2. including explicit orchestrators (the automata labelling the communication hyperarcs), in the com-
position, together with the computational units (the automata labelling the process hyperarcs) in-
creases the size of the resulting automaton making the analysis more expensive.

In the present work we proposeCommunicating Relational Networks(CRNs), a variant of ARNs
relying on choreographies to overcome those issues, where provides-points are labelled withCommuni-
cating Finite State Machines[2] declaring the behaviour (from the communication perspective) exported
by the service, and communication hyperarcs are labelled with Global Graphs[3] declaring the global
behaviour of the communication channel. In this way, our proposal blends the orchestration framework
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of ARNs with a choreography model based on global graphs and communicating machines. Unlike most
of the approaches in the literature (where choreography andorchestration are considered antithetical),
we follow a comprehensive approach showing how choreography-based mechanisms could be useful in
an orchestration model.

The present work is organised as follows; in Section 2 we provide the formal definitions of most of
the concepts used along this paper. Such definitions are illustrated with a running example introduced in
Section 3. In Section 4 we introduce the main contribution ofthis paper, being the definition of CRNs,
we show how they are used to rewrite the running example and wediscuss several aspects regarding the
design-time checking to assert internal coherence of services, the run-time checking ruling the binding
mechanism and the cost of software analysis. Finally, in Section 5 we draw some conclusions and discuss
some further research directions.

2 Preliminaries

In this section we present the preliminary definitions used throughout the rest of the present work. We
first summarise communicating machines and global graphs borrowing definitions from [5] and from [3].
Finally we introduce some basic definitions in order to present ARNs; the definitions here are adapted
from [8].

2.1 Communicating machines and global graphs

Communicating machines were introduced in [2] to model and study communication protocols in terms
of finite transition systems capable of exchanging messagesthrough some channels. We fix a finite set
Msg of messagesans a finite setP of participants.

Definition 1 ( [2]) A communicating finite state machineonMsg (CFSMs, for short) is a finite transition
system(Q,C,q0,Msg,δ) where

• Q is a finite set of states;

• C = {pq ∈ P2 ∣ p /= q} is a set of channels;

• q0 ∈Q is an initial state;

• δ ⊆Q×(C×{!,?}×Msg)×Q is a finite set oftransitions.

A communicating systemis a mapSassigning a CFSMS(p) to eachp ∈ P. We write q∈ S(p) when q is
a state of the machineS(p) and likewise and t∈S(p) when t is a transition ofS(p).

The execution of a system is defined in terms of transitions between configurations as follows:

Definition 2 Theconfigurationof communicating systemSis a pair s= (
→
q,
→
w) where

→
q = (qp)p∈P where

qp ∈ S(p) for eachp ∈ P and
→
w = (wpq)pq∈C with wpq ∈Msg⋆. A configuration s′ = (

→

q′,
→

w′) is reachable

from another configuration s= (
→
q,
→
w) by thefiring of the transitiont (written s

t
→ s′) if there existsm ∈Msg

such that either:

1. t = (qp,pq!m,q′p) ∈ δp and

(a) q′p′ = qp′ for all p′ /= p; and

(b) w′pq =wpq ⋅m and w′p′q′ =wp′q′ for all p′q′ /= pq; or

2. t = (qq,pq?m,q′q) ∈ δq and
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(a) q′p′ = qp′ for all p′ /= q; and

(b) m ⋅w′pq =wpq and w′p′q′ =wp′q′ for all p′q′ /= pq

A global graphis a finite graph whose nodes are labelled over the setL = {◯,⊚,|,q} ∪ {s→ r ∶m ∣
s,r ∈ P∧m ∈Msg} according to the following definition.

Definition 3 A global graph(overP andMsg) is a labelled graph⟨V,A,Λ⟩ with a set ofvertexesV, a
set of edgesA⊆V ×V, and labelling functionΛ ∶V → L such thatΛ−1(◯) is a singleton and, for each
v ∈V

1. if Λ(v) is of the forms→ r ∶m then v has a unique incoming and unique outgoing edges,

2. if Λ(v) ∈ {|,q} then v has at least one incoming edge and one outgoing edge and,

3. Λ(v) =⊚ then v has zero outgoing edges.

Label s→ r ∶ m represents an interaction where machines sends a messagem to machiner. A vertex
with label◯ reperesents the source of the global graph,⊚ represents the termination of a branch or of
a thread,q indicates forking or joining threads, and| marks vertexes corresponding to branch or merge
points, or to entry points of loops.

In the following we use a projection algorithm that given a global graph retrieves communicating
machines for each of its participants. Undestranding such algorithm is not necessary for the sake of this
paper and the interested reader is referred to [5] for its definition.

2.2 Asynchronous relational networks

A Muller automaton is a finite state automaton where final states are replaced by a family of states to
define an acceptance condition on infinite words.

Definition 4 (Muller automaton) A Muller automatonover a finite set A ofactionsis a structure of the
form ⟨Q,A,∆, I ,F⟩ , where

1. Q is a finite set (ofstates)

2. ∆ ⊆Q×A×Q is atransition relation(we write p
ι
Ð→ q when(p,ι ,q) ∈ ∆),

3. I ⊆Q is the set ofinitial states, and

4. F ⊆ 2Q is the set offinal-state sets.

We say that an automatonacceptsan inifinite traceω = q0
ι0
Ð→ q1

ι1
Ð→ . . . if and only if q0 ∈ I and there

exists i≥ 0 and S∈F such that for all s∈S, the set⋃i≤ j∧qj=s{ j} is infinite.

Asynchronous relational networks are hypergraphs connecting ports that can be thought of as com-
munication end-points through which messages can be sent toor received from other ports.

Definition 5 (Port) A port is a structureπ = ⟨π+,π−⟩ whereπ+,π− are disjoint finite sets of messages.
We say that two ports are disjoint when they are formed by componentwise disjoint sets of messages. The
actions overπ are Aπ = {m! ∣m∈ π−}∪{m¡ ∣m∈ π+}.

The computational agents of ARNs areprocessesformalised as a set of ports togetherr with a Muller
automaton describing the communication pattern of the agents.

Definition 6 (Process)A process⟨γ ,Λ⟩ consists of a setγ of pairwise disjoint ports and a Muller au-
tomatonΛ over the set of actions Aγ =⋃π ∈γ Aπ .
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Processes are connected throughconnectionswhose basic role is to establish relations among the
messages that processes exchange on the ports of processes and communication hyperedges. Intuitively,
one can thing of the messages used by processes and communication hyperedges as ’local’ messages
whose ’global’ meaning is established by connections.

Definition 7 (Connection) Given a set of pairwise disjoint portsγ , an attachment injectionon γ is a
pair ⟨M,µ⟩ where and a finite set M of messages andµ = {µπ }π ∈γ is a family of finite partial injections
µπ ∶M ⇀ π−∪π+. We say that⟨M,µ ,Λ⟩ is a connectionon γ iff ⟨M,µ⟩ is an attachment injection onγ
and a Muller automatonΛ over{m! ∣m∈M}∪{m¡ ∣m∈M} such that:

µ−1
π (π

−) ⊆ ⋃
π̂ ∈γ∖{π}

µ−1
π̂ (π̂

+) and µ−1
π (π

+) ⊆ ⋃
π̂ ∈γ∖{π}

µ−1
π̂ (π̂

−).

for eachπ ∈ γ .

Definition 8 (Asynchronous Relational Network [8]) Let M be a finite set of messages. Anasyn-
chronous relational netα on M is a structure⟨X,P,C,{π x}x∈X ,{µc}c∈C,{γ}x∈X ,{Λe}e∈P∪C⟩ consisting
of

• a hypergraph⟨X,E⟩, where X is a (finite) set ofpointsand E= P∪C is a set ofhyperedges(non-
empty subsets of X) partitioned intocomputation hyperedgesp∈P andcommunication hyperedges
c ∈C such that no adjacent hyperedges belong to the same partition, and

• three labelling functions that assign

(a) a port π x with messages in M to each point x∈X,

(b) a process⟨γp,Λp⟩ to each hyperedge p∈P such thatγp ⊆ {π x}x∈X , and

(c) a connection⟨Mc,µc,Λc⟩ to each hyperedge c∈C.

An ARN with no provides-point is calledactivity and formalises the notion of a software artefact that
can execute, while an ARN that has at least one provides-point is called aserviceand can only execute
provided it is bound through one of them to a requires-point of an activity.

3 The running example

The following running example will help us to present intuitions behind the definitions, and later, to
introduce and motivate our contributions. Consider an application providing the service of hotel reser-
vation and payment processing. A client activityTravelClient asks for hotel options made available by a
providerHotelsService returning a list of offers. If the client accepts any of the offers, thenHotelsService
calls for a payment processing servicePaymentProcessService which will ask the client for payment de-
tails, and notifyHotelsService whether the payment was accepted or rejected. Finally,HotelsService

notifies the outcome of the payment process to the client.
Figures 1, 2, and 3 show the ARNs (including the automata), for theTravelClient, HotelsService,

andPaymentProcessService respectively. The ARN in Fig. 1(a) represents an activity composed with a
communication channel. More precisely,TravelClient (in the solid box on the left) represents a process
hyperedge whose Muller automaton isΛTC (depicted in Fig. 1(b)). The solid “y-shaped” contour embrac-
ing the three dashed boxes represents a communication hyperedge used to specify the two requires-points
(i.e.,HS andPPS) of the component necessary to fulfill its goals. Note that such ARN does not provide
itself any service to other components and that the dashed box lists the outgoing and incoming messages
expected (respectively denoted by names prefixed by ’+’ and ’-’ signs).
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It is worth remarking that communication hyperarcs in ARNs yield the coordination mechanism
among a number of services. In fact, a communication hyperarc enables the interaction among the ser-
vices that bind to its requires-points such asTravelClient, HotelsService, andPaymentProcessService in
our example. The coordination is specified through a Muller automaton associated with the communi-
cation hyperarc that acts as the orchestrator of the services. In our running example, the communication
hyperarc of Fig. 1 is labeled with the automatonΛCC of Fig. 1(c) where, for readability and conciseness,
the dotted and dashed edges stand for the paths

bookHotels!
ÐÐÐÐÐÐ→ ⋅

bookHotels¡
ÐÐÐÐÐÐ→ ⋅

hotels!
ÐÐÐ→ ⋅

hotels¡
ÐÐÐ→

and
accept!
ÐÐÐ→ ⋅

accept¡
ÐÐÐ→ ⋅

askForPayment!
ÐÐÐÐÐÐÐ→ ⋅

askForPayment¡
ÐÐÐÐÐÐÐÐ→ ⋅

paymentData!
ÐÐÐÐÐÐÐ→ ⋅

paymentData¡
ÐÐÐÐÐÐÐ→

respectively. As we will see, such automaton corresponds toa global choreography when replacing the
binding mechanism of ARNs with choreography-based mechanisms. The transitions of the automata are
labelled with input/output actions; according to the usualARNs notation, a labelm! stands for the ouput
of messagem while labelm¡ stands for the input of messagem.

Figures 2 and 3 represent two services with their automata (resp.ΛHS andΛPPS) and their provides-
point (resp.HS andPPS) not bound to any communication channel yet.

The composition of ARNs yields a semantic definition of a binding mechanism of services in terms
of “fusion” of provides-points and requires-points. More precisely, the binding is subject to an entail-
ment relation betweenlinear temporal logic[7] theories attached to the provides- and requires-pointsas
illustrated in the following section.

4 Communicating Relational Networks

As we mentioned before, even when the orchestration model featured by ARNs is rather expressive and
versatile, we envisage two drawbacks which now can be presented in more detail.

4.1 On the binding mechanism

If we consider the binding mechanism based on LTL entailmentpresented in previous works, the relation
between requires-point and provides-point is establishedin an asymmetric way whose semantics is read
as trace inclusion. This asymmetry leads to undesired situations. For instance, if we return to our running
example, a contract stating that the outcome of an executionis eitheracceptor rejectof a payment could
be specified by assigning the LTL formula

◇((−accept∨−reject)∧¬(−accept∧−reject))

to the requires-pointPPS of Fig. 1(a). Likewise, one could specify a contract for the provides-pointPPS
of the ARN in Fig. 3(b) stating that payments are always rejected by including the formula1

◇(−reject∧¬−accept)

1In these examples we use two propositions,acceptandreject, forcing us to include in the specification their complementary
behaviour, but making the formulae easier to read.
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Travel
Client

ΛTC

− bookHotels

+ hotels

− accept

− decline

+ pleasePay

− paymentData

+ reservations

+ paymentRejected

TC

CC

ΛCC

+ bookHotels

− hotels

+ accept

+ decline

− askForPayment

+ accepted

+ rejected

− reservations

− paymentRejected

HS

+ askForPayment

− pleasePay

+ paymentData

− accepted

− rejected

PPS

(a) TheTravelClient activity
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(b) Muller automatonΛTC

¬bookHotels¡

decline!

decline¡

¬d
ec

lin
e!

re jected!

re jected¡

paymentRe jected!

¬paymentRe jected!

paymentRe jected¡

accepted!

accepted¡

reservations!

¬reservations!

reservations¡

¬(accepted!∨ re jected!)

(c) Muller automatonΛCC.

Figure 1: TheTravelClient activity together with the Muller automata.
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Hotels
Service

ΛHS

+ bookHotels

− hotels

+ accept

+ decline

− askForPayment

+ accepted

+ rejected

− reservations

− paymentRejected

HS

(a) TheHotelsService participant

bookHotels¡

¬bookHotels¡

hotels! accept¡

decline¡ ¬(accept¡∨decline¡)

askForPayment!

re jected¡

paymentRe jected!

accepted¡

reservations!

¬(accepted¡∨ re jected¡)

(b) Muller automatonΛHS

Figure 2: TheHotelsService participant together with the machineHs

Payment
Process
Service

ΛPPS

+ askForPayment

− pleasePay

+ paymentData

− accepted

− rejected

PPS

(a) ThePaymentProcessService participant

askForPayment¡

¬askForPayment¡

pleasePay! paymentData¡

¬paymentData¡

re jected!

(b) Muller automatonΛPPS, that only reject paymens

Figure 3: ThePaymentProcessService participant.
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It is easy to show that

◇(−reject∧¬−accept) ⊢LTL ◇((−accept∨−reject)∧¬(−accept∧−reject))

by resorting to any decision procedure for LTL (see for instance, [4]). The intuition is that every state
satisfying−reject∧¬−acceptalso satisfies(−accept∨−reject)∧¬(−accept∧−reject) so if the former
eventually happens, then also the latter.

The reader should note that this scenario leads us to accept aservice provider that, even when it can
appropriately ensure a subset of the expected outcomes, cannot guaranty that all possible outcomes will
eventually be produced.

Communicating Relational Networksare defined exactly as ARNs but with the definition ofConnec-
tion based on global graphs where, given a set of ports, the messages are related to the messages in the
ports, and the participants are identified by the ports themselves.

Definition 9 (Connection) We say that⟨M,µ ,Γ⟩ is a connectionon γ iff ⟨M,µ⟩ is an attachment injec-
tion on γ and Γ is a global graph where the set of participants is{pπ}π∈γ exchanging messages in M
such that:

µ−1
π (π

−) ⊆ ⋃
π̂ ∈γ∖{π}

µ−1
π̂ (π̂

+) and µ−1
π (π

+) ⊆ ⋃
π̂ ∈γ∖{π}

µ−1
π̂ (π̂

−).

for eachπ ∈ γ .

Definition 10 (Communicating relational network) A communicating relational netα is a structure
⟨X,P,C,γ ,M,µ ,Λ⟩ consisting of:

• a hypergraph⟨X,E⟩, where X is a (finite) set ofpointsand E= P∪C is a set ofhyperedges(non-
empty subsets of X) partitioned intocomputation hyperedgesp∈P andcommunication hyperedges
c ∈C such that no adjacent hyperedges belong to the same partition, and

• three labelling functions that assign

(a) a port Mx to each point x∈X,

(b) a process⟨γp,Λp⟩ to each hyperedge p∈P, and

(c) a connection⟨Mc,µc,Λc⟩ to each hyperedge c∈C.

Figures 4 and 5 show the communicating machines and global graphs that can be used to redefine
the same services of the running example presented in Sec. 2,but as CRNs.

The machine in Fig. 4(a) specifies that upon reception of abookHotelmessage from the client,
HotelsService sends back a list ofhotels; if the client accepts then computation continues, otherwise the
HotelsService returns to its initial state, etc.. Also, Figs. 4(b) and (c) depict the communicating machines
associated to the provides-points of servicesHotelsService andPaymentProcessService, respectively.
From the point of view of the requires-points, the expected behaviour of the participants of a commu-
nication is declared by means of a choreography associated to communication hyperarcs. We illustrate
such graphs by discussing the choreography in Fig. 5 (corresponding to the automaton in Fig. 1(c)). The
graph dictates that first client andHotelsService interact to make the request and receive a list of avail-
able hotels, then the client decides whether to accept or decline the offer, etc. Global graphs are a rather
convenient formalism to express distributed choices (as well as parallel computations) of work-flows. As
we mentioned before, an interesting feature of global graphis that they can easily show branch/merge
points of distributed choices; for instance, in the global graph of Fig. 5 branching points merge in the
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TcHs!bookHotels

HsTc?hotels

TcHs!accept

TcHs!decline

PpsTc?pleasePay

TcPps!paymentData

HsTc?paymentRejected HsTc?reservations

(a) Communicating machine for the portTC

TcHs?bookHotels

HsTc!hotels

TcHs?accept

TcHs?decline

HsPps!askForPayment

PpsHs?rejected

HsTc!paymentRejected

PpsHs?accepted

HsTc!reservations

(b) Communicating machine for the portHS

HsPps?askForPayment

PpsTc!pleasePay

TcPps?paymentData

PpsHs!rejected PpsHs!accepted

(c) Communicating machine for the portPPS

Figure 4: Communicating machines labelling the portsTC, HS andPPS.
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Tc→Hs ∶ bookHotels

Hs→Tc ∶ hotels

Tc→Hs ∶ accept Tc→Hs ∶ decline

Hs→ Pps ∶ askForPayment

Pps→Tc ∶ pleasePay

Tc→ Pps ∶ paymentData

Pps→Hs ∶ accepted Pps→Hs ∶ rejected

Hs→Tc ∶ reservations Hs→Tc ∶ paymentRejected

Figure 5: Global graph of the running example

loop-back node underneath the initial node.

Based on Definition 10, we can define two new binding mechanisms by exploiting the “top-down”
(projection) and “bottom-up” (synthesis) nature offered by choreographies.

Top-Down According to the first mechanism, provides-points are boundto requires-points when the
projections of the global graph attached to the communication hyperarc are bisimilar to the corre-
sponding communicating machine (exposed on the provides-points of services being evaluated for
binding).

Bottom-Up The second mechanism is more flexible and it is based on a recent algorithm to synthe-
sise choreographies out of communicating machines [5]. More precisely, one checks that the
choreographies synthesised from the communicating machines, associated to the provides-points
of services being evaluated for binding are isomorphic to the one labelling the communication
hyperarc.

For example, the projections of the global graph of Fig. 5 with respect to the componentsHotelsService
andPaymentProcessService yields the communicating machines in Figures 4(b) and 4(c) respectively;
so, when adopting the first criterion, the binding is possible and it is guaranteed to be well-behaved (e.g.,
there will be no deadlocks or unspecified receptions [2]). Likewise, when adopting the second criterion,
the binding is possible because the synthesis of the machines in Fig. 4 yields the global graph of Fig. 5.

In this way, our approach combines choreography and orchestration by exploiting their complemen-
tary characteristics at two different levels. On the one hand, services use global graphs to declare the
behaviour expected from the composition of all the parties and use communicating machines to declare
their exported behaviour. On the other hand, the algorithmsavailable on choreographies are used for
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checking the run-time conditions on the dynamic binding.
The resulting choreography-based semantics of binding guarantees properties of the composition

of services that are stronger than those provided by the traditional binding mechanism of ARNs, and
yielding a more symmetric notion of interoperability between activities and services.

4.2 Comparison of the analysis and the binding mechanism

Among the many advantages of developing software using formal tools, is the possibility of providing
analysis as a means to cope with (critical) requirements. This approach generally involves the formal
description of the software artefact through some kind of contract describing its behaviour. As we men-
tioned before, in SOC, services are described by means of their contracts associated to their provides-
and requires-points, playing the role that in structured programming play post- and pre-conditions of
functions, respectively. From this point of view, analysing a software artefact requires:

• the verification of the computational aspects of a service with respect to its contracts, yielding a
coherence condition, whose checking takes place at design-time, and

• the verification of the satisfaction of a property by an activity with respect to a given service
repository, yielding aquality assessmentof the software artefact, whose checking takes place also
at design-time.

On the other hand, service-oriented software artefacts require the run-time checking associated to the
binding mechanism, in order to decide whether a given service taken from the repository provides the
service required by an executing activity.

Table 1 shows a comparison of the procedures that have to be implemented for checking the coher-
ence condition of a service, the quality assessment of a service-oriented software artefact with respect to
a particular repository, and for obtaining a binding mechanism for both of the approaches, the one based
on ARNs, and the one based on CRNs.

5 Concluding Remarks

We propose the use of communicating relational networks as aformal model for service-oriented soft-
ware design. CRNs are a variant of ARNs that harnesses the orchestration perspective underlying ARNs
with a choreography viewpoint for characterising the behaviour of participants (services) over a com-
munication channel. The condition for binding a provides-points of services to the requires-points of
a communication channel of an activity relies on checking the compliance of the local perspective of
the process, declared as communicating machines, with the global view implicit in the choreography
associated to the communication channel. The binding mechanisms of ARNs (i.e., the inclusion of the
set of traces of the provides-point of the service bound in the set of traces allowed by the requires-point
of the activity) yields an asymmetric acceptance condition. Our approach provides a more symmetric
mechanism based on rely-guarantee types of contracts.

Our framework requires the definition of a criterion to establish the coherence among the Muller
automatonΛ of a process hyperedge and the communicating machines associated to its provides-points.
This criterion, checked only at design time, is the bisimilarity of the communicating machine projected
from Λ and the ones associated to the provides-points. The reader familiar with Muller automata should
note that defining such projection is not trivial when the automata are defined over a powerset of ac-
tions. The definition of the projection from Muller automatato communicating machine is conceptually
straightforward (although technically not trivial) if theautomata are defined over sets of actions (instead
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Formalisation Coherence Condition Quality assessment Binding Mechanism
ARNs

{∆Λp ⊧
LTL Γπ}π∈γp

wherep∈P, ⟨γp,Λp⟩ is
a process,∆Λp the set
of traces of the Muller
automatonΛp and Γπ
is the LTL contract as-
sociated to portπ.

∏
m∈P∪C

Λm Γπ ⊢
LTL Γρ

whereπ is a provides point
of a service,ρ is a requires
point of an activity, andΓπ
andΓρ their LTL contract re-
spectively.

CRNs

{Λ∣pπ ≈Aπ}π∈γp

whereΛ∣pπ is the pro-
jection of Muller au-
tomatonΛ over the al-
phabet of portπ, Aπ
is the communication
machine labelling port
π and≈ denotes bisim-
ilarity.

∏
m∈P

Λm

Top-Down:

G∣ρ ≈Aπ

whereπ is a provides point
of a service,ρ is a requires
point of an activity,Gc∣pρ is
the projection of the global
graph Gc over the language
of the port ρ , Aπ is the
communication machine la-
belling portπ and≈ denotes
bisimilarity.
Bottom-Up:

S({Aπ}π∈Π) ≡Gc

where Π is the set of
provides-points of the ser-
vices to be bound,Gc is the
global graph associated to
c ∈ C, S(●) is the algorithm
for synthesising choreogra-
phies from communication
machines [5] and≡ denotes
isomorphism.

Table 1: Comparison of the procedures for the approaches based in ARNs and CRNs

of powersets of them). Altough this is enough for the purposes of this paper, a better solution would be
to extend communicating machines so to preserve the semantics of Muller automata even when they are
defined on powersets of actions. This is however more challenging (as the reader familiar with Muller
automata would recognise) and it is left as a future line of research.

We strived here for simplicity suggesting trivial acceptance conditions. For instance, in the “bottom-
up” binding mechanism we required that the exposed global graph coincides (up to isomorphism) to the
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synthesised one. In general, one could extend our work with milder conditions using more sophisticated
relations between choreographies. For instance, one couldrequire that the interactions of the synthesised
graph can be simulated by the ones of the declared global graph.

We also envisage benefits that the orchestration model of ARNs could bring into the choreography
model we use (similarly to what suggested in [1]). In particular, we argue that the ’incremental binding’
naturally featured in the ARN model could be integrated withthe choreography model of global graphs
and communicating machines. This would however require themodifications of algorithms based on
choreography to allow incremental synthesis of choreographies.
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