Program Execution on Reconfigurable Multicore
Architectures

Sanjiva Prasad

Indian Institute of Technology Delhi
New Delhi, India

sanjiva@cse.iitd.ac.in

Based on the two observations that diverse application®imerbetter on different multicore ar-
chitectures, and that different phases of an application naae vastly different resource require-
ments, Pakt al. proposed a novel reconfigurable hardware approach for érgamultithreaded
programs. Instead of mapping a concurrent program to a fikgttacture, the architecture adap-
tively reconfigures itself to meet the application’s comency and communication requirements,
yielding significant improvements in performance. Baseaonearlier abstract operational frame-
work for multicore execution with hierarchical memory sttures, we describe execution of multi-
threaded programs on reconfigurable architectures thabstg variety of clustered configurations.
Such reconfiguration may not preserve the semantics of @negdue to the possible introduction
of race conditions arising from concurrent accesses teshaemory by threads running on the dif-
ferent cores. We present an intuitive partial orderingamtin the cluster configurations, and show
that the semantics of multithreaded programs is alwaysepred for reconfigurations “upward” in
that ordering, whereas semantics preservation for arpitexconfigurations can be guaranteed for
well-synchronised programs. We further show that a simpjgaximate notion of efficiency of ex-
ecution on the different configurations can be obtainedgutie notion of amortised bisimulations,
and extend it to dynamic reconfiguration.

1 Introduction

The traditional approach to multiprocessing is to map rituktiaded applications or multiprogram work-
loads onto a chosen multicore architecture. €aal. showed that due to the diversity of software
applications, this “one architecture fits all” approacheoftyields sub-optimal performancel [7]. For
instance, programs with mostly independent threads hditlegcommunication perform well on sym-
metric multiprocessors (SMP) whereas those with more conigation and shared variables perform
better on chip multiprocessors (CMP). Indeed, even a siagj#ication can exhibit vastly diverse re-
source requirements during different phases of its exatuthccordingly, those authors identified dif-
ferent reconfiguration parameters (e.g., number of comshecsize and cache sharing) and proposed
a reconfigurable multicore tile-based architecture whigbpsrts dynami@daptability of the multicore
hardware to the software’s resource requiremg8is obtaining significant performance improvements.
The hardware morphs itselfo a configuration that delivers better performance for gaaticular phase
of program execution (using heuristics to detect such pblaaeges). The overhead for reconfiguration
is usually significantly lower than the performance benefitswever, it is not entirely obvious whether
such a dynamic reconfiguration preserves the intended sesar the application with respect to a
reference architecture, nor is there a theoretical framiewor comparing the performance benefits. We
believe there should be a formal basis for dynamically régarable multiprocessors, which constitute
an innovative technology trend.

D. Orchard and N. Yoshida (Eds.): Programming Language @dgugres to © S. Prasad
Concurrency- and Communication-Centric Software (PLAQBS6). This work is licensed under the
EPTCS 211, 2016, pp. 83991, doi:10.4204/EPTCS.211.9 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.211.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

84 Reconfigurable Multicore Architectures

In this paper, we present an operational account of exatofionultithreaded programs atynam-
ically reconfigurablemulticore architectures, which to our knowledge is new. riaxang how a variety
of cluster-basedrchitectural configurations partition cores and sharbeawse see that partition refine-
ments provide a natural partial ordering on cluster conétijons. We also find that instead of requiring
different operational formulations for each configuratioar earlier work[[2] provides aniformabstract
operational semantics, whence we can both compare exadsditaviour semantics as well as express
dynamic reconfigurability. Leveraging results about aagtcache models from our work [2], which fol-
lowed the seminal approach of Boudol and Pétri [1] of showirad “well-synchronised programs have
the same semantics in relaxed memory models as on seqlyectiatistent models”, we show that dy-
namic reconfiguration is semantics-preserving for such-date-free programs. Further, by associating
an approximate cost with each operation, we adapt Kiehn and-Kumar’'s notion oamortised bisim-
ulation [3] to obtain a framework for comparing performance on theouss architectural configurations
and reasoning about the benefits of dynamic reconfiguration.

It should be clarified at the outset that we are presentingutixen semantics at tharchitectural
level, below the program or OS levelhere threads are assigned to cores. Reconfiguration h&ppen
dynamically during program execution, andoigtside program controlIn this respect, this work dif-
fers from that of Krishnan |4,]5] and also the large body of kvalated to assigning threads to cores
(which has anyway become a less pressing issue in multigsteras). For simplicity, we confine our
study to homogeneous core architectures, and the recaatfiguparameters to core clustering and cache
fusion/splitting, and do not consider other parameterk sgacore fusion/splitting, core allocation, man-
agement of power and clocking, and cache allocation.

2 The Reference Model

The reference architectural model with respect to which eragare the semantics of program execu-
tion consists of a collection of cores connected via a bussiogle shared memory module. Under the
assumption of having the requisite number of cores, thisreeice model will exhibit behaviours con-
sistent withpomsetsemantics/ [9] of multiple sequential processes witlequentially consistershared
memory [6]. In a sequentially consistent memory model, egriand reads are atomic operations, and
occur in program order within a thread.

Execution states are written @s= (S P), whereSis the sharedtoreandP is a vector of threads. For
simplicity, we assume each thread runs on its own core, Wittenoting thé'" thread. The operational
semantics are given in Figuré 1. Since our focus is on theredisie actions on shared memory at the
architectural level, only the transitions relating to riegdand writing from memory are shown, eliding
transitions for instructions not involving the store. Srtbe bus enforcemutually exclusive access
the memory module, we adopt an interleaving view of exeouthn obvious alternative approach would
have been to considelynchronous transitiondabelled byvectors of actionsthe components of which
are contributed by each core. However, since certain coegsidie (e.g., for power efficiency reasons)
and since we are not making any assumptions about clock symichy, that approach would not be
appropriate.

Transitions related to accessing the store are of the fg% wherei is used to indicate that the
transition is for thread® (or corei), anda denotes the action. The possible actions ag:(the valuevis
read from variable) andwr}, (the valuev is written to the variable), apart from the reductions (labelled
1) not involving the store. When we do not care what value wad/weritten, we used, andwr,. We
associate an approximatestd for accessing the store, witt{rdy) ~ c(wry) ~ &. For simplicity, we

S. Prasad 85

(read) (SRX) Z2g(SRM) where $x) =v

(wry,i)

(write) (S R[x=v]) —=s(Sx - V[,R[()])

Figure 1: Specification semantics for read and write in tfieremce architecture

ascribe a uniform codl for 1-labelled transitions (typicallp < o ﬁ

In a sequence of transitiot% ao—'°)> (a”) ———= Cpy1, two concurrently enabled but conflictirigan-
sitions @ 1) and *™, are said to form aace (on variablex) if i; # ix andaj,ax € {rd,,wr,} and at

least one isir,. Races make computational results dependent on schedidoigions, and as a conse-
guence programmers use synchronisation mechanisms silmtkasbarriers, fences, etc. to avoid the
occurrence of such data races.

3 Implementation Models

There is a variety of configurations for multicore architees. Common among them are chip multi-
processors (CMP) and symmetric multiprocessing (SMP). fordifference between them lies in the
organisation of their cache hierarchy. Caches are impoatahitectural features that significantly speed
up execution of programs by exploiting locality of memorgesses and reducing their latency.

In a CMP configuration, each core possesses its private ddtastructionL1 caches, but several
cores share a commadr® cache, which lies above the slower main memory. In contrassMP, the
L2 cache is also private to each core. These two configuratiasbe considered the extremes of a
range ofclustered configurationsr clusterings where the multicore system consists of a collection of
clustered cores. Within a cluster, each core possessesviasel 1 data and instruction caches, but the
cores share &2 cache. Thus, SMP is the case where the cluster size is 1eah&@MP puts all the
cores in one cluster. Pat al. use the notatiotk(cy,...,C), Where(Z'j‘zlcj) = N to describe a system

of N cores configured intd clusters, where th¢" cluster hasc; cores. SMP is therefore written as
N(1,...,1) while CMP is represented agN). For simplicity, we will only concern ourselves with a
memory structure consisting oflé& caches and shared main store. A more detailed model caassddr
the similar issues that arise in the treatmentbfis a vis L2 caches and main memory.

We observe that a clustering represengmgition of cores; given a clusterin@Q, we writei ~q | if
coresi and j are in the same cluster. Thus in SMP, the equivalence claseesingletons, whereas in
pure CMP, all cores are in the same equivalence class. liecing Q is apartition refinemenof Q', we
write Q < Q’@ Note that ifi ~q j, theni, j share the samie2 cache.

3.1 Implementation semantics

We now refine the reference model by introducing caches ig@tchitecture. The store component is
replaced by a tupléS C), whereSis the store (as earlier) allis a vector of caches. The caches contain
a local copy of a subset of the store. Due to differences indte& caches, each core has a potentially
different view of the memoryC; denotes thel(2) cache available to coiie In clusteringQ, if i ~q j,
thenC; andC; are the same and so have the same contents.

1Assumptions or® do not have any significance in this paper.
2Note that refinements are lower in the ordering.

86 Reconfigurable Multicore Architectures

(LocalRead (SC,R[X) "4 (SC.RM) where xe dom(G;) AGi[x.val = v
(StoreReagl (S,C,R[x]) MQ (SC,R[V) where x¢ domC;) A S(x) = v
(ReadPul) (S,C,R[x]) MQ (_SCi [X < (V,clean)|,R[v]) where x¢ domC;) A S(x) =V

(wrxipsl)

(WriteBack (SC,R[x:=V]) ——q (§Ci[x+ (v, dirty)],R[()])

Figure 2: Implementation semantics for read and write djmers on a clustering
(Evict) (SC.P) 7+ (SGi1xP) Ci[X = (v,clean)
(CacheUpd (SC,P) ﬁ 0 (SCj[x < (v,clean)],P)

x € domC;) ACj[x] # (V,clean) ACi[X| = (V,dirty)
(StoreUpd (S.C,P) — = q (Six ¢ V],Ci[x - (v,clean)],P
Vj:j#inxedomC;j),Ci[x = (Vv,clean) ACi[X| = (V,dirty)

Figure 3: System transitions on clusteri@g Update-based cache consistency protocol

If xe dom(C), its valueCi[x] is given by a paifval, state), whereval is the value of the variable and
statemay be eitherlean ordirty. A variable isclean either if it has not been written to lifis cluster
of cores, or if its changed value has been written throughdcstore. Otherwise it i¢irty. Note that
in generalCi[x] = (v, clean) # S(x) = v. The system may allow the store to contain a different velue i
some other processor has updated the store but this cachethg been notified.

Figure[2 gives the implementation semantigsh respect to clustering @r read and write oper-
ations, both of which access the memory — and potentialr @it When a variable is written to, the
write is only to the cache (“write back”). We discuss belowhihese changes are propagated to the
store or to other caches. Observationattyy; is afunctionally equivalenaction towry, but with lower
cost: C(wryj) ~ K < 0.

There are three transitions for reading a variabta,;, rdsy, rdpy, all functionally equivalent to the
same specification operatiardy, but with different costs.rd1y, is a read from the local cache, and
has cost(rdly) ~ k. Note that whenx ¢ dom(C;), there are two possible transitions, labeltett) and
rdpy, both with costs), corresponding to whether or nois pulled into the cache. This decision is made
non-deterministically, which (along with another trammsitfor evictionto be introduced later) makes the
model independent of theache-replacememiolicy used by the actual implementation. Note that unlike
in the specification semantiagadinga locationx can cause changes to the memory, e.g., by moving the
value read into a cache.

Apart from theprogrammed transitionsf Figured 1 andl2, there are the so-called ‘system’ transi-
tions, denoted by-q, used to manage the memory structure, including cacheceplent policies and
consistency. These transitions can fire non-deterministiat any time, and the threads cannot constrain
which system transitions can occur or when. The systemitiams are used to propagate writes to other
caches and the store. In practice this is usually done eittlieranupdate-basegrotocol (where cached
copies are updated with the new value) or withraralidation-basedorotocol (where cached copies are
invalidated, effectively removing them from the cache)rétee present only the update protocol (Fig-
ure[3). The transitions, which are not observable, but dgedrhere to distinguish them, are as follows:

1. Eviction % Evict x from G;. C(%)) ~ 0. This is only used for the cache replacement policy and
| |

S. Prasad 87

is not needed to achieve a consistent state.
2. Cache update%: Updatex in C; from C;. c(%) ~0if i ~q j, sinceC is the same a§;;
i—]j i—]j

otherwise it is~ 9 since it requires communication over the system bus. Thisésl to update
other caches when a variable is written to in a cache.

3. Store update%x Updatexin SfromG;. c(%) ~ &. The condition for its application ensures
|

— i—
that a store update only happeafter all caches have been updated and agree on the value of the
variable.

3.2 Comparing the semantics on different configurations

Consider a program or workloadt, i.e., a set of threads mapped to a set of cores. An executoa t
o of an implementation dfV on clusteringQ is considered correct if for any two actioag € g, some
functionally equivalent actiond’,b’ both appear in the pomset semantics, ana ffrecededy in the
pomset semantic® appears beforb in . The implementation conforms to the pomset semantics if
every traceg possible in that implementation is correct with respecth® pomset semantics. In the
interleaving view, this can be stated as: for any observahte in the reference semantics, there is a
corresponding trace of functionally equivalent obsergatdtions in the implementation semantics.
Running any workloadV on a coarser clustering preserves the observable behavidoreover,
CMP is semantically faithful to the reference semantics.

Proposition1 1. If @ <Q, then any Q-trace has a functionally equivalent’@race o’.
2. Every reference semantics tragehas a functionally equivalent CMP-tracg and vice versa.

Proof outline: By induction onag, we find a functionally equivalerd’. The only interesting cases are
if i ~q j buti %£q j, and there is a local read to or write from (s&y)x]. We use the > o transition
i—j

before a read or after a write to make the two cache entriesea@imilarly, the% transition is used
1—
to makeC;|[x] agree withSx]. O

Coherence, Consistency and Data Race Free programsUnfortunately, program execution on multi-

processors with caches may exhibit more traces than theenefe model allows, due to the introduction
of race conditions and inconsistencies between the cadhdiffeaent cores or with the shared store
(arising from the non-atomicity of writes). It is therefanet true in general that program behaviour is
preserved when running a program on a finer clustering @MR).

We recall below some of our earlier results showing that folags of programs that arelédta race
free (DRF)” [1], every program trace in any implementation arebiure has a functionally equivalent
trace in the reference architecture. For such DRF progr#mesadditional behaviours, introduced by
the extra nondeterminism in the implementation architectare irrelevant for executions starting from
“consistent statés A consistent state is, intuitively, an implementatiomtstthat is identifiable in a
precise sense with a specific state (called its “reduct’héreference model.

We briefly recall the notions of coherence and consistenegeprted in our earlier workl[2] via ab-
stract operational characterisations. We refer the istedereader top. cit. to check that these notions
correspond with more familiar invariants associated witlmmry consistency and cache coherence pre-
sented in the literature.

We writeC —¢ C’ to denote that’ is reachable fronfT by theimplementation semanti¢program and
system transitions) with respect to clusteri@gand similarlyC —& C” for the reference architecture

88 Reconfigurable Multicore Architectures

semantics. We usé () to denote O or moreystentransitions in clusterin®, whereas—¢ means 0 or
more system and program transitions.

Let us call a stat€ “—) -normal” if it cannot make any- q, moves (i.e. system transitions). For an
implementation stat€, let C.M;[x].val denote the value in corés view of x, i.e., the value ofi[x|,

or §x] if x ¢ dom(C;). An implementation stat€ is said toreduce toa specification stat€s (written
ClqCg)if 3C":C 5 @C', C"is =g -normal, and?ivx C'.Mj[x.val = Cs.§x]. Csis called areduct

of C.

Definition 1 A stateC is said to becoherent forx if 3v: Vi : x € dom(Ci) A Ci[X].state= dirty =
Ci[X|.val = v. A state icoherentf it is coherent for all x.A coherent state has a unique redude use
C to refer to the unique reduct of a coherent state

Definition 2 A state (S C,P) is said to beconsistent forx if and only ifVi : x € domC;),Ci[x] =
(S(x), clean). Implementation stat€ is consistentf it is consistent for all x. A consistent state is
in some sense identifiable with its reduct.

We now introduce the notion of data race freedom.

Definition 3 A consistent stat€ involves adata racef it has two redexes;R] and R[r’],i # j,rand r
are both accesses to the same variable and at least one ige. Wris data race fre€DRF) iff no state
reachable in the reference architecture semantics ff@rimvolves a data race.

Note also that the analysis of data race freedom need onl\etiermed at the level of the reference
semantics. DRF programs allow us to consider their exetaisgprogressing via a sequence of reference
model states (reducts). Using ideas and techniques irtealdiny Boudol and Petri [1], it is shown that
for “well-synchronised” programs, i.e., those where b&wany pair of actions forming a data race lies
an intervening synchronising mechanism (e.g., lock releasbarrier operations), the behaviours are
functionally equivalent. In particular, we have shownlii) §ction 6] that the cache rules described
above satisfy required properties of coherence and censigt

Since the execution of DRF programs on any clustering achite can be seen to be functionally
equivalent to execution on the reference architecture,amesbow:

Proposition 2 For DRF programs, any reconfiguration (in any direction) peeves semantics.

Proof outline: Similar to the proof of Propositidd 1, but here we rely on thet that every implementation
trace of a DRF programs on clusteriQohas a functionally equivalent trace in the reference moted
result follows from transitivity of equivalence of actigrend that ‘system’ transitions are not directly
observable. O

Execution on a dynamically reconfiguring architecture. Consider now a scenario where execution
may commence on clusteririg, and the machine may nondeterministically decide to masghdiuster-
ing Q (based on some heuristic), after which execution proceedseolatter architectural configuration.
Suchdynamic reconfiguratiofrom clusteringQ to Q' can be internalised into our framework by intro-
ducing a new actiog -9, with costc(q) = u > &:

(Reconf C o9 rC™

where"C" is the “reduct” of C. On reconfiguration, the cache contents are written to thee,sand
the program resumes in the new configuration with “cold cath&or DRF programs, the execution
semantics of each phase corresponds precisely to the sesnahexecution in the reference model.
Thus we can formalise within our framework the correctnegergn for execution on a reconfigurable
architecture.

S. Prasad 89

Theorem 1 Any execution of a DRF program on a reconfigurable architectitonforms to execution on
the reference model.

Proof outline: By piecewise stitching of executions of the different plsase the different configurations.
Note that implementation states before and after recorigur correspond to the same reduct. O

4 Comparing Performance

We now propose a framework for comparing the execution effimy on two configurations. For unifor-
mity, specification and implementation states are clubb&rdne set; the specification and implementa-
tion actions marking transitions are also combined into seteof actionsz'. Letu € «/* be a sequence
of actions, and let= denote a labelled sequence of transitions, as usual.

Let p C & x o7 represent the functional equivalence of actions as mesdicabove. The actions

rd1}, rds, rdpy,rdy are in one equivalence clasazy; andwry in a second; and},%,%, T, &
ir =i i

in the third. Fora in the read and write actions, let the observable condent a, and fora € {%
|

,%,%, T, &1, defined = ¢ (the empty string). Exteng to sequences such thét, ¢) € p and

i—=j i—
(g,uz...Up) € p and(uy...un, €) € pif (T,u;) € p for eachy;.
Functionally equivalent actions deliver the same resultattay have quite different latencies. We have
earlier specified the costs of actioxngor cache accessed for store accesses apdfor reconfiguration.
Lift ¢() to sequences by summing the costs of the component actions.
Following the constraints op and latency costs as inl[3], we define the notion of weak aswetti
bisimulations on states (both specification and implentmmz.

Definition 4 A family (R))ien Of binary relations over states isv@eak amortisegb-bisimulation if for
alli € Nwheneve(C4,C) € R:

C; 3 ¢} implies3C,,b,u,v: (a,b) € p,(€,u) € p,(€,v) € p, Co 22 €, and(C},Ch) € Ry cub

v)—c(a)’
C, 2 ¢} implies3C),a,u,v: (a,b) € p,(u,e) € p,(v€) € p, C1 -2 €, and(C},Ch) € Ritc(b)—c(uay)
where ab € & and uv € &*. StateC; is (weakly) amortised more efficient thé&h up to credit i,

written C, jip Cy, if (C1,C,) € R for some weak amortisgat-bisimulation(R;)icn.

Note that accessing the cache is significantly less codlyatcessing the store. The definition of weak
amortised bisimulation accumulates “credit” by perforghihe cheaper operation, thus providing us a
framework for comparing the performance of execution ofedéht architectural configurations. Since
there is nondeterminism in when the ‘system’ operationg takce, our framework must account for
every possible execution run in the comparison.

The notion also allows us to assess the benefits of perfordyingmic reconfiguration. Reconfigu-
ration introduces a handicap gf which must be balanced (in an amortised sense) by frequeatses
to cache instead of to the store. Typicaflyis about 4 instruction cycles wheregss one cycle. Since
values are pulled into cache in blocks of words, there aréiaddl performance benefits due to over-
lapping reads with the execution of other operations. Thernfiguration cosy is approximately 1000
instruction cycles, so if there is enough locality of refere, this reconfiguration cost may be easily off-
set by the benefits of running the workload on a more suitatméguration for phases that are typically
of the order of millions of instruction cycles or more.

3A major difference with the cited work is that we ascribe at¢observable actions as well

90 Reconfigurable Multicore Architectures

Theorem 2 1. For DRF program states, any reconfiguration for more edficly is permissible. With
sufficient locality of references, such programs executeahny clustering are “weakly amortised”
more efficient than execution under their reference modsgugion.

2. IfQ< @, then executing a program on configuratiohimodulo the approximations on latency)
“weakly amortised more efficient” than on Q.

Proof outline: From any consistent implementation state, a unique reduegichable. If it takes < kn
%},ﬁ) moves to do so (wherk is the number of caches amdthe number of variables), then to
ha\J/e been in such a state, the system must have earlierrpedat leasim wry;;, actions instead ofry
actions, and thus have already “earned” a credib@ — k). So if it has performed at leasik /(0 — K)
operations such as distinct repeat writes to a variable éghear reads of dirty variable, then it has
earned the requisite credit to be amortised at least asegifias the reference system.

For the second part, ® < Q/, since there is more sharing of cached variables, we cad #weicostlier

rdsY, rdpY in favour of the cheaperd1 operation, and avoid some instances of the- operation. [
i—]j

5 Conclusions

Our framework provides a formal basis for comparing bothltbkaviour and the performance of pro-
gram workloads on different multiprocessor architectur@air first set of results (Propositiohs 1 and
[2) provides us a rudimentary formal justification for thekfote that it is easy to port programs written
assuming an SMP architecture to CMP. In particular, theycatd why converting MPI programs to
OpenMP, which assumes shared variables, is usually easiethe trickier reverse direction. Theorem
indicates why as architectures become “smarter” and jiazate reconfigurability, avoiding data races
only assumes greater importance. The framework for comgainie efficiency of execution on different
architecture also lets us understand why certain progransugh dramatic performance benefits when
run on CMP architectures.

Let us mention a shortcoming of our work. Theorem 2 seemsdizate that CMP is preferable
to all other configurations, which is belied in reality, espfly where applications with threads having
little or no communication amongst themselves run moreiefitty on SMP-like configurations. The
cache bus within a cluster and the memory bus enforce myteitiusive access, and so the interleaved
execution of threads accessing a shared cache is slowessitmataneous independent execution of
threads accessing private caches-k interleaved vk in paraIIeIE]. The fault lies not in our framework,
but rather in our view of execution as being interleaved —eawive had taken to keep the semantics
standard. We leave for the future the development of a frasrlewhere the pomset model is used to
explore the correctness and efficiency issues.

Reconfiguration is also an opportunity for remapping thseadcores. While we have considered
only a fixed workload mapping of threads to cores in the pregaper, we do not believe this extension
poses any major technical difficulties.

Acknowledgements. | wish to acknowledge the helpful discussions with my caleaKolin Paul who
taught me the little | know about reconfigurable architezsurl also must thank one of the referees who
constructively pointed out many major weaknesses of tHeeawatar of this paper.

4There also is a slowdown due to the fused cache being larhéshwe neglect.

S. Prasad 91

References

[1] Gérard Boudol & Gustavo Petri (2009%elaxed memory models: an operational approdch Proceedings

of the 36th ACM SIGPLAN-SIGACT Symposium on Principles obBramming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009. 392-403, doi:0.1145/1480881.1480930.

[2] Salil Joshi & Sanjiva Prasad (2010An Operational Model for Multiprocessors with Cachés: Theoretical

Computer Science - 6th IFIP TC 1/WG 2.2 International Cagrfee, TCS 2010, Held as Part of WCC 2010,
Brisbane, Australia, September 20-23, 2010. Proceedipg871—-385, doi:0.1007/978-3-642-15240-5.

[3] Astrid Kiehn & S. Arun-Kumar (2005)Amortised Bisimulationsin: Formal Techniques for Networked and

[4]

[5]
[6]
[7]

(8]

Distributed Systems - FORTE 2005, 25th IFIP WG 6.1 Inteoradtl Conference, Taipei, Taiwan, October 2-5,
2005, Proceedingpp. 320-334, doi:0.1007/11562436_24.

Padmanabhan Krishnan (1992):Semantics for Multiprocessor Systerhs ESOP '92, 4th European Sym-
posium on Programming, Rennes, France, February 26-28, Fg6ceedinggpp. 307-320, doi:0.1007/
3-540-55253-7_18.

Padmanabhan Krishnan (199@&rchitectural CCS Formal Asp. CompuB(2), pp. 162-187, dain. 1007/
BF01214555.

L. Lamport (1979)How to Make a Multiprocessor Computer That Correctly ExesMultiprocess Programs
IEEE Trans. Compu8(9), pp. 690-691, ddi0.1109/TC.1979.1675439.

Rajesh Kumar Pal, Kolin Paul & Sanjiva Prasad (201R&Konf: A Reconfigurable Adaptive ManyCore Ar-
chitecture In: 10th IEEE International Symposium on Parallel and DistebiLProcessing with Applications,
ISPA 2012, Leganes, Madrid, Spain, July 10-13, 2@2 182—-191, doi:0.1109/ISPA.2012.32.

Rajesh Kumar Pal, Kolin Paul & Sanjiva Prasad (201ReKonf: Dynamically reconfigurable multiCore
architecture J. Parallel Distrib. Comput4(11), pp. 3071-3086, dai0.1016/j . jpdc.2014.05.007.

[9] Vaughan R. Pratt (1984)The Pomset Model of Parallel Processes: Unifying the Tewmdpamd the Spatial

In: Seminar on Concurrency, Carnegie-Mellon University,sBittg, PA, USA, July 9-11, 198gp. 180-196,
doi:10.1007/3-540-15670-4_9.

http://dx.doi.org/10.1145/1480881.1480930
http://dx.doi.org/10.1007/978-3-642-15240-5
http://dx.doi.org/10.1007/11562436_24
http://dx.doi.org/10.1007/3-540-55253-7_18
http://dx.doi.org/10.1007/3-540-55253-7_18
http://dx.doi.org/10.1007/BF01214555
http://dx.doi.org/10.1007/BF01214555
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/ISPA.2012.32
http://dx.doi.org/10.1016/j.jpdc.2014.05.007
http://dx.doi.org/10.1007/3-540-15670-4_9

	1 Introduction
	2 The Reference Model
	3 Implementation Models
	3.1 Implementation semantics
	3.2 Comparing the semantics on different configurations

	4 Comparing Performance
	5 Conclusions

