
D. Orchard and N. Yoshida (Eds.): Programming Language Approaches to
Concurrency- and Communication-Centric Software (PLACES2016).
EPTCS 211, 2016, pp. 83–91, doi:10.4204/EPTCS.211.9

c© S. Prasad
This work is licensed under the
Creative Commons Attribution License.

Program Execution on Reconfigurable Multicore
Architectures

Sanjiva Prasad
Indian Institute of Technology Delhi

New Delhi, India

sanjiva@cse.iitd.ac.in

Based on the two observations that diverse applications perform better on different multicore ar-
chitectures, and that different phases of an application may have vastly different resource require-
ments, Palet al. proposed a novel reconfigurable hardware approach for executing multithreaded
programs. Instead of mapping a concurrent program to a fixed architecture, the architecture adap-
tively reconfigures itself to meet the application’s concurrency and communication requirements,
yielding significant improvements in performance. Based onour earlier abstract operational frame-
work for multicore execution with hierarchical memory structures, we describe execution of multi-
threaded programs on reconfigurable architectures that support a variety of clustered configurations.
Such reconfiguration may not preserve the semantics of programs due to the possible introduction
of race conditions arising from concurrent accesses to shared memory by threads running on the dif-
ferent cores. We present an intuitive partial ordering notion on the cluster configurations, and show
that the semantics of multithreaded programs is always preserved for reconfigurations “upward” in
that ordering, whereas semantics preservation for arbitrary reconfigurations can be guaranteed for
well-synchronised programs. We further show that a simple approximate notion of efficiency of ex-
ecution on the different configurations can be obtained using the notion of amortised bisimulations,
and extend it to dynamic reconfiguration.

1 Introduction

The traditional approach to multiprocessing is to map multithreaded applications or multiprogram work-
loads onto a chosen multicore architecture. Palet al. showed that due to the diversity of software
applications, this “one architecture fits all” approach often yields sub-optimal performance [7]. For
instance, programs with mostly independent threads havinglittle communication perform well on sym-
metric multiprocessors (SMP) whereas those with more communication and shared variables perform
better on chip multiprocessors (CMP). Indeed, even a singleapplication can exhibit vastly diverse re-
source requirements during different phases of its execution. Accordingly, those authors identified dif-
ferent reconfiguration parameters (e.g., number of cores, cache size and cache sharing) and proposed
a reconfigurable multicore tile-based architecture which supports dynamicadaptability of the multicore
hardware to the software’s resource requirements[8], obtaining significant performance improvements.
Thehardware morphs itselfto a configuration that delivers better performance for thatparticular phase
of program execution (using heuristics to detect such phasechanges). The overhead for reconfiguration
is usually significantly lower than the performance benefits. However, it is not entirely obvious whether
such a dynamic reconfiguration preserves the intended semantics of the application with respect to a
reference architecture, nor is there a theoretical framework for comparing the performance benefits. We
believe there should be a formal basis for dynamically reconfigurable multiprocessors, which constitute
an innovative technology trend.

http://dx.doi.org/10.4204/EPTCS.211.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

84 Reconfigurable Multicore Architectures

In this paper, we present an operational account of execution of multithreaded programs ondynam-
ically reconfigurablemulticore architectures, which to our knowledge is new. Examining how a variety
of cluster-basedarchitectural configurations partition cores and share cache, we see that partition refine-
ments provide a natural partial ordering on cluster configurations. We also find that instead of requiring
different operational formulations for each configuration, our earlier work [2] provides auniformabstract
operational semantics, whence we can both compare execution behaviour semantics as well as express
dynamic reconfigurability. Leveraging results about abstract cache models from our work [2], which fol-
lowed the seminal approach of Boudol and Petri [1] of showingthat “well-synchronised programs have
the same semantics in relaxed memory models as on sequentially consistent models”, we show that dy-
namic reconfiguration is semantics-preserving for such data-race-free programs. Further, by associating
an approximate cost with each operation, we adapt Kiehn and Arun-Kumar’s notion ofamortised bisim-
ulation [3] to obtain a framework for comparing performance on the various architectural configurations
and reasoning about the benefits of dynamic reconfiguration.

It should be clarified at the outset that we are presenting execution semantics at thearchitectural
level, below the program or OS levelwhere threads are assigned to cores. Reconfiguration happens
dynamically during program execution, and isoutside program control. In this respect, this work dif-
fers from that of Krishnan [4, 5] and also the large body of work related to assigning threads to cores
(which has anyway become a less pressing issue in multicore systems). For simplicity, we confine our
study to homogeneous core architectures, and the reconfiguration parameters to core clustering and cache
fusion/splitting, and do not consider other parameters such as core fusion/splitting, core allocation, man-
agement of power and clocking, and cache allocation.

2 The Reference Model

The reference architectural model with respect to which we compare the semantics of program execu-
tion consists of a collection of cores connected via a bus to asingle shared memory module. Under the
assumption of having the requisite number of cores, this reference model will exhibit behaviours con-
sistent withpomsetsemantics [9] of multiple sequential processes with asequentially consistentshared
memory [6]. In a sequentially consistent memory model, writes and reads are atomic operations, and
occur in program order within a thread.

Execution states are written asC= (S,P), whereSis the sharedstoreandP is a vector of threads. For
simplicity, we assume each thread runs on its own core, withPi denoting theith thread. The operational
semantics are given in Figure 1. Since our focus is on the observable actions on shared memory at the
architectural level, only the transitions relating to reading and writing from memory are shown, eliding
transitions for instructions not involving the store. Since the bus enforcesmutually exclusive accessto
the memory module, we adopt an interleaving view of execution. An obvious alternative approach would
have been to considersynchronous transitions, labelled byvectors of actions, the components of which
are contributed by each core. However, since certain cores may idle (e.g., for power efficiency reasons)
and since we are not making any assumptions about clock synchronicity, that approach would not be
appropriate.

Transitions related to accessing the store are of the form
(a,i)
−−→, wherei is used to indicate that the

transition is for threadPi (or corei), anda denotes the action. The possible actions are:rdv
x (the valuev is

read from variablex) andwrv
x (the valuev is written to the variablex), apart from the reductions (labelled

τ) not involving the store. When we do not care what value was read/written, we userdx andwrx. We
associate an approximatecostδ for accessing the store, withc(rdv

x) ≃ c(wrv
x) ≃ δ . For simplicity, we

S. Prasad 85

(read) (S,Pi[x])
(rdv

x,i)−−−→S (S,Pi[v]) where S(x) = v

(write) (S,Pi[x:=v])
(wrv

x,i)−−−→S (S[x← v],Pi[()])

Figure 1: Specification semantics for read and write in the reference architecture

ascribe a uniform costθ for τ-labelled transitions (typicallyθ < δ)1

In a sequence of transitionsC0
(a0,i0)
−−−→ ·· ·

(an,in)
−−−→Cn+1, two concurrently enabled but conflictingtran-

sitions
(aj ,i j)
−−−→ and

(ak,ik)
−−−→ are said to form arace (on variablex) if i j 6= ik anda j ,ak ∈ {rdx,wrx} and at

least one iswrx. Races make computational results dependent on schedulingdecisions, and as a conse-
quence programmers use synchronisation mechanisms such aslocks, barriers, fences, etc. to avoid the
occurrence of such data races.

3 Implementation Models

There is a variety of configurations for multicore architectures. Common among them are chip multi-
processors (CMP) and symmetric multiprocessing (SMP). A major difference between them lies in the
organisation of their cache hierarchy. Caches are important architectural features that significantly speed
up execution of programs by exploiting locality of memory accesses and reducing their latency.

In a CMP configuration, each core possesses its private data and instructionL1 caches, but several
cores share a commonL2 cache, which lies above the slower main memory. In contrast, in SMP, the
L2 cache is also private to each core. These two configurationsmay be considered the extremes of a
range ofclustered configurationsor clusterings, where the multicore system consists of a collection of
clustered cores. Within a cluster, each core possesses its privateL1 data and instruction caches, but the
cores share aL2 cache. Thus, SMP is the case where the cluster size is 1, whereas CMP puts all the
cores in one cluster. Palet al. use the notationk(c1, . . . ,ck), where(Σk

j=1c j) = N to describe a system

of N cores configured intok clusters, where thejth cluster hasc j cores. SMP is therefore written as
N(1, . . . ,1) while CMP is represented as 1(N). For simplicity, we will only concern ourselves with a
memory structure consisting of aL2 caches and shared main store. A more detailed model can address
the similar issues that arise in the treatment ofL1 vis à vis L2 caches and main memory.

We observe that a clustering represents apartition of cores; given a clusteringQ, we write i ∼Q j if
coresi and j are in the same cluster. Thus in SMP, the equivalence classesare singletons, whereas in
pure CMP, all cores are in the same equivalence class. If clusteringQ is apartition refinementof Q′, we
write Q≤Q′.2 Note that ifi ∼Q j, theni, j share the sameL2 cache.

3.1 Implementation semantics

We now refine the reference model by introducing caches into the architecture. The store component is
replaced by a tuple(S,C), whereSis the store (as earlier) andC is a vector of caches. The caches contain
a local copy of a subset of the store. Due to differences in thelocal caches, each core has a potentially
different view of the memory.Ci denotes the (L2) cache available to corei. In clusteringQ, if i ∼Q j,
thenCj andCi are the same and so have the same contents.

1Assumptions onθ do not have any significance in this paper.
2Note that refinements are lower in the ordering.

86 Reconfigurable Multicore Architectures

(LocalRead) (S,C,Pi [x])
(rdlv

x,i)−−−−→Q (S,C,Pi [v]) where x∈ dom(Ci)∧Ci[x].val= v

(StoreRead) (S,C,Pi[x])
(rdsv

x,i)−−−−→Q (S,C,Pi[v]) where x6∈ dom(Ci)∧S(x) = v

(ReadPull) (S,C,Pi [x])
(rdpv

x,i)−−−−→Q (S,Ci [x← (v,clean)],Pi [v]) where x6∈ dom(Ci)∧S(x) = v

(WriteBack) (S,C,Pi [x:=v])
(wrv

x[i],i)
−−−−→Q (S,Ci [x← (v,dirty)],Pi[()])

Figure 2: Implementation semantics for read and write operations on a clusteringQ

(Evict) (S,C,P)
x
−→
i↾

Q (S,Ci ↑ x,P) Ci [x] = (v,clean)

(CacheU pd) (S,C,P)
x
−−→
i→ j

Q (S,Cj [x← (v,clean)],P)

x∈ dom(Cj)∧Cj [x] 6=(v,clean)∧Ci[x]=(v,dirty)
(StoreU pd) (S,C,P)

x
−−→
i→S

Q (S[x← v],Ci [x← (v,clean)],P)

∀ j : j 6= i∧x∈dom(Cj),Cj [x]=(v,clean)∧Ci[x]=(v,dirty)

Figure 3: System transitions on clusteringQ: Update-based cache consistency protocol

If x∈ dom(Ci), its valueCi [x] is given by a pair(val,state), whereval is the value of the variable and
statemay be eitherclean or dirty. A variable isclean either if it has not been written to bythiscluster
of cores, or if its changed value has been written through to the store. Otherwise it isdirty. Note that
in general,Ci [x] = (v,clean) 6⇒ S(x) = v. The system may allow the store to contain a different value if
some other processor has updated the store but this cache hasnot yet been notified.

Figure 2 gives the implementation semanticswith respect to clustering Qfor read and write oper-
ations, both of which access the memory — and potentially alter it. When a variable is written to, the
write is only to the cache (“write back”). We discuss below how these changes are propagated to the
store or to other caches. Observationally,wrv

x[i] is afunctionally equivalentaction towrv
x, but with lower

cost:c(wrv
x[i])≃ κ < δ .

There are three transitions for reading a variable,rdlv
x,rds

v
x,rdp

v
x, all functionally equivalent to the

same specification operationrdv
x, but with different costs.rdlv

x is a read from the local cache, and
has costc(rdlv

x)≃ κ . Note that whenx 6∈ dom(Ci), there are two possible transitions, labelledrdsv
x and

rdpv
x, both with costsδ , corresponding to whether or notx is pulled into the cache. This decision is made

non-deterministically, which (along with another transition for evictionto be introduced later) makes the
model independent of thecache-replacementpolicy used by the actual implementation. Note that unlike
in the specification semantics,readinga locationx can cause changes to the memory, e.g., by moving the
value read into a cache.

Apart from theprogrammed transitionsof Figures 1 and 2, there are the so-called ‘system’ transi-
tions, denoted by−→Q, used to manage the memory structure, including cache replacement policies and
consistency. These transitions can fire non-deterministically at any time, and the threads cannot constrain
which system transitions can occur or when. The system transitions are used to propagate writes to other
caches and the store. In practice this is usually done eitherwith anupdate-basedprotocol (where cached
copies are updated with the new value) or with aninvalidation-basedprotocol (where cached copies are
invalidated, effectively removing them from the cache). Here we present only the update protocol (Fig-
ure 3). The transitions, which are not observable, but decorated here to distinguish them, are as follows:

1. Eviction x
−→
i↾

: Evict x from Ci . c(
x
−→
i↾
)≃ 0. This is only used for the cache replacement policy and

S. Prasad 87

is not needed to achieve a consistent state.

2. Cache update x
−−→
i→ j

: Updatex in Cj from Ci. c(
x
−−→
i→ j

) ≃ 0 if i ∼Q j, sinceCi is the same asCj ;

otherwise it is≃ δ since it requires communication over the system bus. This isused to update
other caches when a variable is written to in a cache.

3. Store update x
−−→
i→S

: Updatex in SfromCi . c(
x
−−→
i→S

)≃ δ . The condition for its application ensures

that a store update only happensafter all caches have been updated and agree on the value of the
variable.

3.2 Comparing the semantics on different configurations

Consider a program or workloadW, i.e., a set of threads mapped to a set of cores. An execution trace
σ of an implementation ofW on clusteringQ is considered correct if for any two actionsa,b∈ σ , some
functionally equivalent actionsa′,b′ both appear in the pomset semantics, and ifa′ precedesb′ in the
pomset semantics,a appears beforeb in σ . The implementation conforms to the pomset semantics if
every traceσ possible in that implementation is correct with respect to the pomset semantics. In the
interleaving view, this can be stated as: for any observabletrace in the reference semantics, there is a
corresponding trace of functionally equivalent observable actions in the implementation semantics.

Running any workloadW on a coarser clustering preserves the observable behaviour. Moreover,
CMP is semantically faithful to the reference semantics.

Proposition 1 1. If Q′ ≤Q, then any Q-traceσ has a functionally equivalent Q′-traceσ ′.
2. Every reference semantics traceσ has a functionally equivalent CMP-traceσ ′ and vice versa.

Proof outline: By induction onσ , we find a functionally equivalentσ ′. The only interesting cases are
if i ∼Q j but i 6∼Q′ j, and there is a local read to or write from (say)Ci [x]. We use the

x
−−→
i→ j

Q′ transition

before a read or after a write to make the two cache entries agree. Similarly, the
x
−−→
i→S

transition is used

to makeCi [x] agree withS[x]. �

Coherence, Consistency and Data Race Free programs.Unfortunately, program execution on multi-
processors with caches may exhibit more traces than the reference model allows, due to the introduction
of race conditions and inconsistencies between the caches at different cores or with the shared store
(arising from the non-atomicity of writes). It is thereforenot true in general that program behaviour is
preserved when running a program on a finer clustering (e.g.,SMP).

We recall below some of our earlier results showing that for aclass of programs that are “data race
free (DRF)” [1], every program trace in any implementation architecture has a functionally equivalent
trace in the reference architecture. For such DRF programs,the additional behaviours, introduced by
the extra nondeterminism in the implementation architecture, are irrelevant for executions starting from
“consistent states”. A consistent state is, intuitively, an implementation state that is identifiable in a
precise sense with a specific state (called its “reduct”) in the reference model.

We briefly recall the notions of coherence and consistency presented in our earlier work [2] via ab-
stract operational characterisations. We refer the interested reader toop. cit. to check that these notions
correspond with more familiar invariants associated with memory consistency and cache coherence pre-
sented in the literature.
We writeC→∗Q C

′ to denote thatC′ is reachable fromC by theimplementation semantics(program and
system transitions) with respect to clusteringQ, and similarlyC→∗S C

′′ for the reference architecture

88 Reconfigurable Multicore Architectures

semantics. We use
∗
−→ 〈Q〉 to denote 0 or moresystemtransitions in clusteringQ, whereas→∗Q means 0 or

more system and program transitions.
Let us call a stateC “→〈Q〉-normal” if it cannot make any−→〈Q〉 moves (i.e. system transitions). For an
implementation stateC, let C.Mi[x].val denote the value in corei’s view of x, i.e., the value ofCi[x],
or S[x] if x 6∈ dom(Ci). An implementation stateC is said toreduce toa specification stateCS (written
C ⇓Q CS) if ∃C′ : C

∗
−→ 〈Q〉C

′, C′ is→〈Q〉-normal, and∀i∀xC′.Mi [x].val=CS.S[x]. CS is called areduct
of C.

Definition 1 A stateC is said to becoherent forx if ∃v : ∀i : x ∈ dom(Ci)∧Ci [x].state= dirty⇒
Ci [x].val= v. A state iscoherentif it is coherent for all x.A coherent state has a unique reduct. We use
pCq to refer to the unique reduct of a coherent stateC.

Definition 2 A state(S,C,P) is said to beconsistent forx if and only if ∀i : x ∈ dom(Ci),Ci [x] =
(S(x),clean). Implementation stateC is consistentif it is consistent for all x. A consistent state is
in some sense identifiable with its reduct.

We now introduce the notion of data race freedom.

Definition 3 A consistent stateC involves adata raceif it has two redexes Pi[r] and Pj [r ′], i 6= j, r and r′

are both accesses to the same variable and at least one is a write. C is data race free(DRF) iff no state
reachable in the reference architecture semantics frompCq involves a data race.

Note also that the analysis of data race freedom need only be performed at the level of the reference
semantics. DRF programs allow us to consider their execution as progressing via a sequence of reference
model states (reducts). Using ideas and techniques introduced by Boudol and Petri [1], it is shown that
for “well-synchronised” programs, i.e., those where between any pair of actions forming a data race lies
an intervening synchronising mechanism (e.g., lock release or barrier operations), the behaviours are
functionally equivalent. In particular, we have shown in [2, Section 6] that the cache rules described
above satisfy required properties of coherence and consistency.

Since the execution of DRF programs on any clustering architecture can be seen to be functionally
equivalent to execution on the reference architecture, we can show:
Proposition 2 For DRF programs, any reconfiguration (in any direction) preserves semantics.

Proof outline:Similar to the proof of Proposition 1, but here we rely on the fact that every implementation
trace of a DRF programs on clusteringQ has a functionally equivalent trace in the reference model.The
result follows from transitivity of equivalence of actions, and that ‘system’ transitions are not directly
observable. �

Execution on a dynamically reconfiguring architecture. Consider now a scenario where execution
may commence on clusteringQ, and the machine may nondeterministically decide to morph to a cluster-
ing Q′ (based on some heuristic), after which execution proceeds on the latter architectural configuration.
Suchdynamic reconfigurationfrom clusteringQ to Q′ can be internalised into our framework by intro-
ducing a new actionQ #Q′, with costc(Q #Q′) = µ ≫ δ :

(Recon f) C Q #Q′ pCq

wherepCq is the “reduct” ofC. On reconfiguration, the cache contents are written to the store, and
the program resumes in the new configuration with “cold caches”. For DRF programs, the execution
semantics of each phase corresponds precisely to the semantics of execution in the reference model.
Thus we can formalise within our framework the correctness criterion for execution on a reconfigurable
architecture.

S. Prasad 89

Theorem 1 Any execution of a DRF program on a reconfigurable architecture conforms to execution on
the reference model.

Proof outline:By piecewise stitching of executions of the different phases on the different configurations.
Note that implementation states before and after reconfiguration correspond to the same reduct. �

4 Comparing Performance

We now propose a framework for comparing the execution efficiency on two configurations. For unifor-
mity, specification and implementation states are clubbed into one set; the specification and implementa-
tion actions marking transitions are also combined into oneset of actionsA . Let u∈A

∗ be a sequence
of actions, and let

u
=⇒ denote a labelled sequence of transitions, as usual.

Let ρ ⊂ A ×A represent the functional equivalence of actions as mentioned above. The actions
rdlv

x,rds
v
x,rdp

v
x,rd

v
x are in one equivalence class;wrv

x[i] andwrv
x in a second; and

x
−→
i↾
,

x
−−→
i→ j

,
x
−−→
i→S

,τ , #

in the third. Forα in the read and write actions, let the observable contentα̂ = α , and forα ∈ { x
−→
i↾

,
x
−−→
i→ j

,
x
−−→
i→S

,τ , #}, defineα̂ = ε (the empty string). Extendρ to sequences such that(ε ,ε) ∈ ρ and

(ε ,u1...un) ∈ ρ and(u1...un,ε) ∈ ρ if (τ ,ui) ∈ ρ for eachui .
Functionally equivalent actions deliver the same results but may have quite different latencies. We have
earlier specified the costs of actionsκ for cache accesses,δ for store accesses andµ for reconfiguration.
Lift c() to sequences by summing the costs of the component actions.
Following the constraints onρ and latency costs as in [3], we define the notion of weak amortised
bisimulations on states (both specification and implementation)3.

Definition 4 A family (Ri)i∈N of binary relations over states is aweak amortisedρ-bisimulation, if for
all i ∈ N whenever(C1,C2) ∈ Ri:

C1
a
−→ C

′
1 implies∃C′2,b,u,v : (a,b) ∈ ρ ,(ε ,u) ∈ ρ ,(ε ,v) ∈ ρ , C2

ub̂v
=⇒C

′
2 and(C′1,C

′
2) ∈Ri+c(ub̂v)−c(a),

C2
b
−→C

′
2 implies∃C′1,a,u,v : (a,b) ∈ ρ ,(u,ε) ∈ ρ ,(v,ε) ∈ ρ , C1

uâv
=⇒C

′
1 and(C′1,C

′
2) ∈Ri+c(b)−c(uâv),

where a,b ∈ A and u,v ∈ A
∗. StateC1 is (weakly) amortised more efficient thanC2 up to credit i,

writtenC1�
ρ
i C2, if (C1,C2) ∈Ri for some weak amortisedρ-bisimulation(Ri)i∈N.

Note that accessing the cache is significantly less costly that accessing the store. The definition of weak
amortised bisimulation accumulates “credit” by performing the cheaper operation, thus providing us a
framework for comparing the performance of execution on different architectural configurations. Since
there is nondeterminism in when the ‘system’ operations take place, our framework must account for
every possible execution run in the comparison.

The notion also allows us to assess the benefits of performingdynamic reconfiguration. Reconfigu-
ration introduces a handicap ofµ , which must be balanced (in an amortised sense) by frequent accesses
to cache instead of to the store. Typicallyδ is about 4 instruction cycles whereasκ is one cycle. Since
values are pulled into cache in blocks of words, there are additional performance benefits due to over-
lapping reads with the execution of other operations. The reconfiguration costµ is approximately 1000
instruction cycles, so if there is enough locality of reference, this reconfiguration cost may be easily off-
set by the benefits of running the workload on a more suitable configuration for phases that are typically
of the order of millions of instruction cycles or more.

3A major difference with the cited work is that we ascribe a cost to observable actions as well

90 Reconfigurable Multicore Architectures

Theorem 2 1. For DRF program states, any reconfiguration for more efficiency is permissible. With
sufficient locality of references, such programs executed on any clustering are “weakly amortised”
more efficient than execution under their reference model execution.

2. If Q≤Q′, then executing a program on configuration Q′ is (modulo the approximations on latency)
“weakly amortised more efficient” than on Q.

Proof outline:From any consistent implementation state, a unique reduct is reachable. If it takesm≤ kn
x
−−→
i→ j

,
x
−−→
i→S

moves to do so (wherek is the number of caches andn the number of variables), then to

have been in such a state, the system must have earlier performed at leastmwrv
x[i′] actions instead ofwrv

x
actions, and thus have already “earned” a credit ofm(δ −κ). So if it has performed at leastmκ/(δ −κ)
operations such as distinct repeat writes to a variable in cache or reads of adirty variable, then it has
earned the requisite credit to be amortised at least as efficient as the reference system.
For the second part, ifQ≤Q′, since there is more sharing of cached variables, we can avoid the costlier
rdsv

x,rdp
v
x in favour of the cheaperrdlv

x operation, and avoid some instances of the
x
−−→
i→ j

operation. �

5 Conclusions

Our framework provides a formal basis for comparing both thebehaviour and the performance of pro-
gram workloads on different multiprocessor architectures. Our first set of results (Propositions 1 and
2) provides us a rudimentary formal justification for the folklore that it is easy to port programs written
assuming an SMP architecture to CMP. In particular, they indicate why converting MPI programs to
OpenMP, which assumes shared variables, is usually easier than the trickier reverse direction. Theorem
1 indicates why as architectures become “smarter” and incorporate reconfigurability, avoiding data races
only assumes greater importance. The framework for comparing the efficiency of execution on different
architecture also lets us understand why certain programs get such dramatic performance benefits when
run on CMP architectures.

Let us mention a shortcoming of our work. Theorem 2 seems to indicate that CMP is preferable
to all other configurations, which is belied in reality, especially where applications with threads having
little or no communication amongst themselves run more efficiently on SMP-like configurations. The
cache bus within a cluster and the memory bus enforce mutually exclusive access, and so the interleaved
execution of threads accessing a shared cache is slower thansimultaneous independent execution of
threads accessing private caches (κ +κ interleaved vsκ in parallel)4. The fault lies not in our framework,
but rather in our view of execution as being interleaved — a view we had taken to keep the semantics
standard. We leave for the future the development of a framework where the pomset model is used to
explore the correctness and efficiency issues.

Reconfiguration is also an opportunity for remapping threads to cores. While we have considered
only a fixed workload mapping of threads to cores in the present paper, we do not believe this extension
poses any major technical difficulties.

Acknowledgements. I wish to acknowledge the helpful discussions with my colleague Kolin Paul who
taught me the little I know about reconfigurable architectures. I also must thank one of the referees who
constructively pointed out many major weaknesses of the earlier avatar of this paper.

4There also is a slowdown due to the fused cache being larger, which we neglect.

S. Prasad 91

References

[1] Gérard Boudol & Gustavo Petri (2009):Relaxed memory models: an operational approach. In: Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, pp. 392–403, doi:10.1145/1480881.1480930.

[2] Salil Joshi & Sanjiva Prasad (2010):An Operational Model for Multiprocessors with Caches. In: Theoretical
Computer Science - 6th IFIP TC 1/WG 2.2 International Conference, TCS 2010, Held as Part of WCC 2010,
Brisbane, Australia, September 20-23, 2010. Proceedings, pp. 371–385, doi:10.1007/978-3-642-15240-5.

[3] Astrid Kiehn & S. Arun-Kumar (2005):Amortised Bisimulations. In: Formal Techniques for Networked and
Distributed Systems - FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2-5,
2005, Proceedings, pp. 320–334, doi:10.1007/11562436_24.

[4] Padmanabhan Krishnan (1992):A Semantics for Multiprocessor Systems. In: ESOP ’92, 4th European Sym-
posium on Programming, Rennes, France, February 26-28, 1992, Proceedings, pp. 307–320, doi:10.1007/
3-540-55253-7_18.

[5] Padmanabhan Krishnan (1996):Architectural CCS. Formal Asp. Comput.8(2), pp. 162–187, doi:10.1007/
BF01214555.

[6] L. Lamport (1979):How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.
IEEE Trans. Comput.28(9), pp. 690–691, doi:10.1109/TC.1979.1675439.

[7] Rajesh Kumar Pal, Kolin Paul & Sanjiva Prasad (2012):ReKonf: A Reconfigurable Adaptive ManyCore Ar-
chitecture. In: 10th IEEE International Symposium on Parallel and Distributed Processing with Applications,
ISPA 2012, Leganes, Madrid, Spain, July 10-13, 2012, pp. 182–191, doi:10.1109/ISPA.2012.32.

[8] Rajesh Kumar Pal, Kolin Paul & Sanjiva Prasad (2014):ReKonf: Dynamically reconfigurable multiCore
architecture. J. Parallel Distrib. Comput.74(11), pp. 3071–3086, doi:10.1016/j.jpdc.2014.05.007.

[9] Vaughan R. Pratt (1984):The Pomset Model of Parallel Processes: Unifying the Temporal and the Spatial.
In: Seminar on Concurrency, Carnegie-Mellon University, Pittsburg, PA, USA, July 9-11, 1984, pp. 180–196,
doi:10.1007/3-540-15670-4_9.

http://dx.doi.org/10.1145/1480881.1480930
http://dx.doi.org/10.1007/978-3-642-15240-5
http://dx.doi.org/10.1007/11562436_24
http://dx.doi.org/10.1007/3-540-55253-7_18
http://dx.doi.org/10.1007/3-540-55253-7_18
http://dx.doi.org/10.1007/BF01214555
http://dx.doi.org/10.1007/BF01214555
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/ISPA.2012.32
http://dx.doi.org/10.1016/j.jpdc.2014.05.007
http://dx.doi.org/10.1007/3-540-15670-4_9

	1 Introduction
	2 The Reference Model
	3 Implementation Models
	3.1 Implementation semantics
	3.2 Comparing the semantics on different configurations

	4 Comparing Performance
	5 Conclusions

