
S. Escobar (Ed.): XIV Jornadas sobre Programación
y Lenguajes, PROLE 2014, Revised Selected Papers
EPTCS 173, 2015, pp. 27–40, doi:10.4204/EPTCS.173.3

c© J. Albors, M. Navarro
This work is licensed under the
Creative Commons Attribution License.

SpecSatisfiabilityTool: A tool for testing the satisfiability of
specifications on XML documents

Javier Albors Marisa Navarro
Departamento de LSI, UPV/EHU

San Sebastián, Spain
jalbors001@gmail.com marisa.navarro@ehu.es

We present a prototype that implements a set of logical rules to prove the satisfiability for a class of
specifications on XML documents. Specifications are given by means of constrains built on Boolean
XPath patterns. The main goal of this tool is to test whether a given specification is satisfiable or
not, and justify the decision showing the execution history. It can also be used to test whether a
given document is a model of a given specification and, as a by-product, it permits to look for all
the relations (monomorphisms) between two patterns and to combine patterns in different ways. The
results of these operations are visually shown and therefore the tool makes these operations more
understandable. The implementation of the algorithm has been written in Prolog but the prototype
has a Java interface for an easy and friendly use. In this paper we show how to use this interface in
order to test all the desired properties.

1 Introduction

Our aim is to define specifications of XML documents as sets of constraints (of some specific class) on
these documents, and to provide a form of reasoning about these specifications. XML documents will be
represented by trees and the constraints will be based on some kind of XPath queries [8, 3, 2].

To define the constraints on some XPath notation, we have selected the representation of Boolean
XPath queries given in [5], where Miklau and Suciu study the containment and equivalence problems
for a class of XPath queries that contain branching and label wildcards and can express descendant rela-
tionships between nodes. In particular, they introduce Boolean patterns as an alternative representation
of this class of queries. These patterns are trees consisting of nodes with labels (or ∗, for a wildcard in
the query) and two kinds of edges, child edges (/) and descendant edges (//), for the corresponding axes
in the query. For instance, the pattern p in Figure 1 (on the left) corresponds to the XPath expression
/a[b][.//∗ [e][d]]. We define three sorts of constraints (positive, negative, and conditional constraints) on
these patterns. A specification is defined as a set of clauses, where a clause is a disjunction of constraints.

Our main question is about satisfiability, that is, given a specification S , whether or not there exists
an XML document satisfying all constraints in S . Moreover, we are looking for adequate inference rules
to build a sound and complete refutation procedure for checking satisfiability of a given specification.
In addition to checking satisfiability, these rules would be used to deduce other constraints, which can
permit us to optimize a satisfiable specification.

Our approach follows the main ideas given in [7] (here it is shown how to use graph constraints
as a specification formalism on graphs and how to reason about these specifications, providing refuta-
tion procedures based on inference rules that are sound and complete) and try to apply such ideas to
XML documents. However, the particularization of graph constraints to our setting is not trivial (mainly
because our patterns are more expressive). Similarly, our inference rules take a similar format to the
inference rules given in [7], but the particularization to our setting needs to define appropriate operators

http://dx.doi.org/10.4204/EPTCS.173.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

28 SpecSatisfiabilityTool

and to prove new results. The formal study of our work is now submitted for presentation, but the ideas
and preliminaries of such work were introduced in [6].

In this paper we focus on the prototype that implements our refutation procedure. The algorithm is
written in Prolog [4] but also has a Java interface for an easy and friendly use. The main goal of this tool
is to test whether a given specification is satisfiable or not, and justify the decision by showing the rules
applied during the procedure execution. It can also be used to test whether a given document is a model
of a given specification and, as a by-product, it permits to look for all the monomorphisms between
two patterns or to look for the result of doing the operations p⊗q and p⊗c,m q which are necessary for
implementing some rules. The results of these operations are visually shown and therefore it makes them
more understandable.

The paper is organized as follows. There are two main sections, the first one dedicated to the formal
background and the second one to show the prototype. Section 2 starts by introducing the formal defi-
nitions of document, pattern, and the relations (monomorphisms) between them. Then, in Section 2.1,
we present the constraints and clauses that we are going to use to define our specifications and, in the
Section 2.2, the main inference rules for our refutation procedure. The prototype is presented in Section
3 where we explain how to perform several operations by means of examples and by showing different
screenshots of the tool. Finally, in Section 4, we give some notes on implementation and some comments
about the ongoing work for obtaining completeness for our refutation procedure.

2 Formal Background

We consider an XML document as an unordered and unranked tree with nodes labelled from an infinite
alphabet Σ. The symbols in Σ can represent the element labels, attribute labels, and text values that can
occur in XML documents. Note that this is an abstract representation of a real XML document since we
are only interested in its tree structure. Figure 1 shows a document t (on the right) with root labelled a
and two subtrees. Here is the formal definition of document.

Definition 2.1 Given a signature Σ, a document on Σ is a tree t whose nodes are labelled with symbols
from Σ and with one sort of edges denoted /. Nodes(t) and Edges(t) denote respectively the sets of nodes
and edges in t; Root(t) denotes its root node; and for each n ∈ Nodes(t), Label(n) denotes the label of
such a node n. Each edge in Edge(t) is represented (x,y) with x,y ∈ Nodes(t). Each (x,y) ∈ Edges+(t)
represents a path in t from node x to node y.

As said in the introduction, we use patterns as an alternative representation of Boolean queries.
Patterns will be also represented as some sort of trees but with two differences with respect to documents.
Some edges in patterns can be double (//) and it is permitted the label ∗ in nodes. Figure 1 shows a pattern
p (on the left) that has a label ∗ in a node and an edge // from the root a into one of its children.

A pattern specifies the conditions that a document must hold. For instance, the pattern p in Figure 1
specifies the following conditions: “The root of the document must be a node labelled a, one of its child
nodes must be a node labelled b, and a descendant node of the root must have (at least) two children
labelled e and d”. Here is the formal definition of pattern.

Definition 2.2 Given a signature Σ, a pattern on Σ is a tree p whose nodes are labelled with symbols
from Σ∪{∗} and with two sorts of edges: the descendant edges denoted //, and the child edges denoted /.
Nodes(p), Edges(p), Root(p), and Label(n) are defined as in the previous definition; but now the edges
are distinguished: Edges(p) = Edges//(p)∪Edges/(p), therefore (x,y) ∈ Edges+(p) represents a path
in p from node x to node y with edges of type / or // along the path.

J. Albors, M. Navarro 29

a // a

b //*

,,

b e

e

,,

d

,,

g f

e d

Figure 1: A monomorphism h : p→ t from a pattern p to a document t

To define when a document satisfies a given pattern we use the notion of homomorphism. As doc-
uments are patterns without labels ∗ or edges //, we define here the notion of homomorphism between
two patterns and, as a consequence, the definition of homomorphism from a pattern into a document is a
particular case.

Definition 2.3 Given two patterns p and q, a homomorphism from p into q is a function h : Nodes(p)→
Nodes(q) satisfying the following conditions:

• Root-preserving: h(Root(p)) = Root(q);

• Label-preserving: For each n ∈ Nodes(p), Label(n) = ∗ or Label(n) = Label(h(n));

• Child-edge-preserving: For each (x,y) ∈ Edges/(p), (h(x),h(y)) ∈ Edges/(q).

• Descendant-edge-preserving: For each (x,y) ∈ Edges//(p), (h(x),h(y)) ∈ Edges+(q).

Note that the “child-edge-preserving” condition says that each edge / in a pattern p must be applied
into an edge / in the pattern q and the “descendant-edge-preserving” condition says that each edge // in a
pattern p can be applied into a path in q (with one or more edges of type / or // along the path).

In the particular case when q is a document, the last condition applies each edge // in the pattern p
into a path in the document q (with one or more edges / along the path).

Definition 2.4 Given a pattern p and a document t, we say that t satisfies p, denoted t � p, if there exists
a monomorphism (i.e, an injective homomorphism) from p into t. The model set of a pattern p is the set
of documents satisfying p: Mod(p) = {t | t � p}.

In Figure 1 there is a pattern p (on the left), a document t (on the right) and a monomorphism h : p→ t
(which is drawn with dotted arrows). Then t satisfies (or is a model of) p. We can see that in fact the
root of the document t is a node labelled a, one of its child nodes is a node labelled b, and a descendant
node of the root (in this document the node labelled f) has two children labelled e and d. It corresponds
to evaluate the XPath expression /= /a[b][.//∗ [e][d]] against the document t.

2.1 Specifications

We assume that a specification consists of a set (or conjunction) of clauses, where a clause is a disjunc-
tion of constraints (the empty disjunction is the clause FALSE). Now we introduce the three kinds of
constraints we are going to use: positive, negative, and conditional constraints. A positive constraint

30 SpecSatisfiabilityTool

specifies that a pattern must be satisfied and a negative constraint specifies that the pattern must not be
satisfied. A conditional constraint consists of two patterns, p and q, such that q is an extension of p.
Roughly speaking, this constraint specifies that whenever a document t verifies the pattern p it should
also verify the extended pattern q (see Definition 2.7).

Definition 2.5 Given two patterns p and q, we say that p is a prefix of q if there exists an injective
function (called prefix function) c : Nodes(p)→ Nodes(q) satisfying the following conditions:

• Root-identity: c(Root(p)) = Root(q);

• Label-identity: For each n ∈ Nodes(p), Label(n) = Label(c(n));

• Child-edge-identity: For each (x,y) ∈ Edges/(p), (c(x),c(y)) ∈ Edges/(q);

• Descendent-edge-identity: For each (x,y) ∈ Edges//(p), (c(x),c(y)) ∈ Edges//(q).

Definition 2.6 Given a pattern p, ∃p denotes a positive constraint and ¬∃p denotes a negative con-
straint. A conditional constraint is denoted ∀(c : p→ q) where p and q are patterns, p is a prefix of q
with c : Nodes(p)→ Nodes(q) being the prefix function.

The satisfaction of clauses is defined inductively as follows.

Definition 2.7 A document t satisfies a clause α , denoted t |= α , if it holds:

• t |= ∃p if t � p (that is, if there exists a monomorphism h : p→ t);

• t |= ¬∃p if t 2 p (that is, if there does not exist a monomorphism h : p→ t);

• t |= ∀(c : p→ q) if for every monom. h : p→ t there is a monom. f : q→ t such that h = f ◦ c.

• t |= L1∨L2∨ . . .∨Ln if t |= Li for some i ∈ {1, . . . ,n}.

Let us see now an example of a conditional pattern. Let p be the pattern corresponding to the XPath
expression /a[.//e] (that is, the tree root is labelled a and the child node is labelled e with an edge //
between both nodes) and let q be the pattern corresponding to the XPath expression /a[.//e[f]] (that is,
the tree extending p by adding a node labelled f as a child node of e with an edge / between them).
The document t in Figure 1 (on the right) does not satisfy the constraint ∀(c : p→ q) (where c is the
prefix function applying p into q) since not all descendant nodes labelled e in t have a child labelled f .
However the document t satisfies the pattern q. Note that in general to verify the conditional constraint
∀(c : p→ q) is stronger than to verify the clause C = ¬∃p∨∃q.

2.2 Inference Rules for a Refutation Procedure

A refutation procedure for a specification S can be seen as a sequence of inferences C0 ⇒ C1 ⇒ . . .
⇒ Ci⇒ . . . where the initial state is the original specification (i.e., C0 = S) and each Ci+1 is obtained
from Ci by applying a rule. The main inference rules of our refutation procedure are the following:

∃p1∨Γ1 ¬∃p2∨Γ2

Γ1∨Γ2
(R1)

if there exists a monomorphism m : p2→ p1

Rule (R1) is like a resolution rule, since the two premises have literals that are, in some sense, “com-
plementary”: one is a positive constraint, the other one is a negative one, and the condition about the

J. Albors, M. Navarro 31

monomorphism from p2 to p1 plays the same role as unification. Note that when Γ1 and Γ2 are empty,
the rule (R1) infers the clause FALSE.

∃p1∨Γ1 ∃p2∨Γ2

(
∨

s∈p1⊗p2
∃s)∨Γ1∨Γ2

(R2)

Rule (R2) builds a disjunction of positive constraints from two positive constraints. It uses the operator
⊗ that we define below. Informally speaking, p1⊗p2 denotes the set of patterns that can be obtained by
“combining” p1 and p2 in all possible ways.

∃p1∨Γ1 ∀(c : p2→ q)∨Γ2

(
∨

s∈p1⊗c,mq∃s)∨Γ1∨Γ2
(R3)

if there is a monomorphism m : p2→ p1 that cannot be extended to f : q→ p1 such that f ◦c = m.

Rule (R3) is similar to rule (R2): From a positive constraint ∃p1 and a conditional constraint ∀(c :
p2 → q), it builds a disjunction of positive constraints. It uses the operator ⊗c,m that we define below.
Informally speaking, p1⊗c,m q denotes the set of patterns that can be obtained by combining p1 and q in
all possible ways, but maintaining p2 shared.

Definition 2.8 Given two patterns p1 and p2, p1⊗ p2 is the following set of patterns: p1⊗ p2 = {s |
there exist jointly surjective monomorphisms inc1 : p1→ s and inc2 : p2→ s} .

Definition 2.9 Given two patterns p1, p2, a prefix function c : p2→ q, and a monomorphism m : p2→ p1,
p1⊗c,m q is the following set of patterns: p1⊗c,m q = {s | there exist jointly surjective monomorphisms
inc1 : p1→ s and inc2 : q→ s such that inc1 ◦m = inc2 ◦ c}.

We have formally proven that the refutation procedure consisting of the three inference rules (R1),
(R2), and (R3) is sound [6]. That is, whenever the procedure infers the clause FALSE from a input set
of clauses S , then S is unsatisfiable. The prototype we explain in the next section implements this
refutation procedure when we choose to execute “Version 1”. Moreover, the refutation procedure also
uses sound rules for deleting and simplifying clauses and the implementation applies them as soon as
possible to get a better performance. To sum up, given a specification as input, if the result of running
“Version 1” is that the procedure stops with FALSE, then we are sure that the specification is unsatisfiable.

However, the procedure is not complete: It may happen that the clause FALSE is not inferred although
S is unsatisfiable (see [6]). Looking for a complete procedure, we have studied how to transform a pos-
itive constraint containing a descendant edge (//) into a (semantically equivalent) disjunction of positive
constraints, in order to apply inference rules that could not be applied before such transformation. We
call it “the unfolding process” and have incorporated it into the refutation procedure. Some preliminary
details of this study can be found in [1] and a preliminary refutation procedure obtained by adding this
“unfolding process” has been implemented and can be tested running “Version 2” of the prototype. Al-
though we are still working on a formal proof, we believe that the new procedure is complete. This
would mean that if the input specification is unsatisfiable then the procedure stops and returns FALSE.

Finally, we must observe that for satisfiable specifications, the procedure can stop (without obtaining
the clause FALSE) or not stop. We are studying the causes of non-termination and we would like to
obtain that our procedure does not stop only in the case of satisfiable specifications whose models are all
infinite. Such specifications are possible due to the conditional constraints. If we restrict to specifications
with only positive and negative constraints, the refutation procedure is finite.

32 SpecSatisfiabilityTool

3 Showing the Prototype

In this section we explain how to use the application. In particular, introducing the clauses, executing the
refutation procedure, testing whether a document is a model of a specification, and other operations that
can be visually executed.

Figure 2: Home screen of the application

3.1 Introducing Clauses

The Home screen of the application consists of three different panels, besides the menu bar: the clauses’
panel, the constraints’ panel, and the pattern editor. In order to create a clause, click on the “Edit” button
of “New Clause”. After that, the constraints’ panel will show the selected clause’s constraints. Since
the clause is new, it will only appear the option of creating a new constraint. By clicking on the “Edit”
button of “New Constraint”, the pattern editor will be shown, as it can be noticed in Figure 2. The type
of constraint (∃,¬∃,∀) is indicated by clicking on one of the upper buttons. Then, build the pattern by
using the nodes, children edges (/), and descendant edges (//) creation buttons.

If the selected constraint is conditional, ∀(c : p→ q) , the editor screen will change into the one in
Figure 3, where p must be drawn on the upper left box and q on the upper right box. Once they are set,
click on the “Generate pre-tree” button and the system will find all the prefix functions that exist between
the two patterns. Click on the arrow-form buttons to choose the correct function and click on “Accept”.

Once we have drawn all constraints of all clauses, we can save this specification by selecting the
option “Save” or “Save as” from the “File” menu. It is saved with a name and extension “.spec”.

It is also possible to load an existing specification (that was previously saved) by selecting the option
“Open” from the “File” menu.

3.2 Executing the Refutation Procedure

Once all the clauses have been created, let us see how to run the refutation procedure. To do so, pick
one of the two versions from the “Execute” menu, as it is shown in Figure 4. As said before, when
we choose to run “Version 1”, the procedure consists of the three inference rules (R1), (R2), and (R3)

J. Albors, M. Navarro 33

Figure 3: Editor for conditional constraints

together with some rules for deleting and simplifying clauses. After finishing the procedure (if it stops),
a message is displayed in which appears the satisfiability result of the input specification and the elapsed
time (see Figure 5). If this result is FALSE then we have proven that the specification is unsatisfiable. If
it stops without obtaining FALSE, then we cannot affirm that the specification is satisfiable because the
procedure is not complete. If we choose to run “Version 2”, this procedure adds some rules to perform the
previously mentioned “unfolding process”. By using this new procedure, we can prove unsatisfiability
in more specifications than with the “Version 1” procedure, but for now it is an ongoing work.

The execution history will be automatically opened in other window. This history is very useful to see
the rules used to obtain FALSE. In this new screen (shown in Figure 6), besides the history, it is possible
to consult clauses and constraints. Enter the identifier of a clause (e.g. c4) in the clause searching area
and it will be shown. The constraint search works exactly like the clause search, but with constraint
identifiers (e.g. ct1). The upper right button loads every existing clause and displays them. Also, with
the “See clauses” buttons, it is possible to consult specific clauses from the different steps of the history.
For instance, if we click on the button of the second step in Figure 6, the system will load the clauses c1,
c2, and c5. Finally, to export the history to a text file, click on the save button on the upper left corner.

34 SpecSatisfiabilityTool

Figure 4: Menu for executing the procedure

Figure 5: The result of the procedure

3.3 Document Checking

Another important aim of this application is to check whether a given document satisfies a given spec-
ification or not. For that, click on “Check specification” in the “Tools” menu (see Figure 7). This
operation will open a window, similar to the Home screen, where the clauses of the specification and the
XML document will be introduced. The application also allows one to copy the set of clauses from the
Home screen to this window. For that, click on “Check current specification” in the “Tools” menu (see
Figure 7). After being copied, new clauses can be introduced or existing ones can be deleted without
compromising the original ones. In this case, the XML document must be introduced too.

After introducing the XML document by clicking on the “Accept” button, and once loaded the spec-
ification by any of the two possible ways, click on the “Check” button (see Figure 8) and a message with
the result will be shown. The message will be TRUE when the document is a model of the specification,
and FALSE otherwise. In the later case, we probably want to check which are the clauses that the docu-
ment satisfies and which are not. Clauses can be deleted temporarily from the specification by clicking
on its “Delete” button to do these tests and they can be later restored by clicking on its “Restore” button
(see Figure 9).

3.4 Other Tools

Throughout the refutation process three basic operations are continuosly used: monomorphism from p
into q, the operation p1⊗ p2 in rule (R2), and the operation p1⊗c,m q in rule (R3). The application
includes tools to execute such operations visually called Monomorphism, Join, and Shared join, respec-
tively.

J. Albors, M. Navarro 35

Figure 6: History of the procedure

Figure 7: Document checking option

3.4.1 Monomorphism

When selecting “Monomorphism” from the “Tools” menu, a new screen will appear, very similar to
the one for creating a conditional constraint. Provided that we want to find out whether there exists a
monomorphism from p into q, we introduce the pattern p into the upper left box and the pattern q into the
right box. Then, click on “Generate monomorphism” and the system will find every possible solution.
For instance in the Figure 10 it is shown one of the four monomorphisms existing from p into q. The
other three solutions can be consulted by clicking on the arrow-form buttons.

3.4.2 Join operation (p1⊗ p2)

The “Join” tool will also open a similar window to the conditional constraint screen. We will introduce
the patterns we want to operate, p1 and p2, into the two upper editors. After that, we click on the “Join”
button and the solution will be calculated. On the lower editor will appear a set of patterns s1,s2, ...,sn

which express the different ways of “combining” p1 and p2 (see Figure 11). Recall this operation is used
in rule (R2) to obtain (

∨
s∈p1⊗p2

∃s) from ∃p1 and ∃p2.

36 SpecSatisfiabilityTool

Figure 8: Document checking against a specification

Figure 9: Document checking against some clauses in a specification

3.4.3 Shared join operation (p1⊗c,m q)

Similarly, the operation p1⊗c,m q is used in rule (R3) to obtain (
∨

s∈p1⊗c,mq∃s) from the constraints ∃p1
and ∀(c : p2→ q). Since one of them is a conditional constraint, the tool is comprised by two windows.
In the first one, we will introduce the conditional constraint as shown in Figure 3 and, after clicking on
the “Next” button, this conditional constraint appears on the upper left box of the second window (see
Figure 12); whereas the positive constraint is introduced into the upper right box. Then, we click on
“Shared join” and in the lower editor will appear a set of patterns s1,s2, ...,sn which express the different
ways of “combining” p1 and q by considering the morphism m from p2 to p1. Due to the possibility of
having more than one monomorphism from p2 to p1 (that cannot be extended to a monomorphism from
q to p1), different solutions will be shown. We can change the solution by clicking on the arrow-form
buttons.

J. Albors, M. Navarro 37

Figure 10: Monomorphism

4 Implementation Notes

The prototype implementing the previously described refutation procedure is available at http://
www.sc.ehu.es/jiwnagom/PaginaWebLorea/SpecSatisfiabilityTool.html, where
we also explain the application’s requirements and the configuration of the Java-Prolog bridge. The code
of this application consists of around 1300 Prolog lines (in SWI-Prolog version 6.0.2) for the refutation
procedure and around 4000 Java lines (in Java version jre7) for the interface.

Now, we roughly explain the algorithms designed in each version of the refutation procedure. See
[1] for more details about the implementation or for a user guide of the application.

4.1 Version 1 algorithm

We give here the idea of the algorithm implementing this refutation procedure. We start with the initial
specification S0. Clause by clause and constraint by constraint the procedure applies every possible infer-
ence rule (R1), (R2), or (R3) obtaining a set S′0 of new clauses. Now the system divides the application
of the rules in two parts: first, it applies every possible rule between two clauses, but being one from S0
and the other one from the new set S′0. After finishing this part, it applies every possible rule among the
clauses in S′0. In this way, all the clauses (resolvents) produced by applying these rules on S1 = S0∪ S′0
are in a new set S′1. This process will be repeated until the clause FALSE comes out or until no rule can
be applied.

As said above, other rules for deleting and simplifying clauses are also applied (as soon as possible)

http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/SpecSatisfiabilityTool.html
http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/SpecSatisfiabilityTool.html

38 SpecSatisfiabilityTool

Figure 11: Join operation p1⊗ p2

Figure 12: Shared join operation p1⊗c,m q

J. Albors, M. Navarro 39

in order to get a better performance. In particular, each time a new clause is produced by an inference
rule, the procedure tries to simplify or delete this clause or another one related to this one. For instance, a
clause like Γ1∨Γ2 can be deleted from the set of clauses if the clause Γ1 is produced as a resolvent (and
therefore it is added to the set), since the latter one subsumes the first one. On the other hand, a clause
containing two equal literals can be simplified by deleting one of them in the clause.

By using all these rules, the inference rules (R1), (R2), and (R3), and the rules for deleting and
simplifying clauses, the input specification and each specification Si obtained during this process are
logically equivalent. Therefore, given a specification as input, if the result of running “Version 1” is that
the procedure stops with FALSE, then the specification is unsatisfiable. Otherwise (if it does not stop or
if it stops without obtaining FALSE) then we cannot give any answer about the specification satisfiability.

4.2 Version 2 algorithm

This version is an ongoing work. The actual algorithm is as follows: It starts by calling to the Version
1. Then, if the result returns the clause FALSE, it finishes (since it has been proven that the input speci-
fication is unsatisfiable). If Version 1 finishes returning TRUE, then the “unfolding process” is done. If
this process does not obtain new clauses, the algorithm finishes with the result of TRUE, meaning that
the input specification is satisfiable. But if the “unfolding process” obtains a new set of clauses, then the
whole procedure (“version 1” + “unfolding process”) is repeated with this new set of clauses as input
specification.

Apart of trying to prove the completeness of the algorithm (as said previously), we are also testing the
actual implementation. Some problems with non-termination due to rule (R3) and the fairness property
must still be fixed (a procedure is fair whenever no inference rule is postponed forever). Nevertheless,
for some specification examples, we can prove that they are unsatisfiable by running “version 2” while
they cannot be proven running “version 1”.

References

[1] J. Albors (2014): Procedimiento de refutación para un conjunto de restricciones sobre documentos XML. Mas-
ter’s thesis, Facultad de Informática, San Sebastián. Available at http://www.sc.ehu.es/jiwnagom/
PaginaWebLorea/Javier_Albors_PFC.pdf.

[2] Michael Benedikt, Wenfei Fan & Floris Geerts (2008): XPath Satisfiability in the Presence of DTDs. J. ACM
55(2), pp. 8:1–8:79, doi:10.1145/1346330.1346333.

[3] Michael Benedikt & Christoph Koch (2009): XPath Leashed. ACM Comput. Surv. 41(1), pp. 3:1–3:54,
doi:10.1145/1456650.1456653.

[4] William F. Clocksin & Christopher S. Mellish (1994): Programming in Prolog (4. ed.). Springer,
doi:10.1007/978-3-642-97596-7.

[5] Gerome Miklau & Dan Suciu (2004): Containment and Equivalence for a Fragment of XPath. J. ACM 51(1),
pp. 2–45, doi:10.1145/962446.962448.

[6] Marisa Navarro & Fernando Orejas (2010): Proving Satisfiability of Constraint Specifications on XML Doc-
uments. In: X Jornadas sobre Programación y Lenguajes (PROLE2010). Available at http://www.sc.
ehu.es/jiwnagom/PaginaWebLorea/cedi.pdf.

[7] Fernando Orejas, Hartmut Ehrig & Ulrike Prange (2008): A Logic of Graph Constraints. In José Luiz Fiadeiro
& Paola Inverardi, editors: Fundamental Approaches to Software Engineering, 11th International Conference,
FASE 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS

http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/Javier_Albors_PFC.pdf
http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/Javier_Albors_PFC.pdf
http://dx.doi.org/10.1145/1346330.1346333
http://dx.doi.org/10.1145/1456650.1456653
http://dx.doi.org/10.1007/978-3-642-97596-7
http://dx.doi.org/10.1145/962446.962448
http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/cedi.pdf
http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/cedi.pdf

40 SpecSatisfiabilityTool

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, Lecture Notes in Computer Science 4961,
Springer, pp. 179–198, doi:10.1007/978-3-540-78743-3_14.

[8] WORLD WIDE WEB CONSORTIUM (2007): XML path language (XPath) 2.0.

http://dx.doi.org/10.1007/978-3-540-78743-3_14

	1 Introduction
	2 Formal Background
	2.1 Specifications
	2.2 Inference Rules for a Refutation Procedure

	3 Showing the Prototype
	3.1 Introducing Clauses
	3.2 Executing the Refutation Procedure
	3.3 Document Checking
	3.4 Other Tools
	3.4.1 Monomorphism
	3.4.2 Join operation (p1p2)
	3.4.3 Shared join operation (p1c,mq)

	4 Implementation Notes
	4.1 Version 1 algorithm
	4.2 Version 2 algorithm

