
S. Escobar (Ed.): XIV Jornadas sobre Programación
y Lenguajes, PROLE 2014, Revised Selected Papers
EPTCS 173, 2015, pp. 41–55, doi:10.4204/EPTCS.173.4

c© Jesús M. Almendros-Jiménez
This work is licensed under the
Creative Commons Attribution License.

XQOWL: An Extension of XQuery
for OWL Querying and Reasoning

Jesús M. Almendros-Jiménez∗

Dpto. de Informática
University of Almería

04120-Almería, SPAIN
jalmen@ual.es

One of the main aims of the so-called Web of Data is to be able to handle heterogeneous resources
where data can be expressed in either XML or RDF. The design of programming languages able to
handle both XML and RDF data is a key target in this context. In this paper we present a framework
called XQOWL that makes possible to handle XML and RDF/OWL data with XQuery. XQOWL
can be considered as an extension of the XQuery language that connects XQuery with SPARQL
and OWL reasoners. XQOWL embeds SPARQL queries (via Jena SPARQL engine) in XQuery and
enables to make calls to OWL reasoners (HermiT, Pellet and FaCT++) from XQuery. It permits to
combine queries against XML and RDF/OWL resources as well as to reason with RDF/OWL data.
Therefore input data can be either XML or RDF/OWL and output data can be formatted in XML
(also using RDF/OWL XML serialization).

1 Introduction

There are two main formats to publish data on the Web. The first format is XML, which is based on a
tree-based model and for which the XPath and XQuery languages for querying, and the XSLT language
for transformation, have been proposed. The second format is RDF which is a graph-based model and for
which the SPARQL language for querying and transformation has been proposed. Both formats (XML
and RDF) can be used for describing data of a certain domain of interest. XML is used for instance in
the Dublin Core 1, MPEG-7 2, among others, while RDF is used in DBPedia 3 and LinkedLifeData 4,
among others. The number of organizations that offers their data from the Web is increasing in the last
years. The so-called Linked open data initiative5 aims to interconnect the published Web data.

XML and RDF share the same end but they have different data models and query/transformation
languages. Some data can be available in XML format and not in RDF format and vice versa. The W3C
(World Wide Web Consortium) 6 proposes transformations from XML data to RDF data (called lifting),
and vice versa (called lowering). RDF has XML-based representations (called serializations) that makes
possible to represent in XML the graph based structure of RDF. However, XML-based languages are not
usually used to query/transform serializations of RDF. Rather than SPARQL is used to query RDF whose

∗This work was supported by the EU (FEDER) and the Spanish MINECO Ministry (Ministerio de Economía y Com-
petitividad) under grant TIN2013-44742-C4-4-R, as well as by the Andalusian Regional Government (Spain) under Project
P10-TIC-6114.

1http://www.dublincore.org/.
2http://mpeg.chiariglione.org/.
3http://www.dbpedia.org/.
4http://linkedlifedata.com/.
5http://linkeddata.org/
6http://www.w3.org/.

http://dx.doi.org/10.4204/EPTCS.173.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.dublincore.org/.
http://mpeg.chiariglione.org/.
http://www.dbpedia.org/.
http://linkedlifedata.com/.
http://linkeddata.org/
http://www.w3.org/.

42 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

syntax resembles SQL and abstract from the XML representation of RDF. The same happens when data
are available in XML format: queries and transformations are usually expressed in XPath/XQuery/XSLT,
instead of transforming XML to RDF, and using SPARQL.

One of the main aims of the so-called Web of Data is to be able to handle heterogeneous resources
where data can be expressed in either XML or RDF. The design of programming languages able to
handle both XML and RDF data is a key target in this context and some recent proposals have been
presented with this end. One of most known is XSPARQL [6] which is a hybrid language which combines
XQuery and SPARQL allowing to query XML and RDF. XSPARQL extends the XQuery syntax with
new expressions able to traverse an RDF graph and construct the graph of the result of a query on RDF.
One of the uses of XSPARQL is the definition of lifting and lowering from XML to RDF and vice versa.
But also XSPARQL is able to query XML and RDF data without transforming them, and obtaining the
result in any of the formats. They have defined a formal semantics for XSPARQL which is an extension
of the XQuery semantics. The SPARQL2XQuery interoperability framework [5] aims to overcome the
same problem by considering as query language SPARQL for both formats (XML and RDF), where
SPARQL queries are transformed into XQuery queries by mapping XML Schemas into RDF metadata.
In early approaches, SPARQL queries are embedded in XQuery and XSLT [8] and XPath expressions
are embedded in SPARQL queries [7].

OWL is an ontology language working with concepts (i.e., classes) and roles (i.e., object/data prop-
erties) as well as with individuals (i.e., instances) which fill concepts and roles. OWL can be considered
as an extension of RDF in which a richer vocabulary allows to express new relationships. OWL offers
more complex relationships than RDF between entities including means to limit the properties of classes
with respect to the number and type, means to infer that items with various properties are members of a
particular class, and a well-defined model of property inheritance. OWL reasoning [17] is a topic of re-
search of increasing interest in the literature. Most of OWL reasoners (for instance, HermiT [12], Racer
[15], FaCT++ [18], Pellet [16]) are based on tableaux based decision procedures.

In this context, we can distinguish between (1) reasoning tasks and (2) querying tasks from a given
ontology. The most typical (1) reasoning tasks, with regard to a given ontology, include: (a) instance
checking, that is, whether a particular individual is a member of a given concept, (b) relation checking,
that is, whether two individuals hold a given role, (c) subsumption, that is, whether a concept is a subset
of another concept, (d) concept consistency, that is, consistency of the concept relationships, and (e) a
more general case of consistency checking is ontology consistency in which the problem is to decide
whether a given ontology has a model. However, one can be also interested in (2) querying tasks such
as: (a) instance retrieval, which means to retrieve all the individuals of a given concept, and (b) property
fillers retrieval which means to retrieve all the individuals which are related to a given individual with
respect to a given role.

SPARQL provides mechanisms for querying tasks while OWL reasoners are suitable for reasoning
tasks. SPARQL is a query language for RDF/OWL triples whose syntax resembles SQL. OWL reasoners
implement a complex deduction procedure including ontology consistency checking that SPARQL is not
able to carry out. Therefore SPARQL/OWL reasoners are complementary in the world of OWL.

In this paper we present a framework called XQOWL that makes possible to handle XML and RD-
F/OWL data with XQuery. XQOWL can be considered as an extension of the XQuery language that
connects XQuery with SPARQL and OWL reasoners. XQOWL embeds SPARQL queries (via Jena
SPARQL engine) in XQuery and enables to make calls to OWL reasoners (HermiT, Pellet and FaCT++)
from XQuery. It permits to combine queries against XML and RDF/OWL resources as well as to reason
with RDF/OWL data. Therefore input data can be either XML or RDF/OWL and output data can be
formatted in XML (also using RDF/OWL XML serialization). We present two case studies: the first one

Jesús M. Almendros-Jiménez 43

which consists on lowering and lifting similar to the presented in [6]; and the second one in which XML
analysis is carried out by mapping XML to an ontology and using a reasoner.

Thus the framework proposes to embed SPARQL code in XQuery as well as to make calls to OWL
reasoners from XQuery. With this aim a Java API has been implemented on top of the OWL API [11] and
OWL Reasoner API [10] that makes possible to interconnect XQuery with SPARQL and OWL reasoners.
The Java API is invoked from XQuery thanks to the use of the Java Binding facility available in most of
XQuery processors (this is the case, for instance, of BaseX [9], Exist [14] and Saxon [13]). The Java API
enables to connect XQuery to HermiT, Pellet and FaCT++ reasoners as well as to Jena SPARQL engine.
The Java API returns the results of querying and reasoning in XML format which can be handled from
XQuery. It means that querying and reasoning RDF/OWL with XQOWL one can give XML format to
results in either XML or RDF/OWL. In particular, lifting and lowering is possible in XQOWL.

Therefore our proposal can be seen as an extension of the proposed approaches for combining
SPARQL and XQuery. Our XQOWL framework is mainly focused on the use of XQuery for query-
ing and reasoning with OWL ontologies. It makes possible to write complex queries that combines
SPARQL queries with reasoning tasks. As far as we know our proposal is the first to provide such a
combination.

The implementation has been tested with the BaseX processor [9] and can be downloaded from our
Web site http://indalog.ual.es/XQOWL. There the XQOWL API and the examples of the paper are
available as well as installation instructions.

Let us remark that here we continue our previous works on combination of XQuery and the Semantic
Web. In [1] we have described how to extend the syntax of XQuery in order to query RDF triples. After,
in [2] we have presented a (Semantic Web) library for XQuery which makes possible to retrieve the
elements of an ontology as well as to use SWRL. Here, we have followed a new direction, by embedding
existent query languages (SPARQL) and reasoners in XQuery.

The structure of the paper is as follows. Section 2 will show an example of OWL ontology used
in the rest of the paper as running example. Section 3 will describe XQOWL: the Java API as well as
examples of use. Section 4 will present the case study of XML analysis by using an ontology. Finally,
Section 5 will conclude and present future work.

2 OWL

In this section we show an example of ontology which will be used in the rest of the paper as running
example. Let us suppose an ontology about a social network (see Table 1) in which we define ontology
classes: user, user_item, activity; and event, message v activity (1); and wall, album v user_item (2).
In addition, we can define (object) properties as follows: created_by which is a property whose domain
is the class activity and the range is user (3), and has two sub-properties: added_by, sent_by (4) (used
for events and messages, respectively).

We have also belongs_to which is a functional property (5) whose domain is user_item and range
is user (6); friend_of which is a irreflexive (7) and symmetric (8) property whose domain and range
is user (9); invited_to which is a property whose domain is user and range is event (10); recom-
mended_friend_of which is a property whose domain and range is user (11), and is the composition
of friend_of and friend_of (12); replies_to which is an irreflexive property (13) whose domain and
range is message (14); written_in which is a functional property (15) whose domain is message and
range is wall (16); attends_to which is a property whose domain is user and range is event (17) and is
the inverse of the property confirmed_by (18); i_like_it which is a property whose domain is user and

http://indalog.ual.es/XQOWL

44 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

Ontology
(1) event, message v activity (2) wall, album v user_item
(3) ∀ created_by.activity v user (4) added_by, sent_by v created_by
(5) > v ≤ 1. belongs_to (6) ∀ belongs_to.user_item v user
(7) ∃ friend_of.Self v ⊥ (8) friend_of− v friend_of
(9) ∀ friend_of.user v user (10) ∀ invited_to.user v event
(11) ∀ recommended_friend_of.user (12) friend_of · friend_of v
v user recommended_friend_of

(13) ∃ replies_to.Self v ⊥ (14) ∀ replies_to.message v message
(15) > v ≤ 1.written_in (16) ∀ written_in.message v wall
(17) ∀ attends_to.user v event (18) attends_to− ≡ confirmed_by
(19) ∀ i_like_it.user v activity (20) i_like_it− ≡ liked_by
(21) ∀ content.message v String (22) ∀ date.event v DateTime
(23) ∀ name.event v String (24) ∀ nick.user v String
(25) ∀ password.user v String (26) eventu∃confirmed_by.user v popular
(27) activityu ∃liked_by.user v popular (28) activity v≤ 1 created_by.user
(29) message u event ≡ ⊥

Table 1: Social Network Ontology (in Description Logic Syntax)

range is activity (19), which is the inverse of the property liked_by (20).
Besides, there are some (data) properties: the content of a message (21), the date (22) and name (23)

of an event, and the nick (24) and password (25) of a user. Finally, we have defined the concepts popular
which are events confirmed_by some user and activities liked_by some user ((26) and (27)) and we have
defined constraints: activities are created_by at most one user (28) and message and event are disjoint
classes (29). Let us now suppose the set of individuals and object/data property instances of Table 2.

From OWL reasoning we can deduce new information. For instance, the individual message1 is an
activity, because message is a subclass of activity, and the individual event1 is also an activity because
event is a subclass of activity. The individual wall_jesus is an user_item because wall is a subclass
of user_item. These inferences are obtained from the subclass relation. In addition, object properties
give us more information. For instance, the individuals message1, message2 and event1 have been cre-
ated_by jesus, luis and luis, respectively, since the properties sent_by and added_by are sub-properties
of created_by. In addition, the individual luis is a friend_of jesus because friend_of is symmetric. More
interesting is that the individual vicente is a recommended_friend_of jesus, because jesus is a friend_of
luis, and luis is a friend_of vicente, which is deduced from the definition of recommended_friend_of,
which is the composition of friend_of and friend_of. Besides, the individual event1 is confirmed_by vi-
cente, because vicente attends_to event1 and the properties confirmed_by and attends_to are inverses.
Finally, there are popular concepts: event1 and message2; the first one has been confirmed_by vicente
and the second one is liked_by vicente.

The previous ontology is consistent. The ontology might introduce elements that make the ontology
inconsistent. We might add a user being friend_of of him(er) self. Even more, we can define that certain
events and messages are created_by (either added_by or sent_by) more than one user. Also a message
can reply to itself. However, there are elements that do not affect ontology consistency. For instance,
event2 has not been created_by users. The ontology only requires to have at most one creator. Also,
messages have not been written_in a wall.

Jesús M. Almendros-Jiménez 45

Ontology Instance
user(jesus), nick(jesus,jalmen),
password(jesus,passjesus), friend_of(jesus,luis)
user(luis), nick(luis,Iamluis), password(luis,luis0000)
user(vicente), nick(vicente,vicente), password(vicente,vicvicvic),
friend_of(vicente,luis), i_like_it(vicente,message2),
invited_to(vicente,event1), attends_to(vicente,event1)
event(event1), added_by(event1,luis),
name(event1,“Next conference”), date(event1,21/10/2014)
event(event2)
message(message1), sent_by(message1,jesus),
content(message1,“I have sent the paper”)
message(message2), sent_by(message2,luis),
content(message2,“good luck!”), replies_to(message2,message1)
wall(wall_jesus), belongs_to(wall_jesus,jesus)
wall(wall_luis), belongs_to(wall_luis,luis)
wall(wall_vicente), belongs_to(wall_vicente,vicente)

Table 2: Individuals and object/data properties of the ontology

Java API
public OWLReasoner getOWLReasonerHermiT(OWLOntology ontology)

public OWLReasoner getOWLReasonerPellet(OWLOntology ontology)

public OWLReasoner getOWLReasonerFact(OWLOntology ontology)

public String OWLSPARQL(String filei,String queryStr)

public <T extends OWLAxiom> String OWLQuerySetAxiom(Set<T> axioms)

public <T extends OWLEntity> String[] OWLQuerySetEntity(Set<T> elems)

public <T extends OWLEntity> String[] OWLReasonerNodeEntity(Node <T> elem)

public <T extends OWLEntity> String[] OWLReasonerNodeSetEntity(NodeSet<T> elems)

Table 3: Java API of XQOWL

3 XQOWL

XQOWL allows to embed SPARQL queries in XQuery. It also makes possible to make calls to OWL
reasoners. With this aim a Java API has been developed.

3.1 The Java API

Now, we show the main elements of the Java API developed for connecting XQuery and SPARQL and
OWL reasoners. Basically, the Java API has been developed on top of the OWL API and the OWL
Reasoner API and makes possible to retrieve results from SPARQL and OWL reasoners. The elements
of the library are shown in Table 3.

The first three elements of the library: getOWLReasonerHermiT, getOWLReasonerPellet and getOWL-
ReasonerFact make possible to instantiate HermiT, Pellet and FaCT++ reasoners. For instance, the code

46 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

of getOWLReasonerHermiT is as follows:
public OWLReasoner getOWLReasonerHermiT(OWLOntology ontology){

org.semanticweb.HermiT.Reasoner reasoner = new Reasoner(ontology);
reasoner.precomputeInferences(InferenceType.CLASS_HIERARCHY ,

InferenceType.CLASS_ASSERTIONS ,
...);

return reasoner;
};

The fourth element of the library OWLSPARQL makes possible to instantiate SPARQL Jena engine.
The input of this method is an ontology included in a file and a string representing the SPARQL query.
The output is a file (name) including the result of the query. The code of OWLSPARQL is as follows:
public String OWLSPARQL(String filei ,String queryStr)
throws FileNotFoundException{

OntModel model = ModelFactory.createOntologyModel ();
model.read(filei);
com.hp.hpl.jena.query.Query query = QueryFactory.create(queryStr);
ResultSet result =

(ResultSet) SparqlDLExecutionFactory.create(query ,model).execSelect ();
String fileName = "./tmp/"+result.hashCode ()+"result.owl";
File f = new File(fileName);
FileOutputStream file = new FileOutputStream(f);
ResultSetFormatter.outputAsXML(file ,(com.hp.hpl.jena.query.ResultSet) result);
try { file.close(); } catch (IOException e) {e.printStackTrace ();}

return fileName;
};

We can see in the code that the result of the query is obtained in XML format and stored in a file.
The rest of elements (i.e, OWLQuerySetAxiom, OWLQuerySetEntity, OWLReasonerNodeSetEntity and
OWLReasonerNodeEntity) of the Java API make possible to handle the results of calls to SPARQL and
OWL reasoners. OWL Reasoners implement Java interfaces of the OWL API for storing OWL elements.
The main Java interfaces are OWLAxiom and OWLEntity. OWLAxiom is a Java interface which is a
super-interface of all the types of OWL axioms: OWLSubClassOfAxiom, OWLSubDataPropertyOfAx-
iom, OWLSubObjectPropertyOfAxiom, etc. OWLEntity is a Java interface which is a super-interface of
all types of OWL elements: OWLClass, OWLDataProperty, OWLDatatype, etc.

The XQOWL API includes the method OWLQuerySetAxiom that returns a file name where a set
of axioms are included. It also includes OWLQuerySetEntity that returns in an array the URI’s of a
set of entities. Moreover, OWLReasonerNodeEntity returns in an array the URI’s of a node. Finally,
OWLReasonerNodeSetEntity returns in an array the URIs of a set of nodes. For instance, the code of
OWLQuerySetEntity is as follows:
public <T extends OWLEntity > String [] OWLQuerySetEntity(Set<T> elems)

{
String [] result = new String[elems.size()];
Iterator <T> it = elems.iterator ();
for(int i=0;i<elems.size();i++){

result[i]=it.next().toStringID ();
};

return result;
};

3.2 XQOWL: SPARQL

XQOWL is an extension of the XQuery language. Firstly, XQOWL allows to write XQuery queries in
which calls to SPARQL queries are achieved and the results of SPARQL queries in XML format (see

Jesús M. Almendros-Jiménez 47

[4]) can be handled by XQuery. In XQOWL, XQuery variables can be bounded to results of SPARQL
queries and vice versa, XQuery bounded variables can be used in SPARQL expressions. Therefore, in
XQOWL both XQuery and SPARQL queries can share variables.

Example 3.1 For instance, the following query returns the individuals of concepts user and event in the
social network:

declare namespace spql="http://www.w3.org /2005/ sparql -results#";
declare namespace xqo = "java:xqowl.XQOWL";

let $model := "socialnetwork.owl"
for $class in ("sn:user","sn:event")
return
let $queryStr := concat(

"PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX sn: <http://www.semanticweb.org/socialnetwork.owl#>
SELECT ?Ind
WHERE { ?Ind rdf:type ", $class ," }")

return
let $xqo := xqo:new ()
let $res:= xqo:OWLSPARQL ($xqo ,$model ,$ queryStr)
return
doc($res)/spql:sparql/spql:results/spql:result/spql:binding/spql:uri/text()

Let us observe that the name of the classes (i.e., sn:user and sn:event) is defined by an XQuery
variable (i.e., $class) in a for expression, which is passed as parameter of the SPARQL expression. In
addition, the result is obtained in an XQuery variable (i.e. $res). Here OWLSPARQL of the XQOWL
API is used to call the SPARQL Jena engine, which returns a file name (a temporal file) in which the
result is found. Now, $res can be used from XQuery to obtain the URIs of the elements:

doc($res)/spql : sparql/spql : results/spql : result/spql : binding/spql : uri/text()

In this case, we obtain the following plain text:

http: //www.semanticweb.org/socialnetwork.owl#vicente
http: //www.semanticweb.org/socialnetwork.owl#jesus
http: //www.semanticweb.org/socialnetwork.owl#luis
http: //www.semanticweb.org/socialnetwork.owl#event2
http: //www.semanticweb.org/socialnetwork.owl#event1

Example 3.2 Another example of using XQOWL and SPARQL is the code of lowering from the docu-
ment:

<rdf:RDF xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns="http:// relations.org">
<foaf:Person xmlns:foaf="http: // xmlns.com/foaf /0.1/" rdf:about="#b1">

<foaf:name >Alice</foaf:name >
<foaf:knows >

<foaf:Person rdf:about="#b4"/>
</foaf:knows >
<foaf:knows >

<foaf:Person rdf:about="#b6"/>
</foaf:knows >

</foaf:Person >
<foaf:Person xmlns:foaf="http: // xmlns.com/foaf /0.1/" rdf:about="#b4">

<foaf:name >Bob</foaf:name >
<foaf:knows >

<foaf:Person rdf:about="#b6"/>
</foaf:knows >

</foaf:Person >

48 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

<foaf:Person xmlns:foaf="http: // xmlns.com/foaf /0.1/" rdf:about="#b6">
<foaf:name >Charles </foaf:name >

</foaf:Person >
</rdf:RDF >

to the document:

<relations >
<person name="Alice">
<knows> Bob </knows>
<knows> Charles </knows>
</person >
<person name="Bob">
<knows> Charles </knows>
</person >
<person name="Charles" />
</relations >

This example has been taken from [6]7 in which they show the lowering example in XSPARQL. In our
case the code of the lowering example is as follows:

declare namespace spql="http://www.w3.org /2005/ sparql -results#";
declare namespace xqo = "java:xqowl.XQOWL";
declare variable $model := "relations.rdf";

let $query1 :=
"PREFIX rdfs: <http: //www.w3.org /2000/01/rdf -schema#>
PREFIX rdf: <http: //www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http: //xmlns.com/foaf /0.1/ >
SELECT ?Person ?Name
WHERE {
?Person foaf:name ?Name
} ORDER BY ?Name"

let $xqo := xqo:new (),
$result := xqo:OWLSPARQL ($xqo ,$model ,$ query1)
return
for $Binding in doc($ result)/spql:sparql/spql:results/spql:result
let $Name := $Binding/spql:binding[@name="Name"]/ spql:literal/text(),

$Person := $Binding/spql:binding[@name="Person"]/ spql:uri/text(),
$PersonName := functx:fragment -from -uri($ Person)

return
<person name="{$Name}">{
let $query2 :=

concat(
"PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
PREFIX rdf: <http: //www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rel: <http: // relations.org#>
PREFIX foaf: <http: // xmlns.com/foaf /0.1/ >
SELECT ?FName
WHERE {

_:",$PersonName ," foaf:knows ?Friend .
_:",$PersonName ," foaf:name ", "’",$Name ,"’ .
?Friend foaf:name ?FName

}")
let $result2 := xqo:OWLSPARQL ($xqo ,$model ,$ query2)
return
for $FName in doc($ result2)/spql:sparql/spql:results/spql:result/spql:binding/

spql:literal/text()
return
<knows>{$FName}</knows>

7XSPARQL works with blank nodes, and there the RDF document includes nodeID tag for each RDF item. In XQOWL we
cannot deal with blank nodes at all, and therefore a preprocessing of the RDF document is required: nodeID tags are replaced
by about.

Jesús M. Almendros-Jiménez 49

}
</person >
}
</relations >

In this example, two SPARQL queries are nested and share variables. The result of the first SPARQL
query (i.e., $PersonName and $Name) is used in the second SPARQL query.

3.3 XQOWL: OWL Reasoners

XQOWL can be also used for querying and reasoning with OWL. With this aim the OWL API and
OWL Reasoner API have been integrated in XQuery. Also for this integration, the XQOWL API is
required. For using OWL Reasoners from XQOWL there are some calls to be made from XQuery code.
Firstly, we have to instantiate the ontology manager by using createOWLOntologyManager; secondly,
the ontology has to be loaded by using loadOntologyFromOntologyDocument; thirdly, in order to handle
OWL elements we have to instantiate the data factory by using getOWLDataFactory; finally, in order to
select a reasoner getOWLReasonerHermiT, getOWLReasonerPellet and getOWLReasonerFact are used.

Example 3.3 For instance, we can query the object properties of the ontology using the OWL API as
follows:
let $xqo := xqo:new (),

$man := api:createOWLOntologyManager (),
$fileName := file:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName)

return
doc(xqo:OWLQuerySetAxiom ($xqo ,o:getAxioms ($ont)))/rdf:RDF/owl:ObjectProperty

obtaining the following result:
<ObjectProperty ... rdf:about="...# added_by">

<rdfs:subPropertyOf rdf:resource="...# created_by"/>
<rdfs:domain rdf:resource="...# event"/>
<rdfs:range rdf:resource="...# user"/>

</ObjectProperty >
<ObjectProperty ... rdf:about="...# attends_to">

<inverseOf rdf:resource="...# confirmed_by"/>
<rdfs:range rdf:resource="...# event"/>
<rdfs:domain rdf:resource="...# user"/>

</ObjectProperty >
...

Example 3.4 Another example of query using the OWL API is the following which requests class axioms
related to wall and event:
let $xqo := xqo:new (),

$man := api:createOWLOntologyManager (),
$fileName := file:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName),
$fact := om:getOWLDataFactory ($man)

return
for $class in ("wall","event")
let $iri := iri:create(concat ($base ,$class)),

$class := df:getOWLClass ($fact ,$iri)
return
doc(xqo:OWLQuerySetAxiom ($xqo ,o:getAxioms ($ont ,$ class)))/rdf:RDF/owl:Class

in which a for expression is used to define the names of the classes to be retrieved, obtaining the follow-
ing result:

50 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

<Class ... rdf:about="...# user_item"/>
<Class ... rdf:about="...# wall">

<rdfs:subClassOf rdf:resource="...# user_item"/>
</Class >
<Class ... rdf:about="...# activity"/>
<Class ... rdf:about="...# event">

<rdfs:subClassOf rdf:resource="...# activity"/>
<disjointWith rdf:resource="...# message"/>

</Class >
<Class ... rdf:about="...# message"/>

Now we can see examples about how to use XQOWL for reasoning with an ontology. With this aim,
we can use the OWL Reasoner API (as well as the XQOWL API). The XQOWL API allows easily to
use HermiT, Pellet and FaCT++ reasoners.

Example 3.5 For instance, let us suppose we want to check the consistence of the ontology by the Her-
miT reasoner. The code is as follows:

let $xqo := xqo:new (),
$man := api:createOWLOntologyManager (),
$fileName := file:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName),
$fact := om:getOWLDataFactory ($man),
$reasoner := xqo:getOWLReasonerHermiT ($xqo ,$ont),
$boolean := r:isConsistent ($ reasoner),
$dispose := r:dispose ($ reasoner)

return $boolean

which returns true. Here the HermiT reasoner is instantiated by using getOWLReasonerHermiT. In
addition, the OWL Reasoner API method isConsistent is used to check ontology consistence. Each time
the work of the reasoner is done, a call to dispose is required.

Example 3.6 Let us suppose now we want to retrieve instances of concepts activity and user. Now,
we can write the following query using the HermiT reasoner:

for $classes in ("activity","user")
let $xqo := xqo:new (),

$man := api:createOWLOntologyManager (),
$fileName := file:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName),
$fact := om:getOWLDataFactory ($man),
$iri := iri:create(concat ($base ,$ classes)),
$reasoner := xqo:getOWLReasonerHermiT ($xqo ,$ont),
$class := df:getOWLClass ($fact ,$iri),
$result:= r:getInstances ($reasoner ,$class ,false ()),
$dispose := r:dispose ($ reasoner)

return
<concept class="{$ classes}">
{ for $instances in xqo:OWLReasonerNodeSetEntity ($xqo ,$ result)

return <instance >{substring -after($instances ,’#’)}</instance >}
</concept >

obtaining the following result in XML format:

<concept class="activity">
<instance >message1 </instance >
<instance >message2 </instance >
<instance >event1 </instance >
<instance >event2 </instance >

</concept >

Jesús M. Almendros-Jiménez 51

<concept class="user">
<instance >jesus </instance >
<instance >vicente </instance >
<instance >luis</instance >

</concept >

Here getInstances of the OWL Reasoner API is used to retrieve the instances of a given ontology class. In
addition, a call to create of the OWL API, which creates the IRI of the class, and a call to getClass of the
OWL API, which retrieves the class, are required. The OWL Reasoner is able to deduce that message1
and message2 belong to concept activity since they belong to concept message and message is a
subconcept of activity. The same can be said for events.

Example 3.7 Let us suppose now we want to retrieve the subconcepts of activity using the Pellet
reasoner. The code is as follows:

let $xqo := xqo:new (),
$man := api:createOWLOntologyManager (),
$fileName := file:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName),
$fact := om:getOWLDataFactory ($man),
$iri := iri:create(concat ($base ,"activity")),
$reasoner := xqo:getOWLReasonerPellet ($xqo ,$ont),
$class := df:getOWLClass ($fact ,$iri),
$result:= r:getSubClasses ($reasoner ,$class ,false ()),
$dispose := r:dispose ($ reasoner)

return
for $subclass in xqo:OWLReasonerNodeSetEntity ($xqo ,$ result)

return <subclass >{substring -after($subclass ,’#’)} </subclass >

and the result in XML format is as follows:

<subclass >popular_message </subclass >
<subclass >event </subclass >
<subclass >Nothing </subclass >
<subclass >popular_event </subclass >
<subclass >message </subclass >

Here getSubClasses of the OWL Reasoner API is used.

Example 3.8 Finally, let us suppose we want to retrieve the recommended friends of jesus. Now, the
query is as follows:

let $xqo := xqo:new (),
$man := api:createOWLOntologyManager (),
$fileName := file:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName),
$fact := om:getOWLDataFactory ($man),
$iri := iri:create(concat ($base ,"recommended_friend_of")),
$iri2 := iri:create(concat ($base ,"jesus")),
$reasoner := xqo:getOWLReasonerPellet ($xqo ,$ont),
$property := df:getOWLObjectProperty ($fact ,$iri),
$ind := df:getOWLNamedIndividual ($fact ,$iri2),
$result:= r:getObjectPropertyValues ($reasoner ,$ind ,$ property),
$dispose := r:dispose ($ reasoner)

return
for $rfriend in xqo:OWLReasonerNodeSetEntity ($xqo ,$ result)
return
<recommended_friend >
{substring -after ($rfriend ,’#’)}
</recommended_friend >

and the answer as follows:

52 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

<recommended_friend >jesus</recommended_friend >
<recommended_friend >vicente </recommended_friend >

Here the OWL Reasoner API is used to deduce the friends of friends of jesus. Due to symmetry of
friend relationship, a person is a recommended friend of itself.

4 Using XQOWL for XML Analysis

Now, we show an example in which XQOWL is used to analyze the semantic content of an XML docu-
ment. This example was used in our previous work [3] to illustrate the use of our Semantic Web library
for XQuery. The example takes an XML document as input as follows:

<?xml version=’1.0’?>
<conference >
<papers >
<paper id="1" studentPaper="true">
<title> XML Schemas </title>
<wordCount > 1200 </wordCount >
</paper >
<paper id="2" studentPaper="false">
<title> XML and OWL </title>
<wordCount > 2800 </wordCount >
</paper >
<paper id="3" studentPaper="true">
<title> OWL and RDF </title>
<wordCount > 12000 </wordCount >
</paper >
</papers >
<researchers >
<researcher id="a" isStudent="false" manuscript="1" referee="1">
<name>Smith </name>
</researcher >
<researcher id="b" isStudent="true" manuscript="1" referee="2">
<name>Douglas </name>
</researcher >
<researcher id="c" isStudent="false" manuscript="2" referee="3">
<name>King </name>
</researcher >
<researcher id="d" isStudent="true" manuscript="2" referee="1">
<name>Ben </name>
</researcher >
<researcher id="e" isStudent="false" manuscript="3" referee="3">
<name>William </name>
</researcher >
</researchers >
</conference >

The document lists papers and researchers involved in a conference. Each paper and researcher has
an identifier (represented by the attribute id), and has an associated set of labels: title and wordCount
for papers and name for researchers. Furthermore, they have attributes studentPaper for papers and
isStudent, manuscript and referee for researchers. The meaning of manuscript and referee is that the
given researcher has submitted the paper of number described by manuscript as well as has participated
as reviewer of the paper of number given by referee.

Now, let us suppose that we would like to analyze the content of the XML document in order to
detect constraints which are violated. In particular, the revision system of the conference forbids that an
student is a reviewer as well as a research is a reviewer of his(her) own paper.

Jesús M. Almendros-Jiménez 53

In order to analyze the document the idea is to create an ontology to represent the same elements
of the XML document. This ontology contains in the TBox a vocabulary to represent submissions. It
includes class names Paper and Researcher. But also it includes PaperofSenior, PaperofStudent, Student
and Senior. The individuals of PaperofSenior are the papers for which studentPaper of the XML docu-
ment has been set to false. The individuals of PaperofStudent are the papers for which studentPaper of
the XML document has been set to true. Analogously, the individuals of Senior and Student are the re-
searchers for which isStudent has been set to false, respectively, to true. In addition the ontology includes
object properties manuscript and referee, and data properties wordCount, name and title.

Now, the idea is to express the revision system constraints as constraints of the ontology. Thus,
the ontology includes two restrictions to be checked: Student and Reviewer classes are disjoint while
manuscript and referee are disjoint object properties.

In order to analyze a given XML document, we can use XQOWL with two ends.

• To transform the XML document to the ontology ABox.

• To check consistence of the ontology.

The code of the transformation to the ontology ABox is as follows:

let $name := /conference
let $ontology1 :=

(for $x in $name/papers/paper return
sw:toClassFiller(sw:ID($x/@id),"#Paper") union
(
let $studentPaper:= $x/@studentPaper return

if (data($ studentPaper)="true") then
sw:toClassFiller(sw:ID($x/@id),"#PaperofStudent")
else sw:toClassFiller(sw:ID ($x/@id),"#PaperofSenior")

) union
sw:toDataFiller(sw:ID($x/@id),"title",$x/title ,"string") union
sw:toDataFiller(sw:ID($x/@id),"wordCount",$x/wordCount ,"integer")

)
let $ontology2 :=
(for $y in $name/researchers/researcher return

sw:toClassFiller(sw:ID($y/@id),"#Researcher") union
sw:toDataFiller(sw:ID($y/@id),"name" ,$y/name ,"string") union
(
let $student:= $y/@isStudent return

if (data($ student)="true") then
sw:toClassFiller(sw:ID($y/@id),"#Student")
else sw:toClassFiller(sw:ID ($y/@id),"#Senior")

) union
sw:toObjectFiller(sw:ID($y/@id),"manuscript",sw:ID($y/@manuscript)) union
sw:toObjectFiller(sw:ID($y/@id),"referee",sw:ID($y/@referee)))

return
let $mapping := $ontology1 union $ontology2
return
let $doc :=
document{
<rdf:RDF ...>

{doc("ontology_papers.owl")/rdf:RDF /*}
{$ mapping}

</rdf:RDF >
}

Here we have used the Semantic Web library for XQuery defined in [3]. Basically, we have created
the instance of the ontology by using sw:toClassFiller, sw:toDataFiller and sw:toObjectFiller which
make possible to create instances of classes, data and object properties, respectively. At the end of the
code, the ontology TBox is incorporated (which is stored in the file “ontology_papers.owl”). Now, the

54 XQOWL: An Extension of XQuery for OWL Querying and Reasoning

consistence checking using the Hermit reasoner is as follows, where $doc is the result of the previous
query:

let $xqo := xqo:new (),
$man := api:createOWLOntologyManager (),
$seq := file:write("ontology_analysis.owl" ,$doc),
$fileName := file_io:new ($file),
$ont := om:loadOntologyFromOntologyDocument ($man ,$ fileName),
$fact := om:getOWLDataFactory ($man),
$reasoner := xqo:getOWLReasonerHermit ($xqo ,$ont),
$boolean := r:isConsistent ($ reasoner),
$dispose := r:dispose ($ reasoner)
return $boolean

5 Conclusions and Future Work

In this paper we have presented an extension of XQuery called XQOWL to query XML and RDF/OWL
documents, as well as to reason with RDF/OWL resources. We have described the XQOWL API that
allows to make calls from XQuery to SPARQL and OWL Reasoners. Also we have shown examples
of use of XQOWL. The main advantage of the approach is to be able to handle both types of docu-
ments through the sharing of variables between XQuery and SPARQL/OWL Reasoners. The imple-
mentation has been tested with the BaseX processor [9] and can be downloaded from our Web site
http://indalog.ual.es/XQOWL. As future work, we would like to extend our work as follows. Firstly,
we would like to extend our Java API. More concretely, with the SWRL API in order to execute rules
from XQuery, and to be able to provide explanations about ontology inconsistence. Secondly, we would
like to use our framework in ontology transformations (refactoring, coercion, splitting, amalgamation)
and matching.

References

[1] Jesús Manuel Almendros-Jiménez (2009): Extending XQuery for Semantic Web Reasoning. In Salvador
Abreu & Dietmar Seipel, editors: Applications of Declarative Programming and Knowledge Management -
18th International Conference, INAP 2009, Évora, Portugal, November 3-5, 2009, Revised Selected Papers,
Lecture Notes in Computer Science 6547, Springer, pp. 117–134, doi:10.1007/978-3-642-20589-7_8.

[2] Jesús Manuel Almendros-Jiménez (2011): Querying and Reasoning with RDF(S)/OWL in XQuery. In Xiaoy-
ong Du, Wenfei Fan, Jianmin Wang, Zhiyong Peng & Mohamed A. Sharaf, editors: Web Technologies and
Applications - 13th Asia-Pacific Web Conference, APWeb 2011, Beijing, China, April 18-20, 2011. Proceed-
ings, Lecture Notes in Computer Science 6612, Springer, pp. 450–459, doi:10.1007/978-3-642-20291-9_51.

[3] Jesús Manuel Almendros-Jiménez (2012): Using OWL and SWRL for the Semantic Analysis of XML Re-
sources. In Robert Meersman, Hervé Panetto, Tharam S. Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xi-
aofang Zhou, Siani Pearson, Alois Ferscha, Sonia Bergamaschi & Isabel F. Cruz, editors: On the Move
to Meaningful Internet Systems: OTM 2012, Confederated International Conferences: CoopIS, DOA-SVI,
and ODBASE 2012, Rome, Italy, September 10-14, 2012. Proceedings, Part II, Lecture Notes in Computer
Science 7566, Springer, pp. 915–931, doi:10.1007/978-3-642-33615-7_33.

[4] Dave Beckett & Jeen Broekstra (2013): SPARQL Query Results XML Format (Second Edition). http:
//http://www.w3.org/TR/rdf-sparql-XMLres/.

[5] Nikos Bikakis, Chrisa Tsinaraki, Ioannis Stavrakantonakis, Nektarios Gioldasis & Stavros Christodoulakis
(2014): The SPARQL2XQuery interoperability framework. World Wide Web, pp. 1–88, doi:10.1007/s11280-
013-0257-x.

http://indalog.ual.es/XQOWL
http://dx.doi.org/10.1007/978-3-642-20589-7_8
http://dx.doi.org/10.1007/978-3-642-20291-9_51
http://dx.doi.org/10.1007/978-3-642-33615-7_33
http://http://www.w3.org/TR/rdf-sparql-XMLres/
http://http://www.w3.org/TR/rdf-sparql-XMLres/
http://dx.doi.org/10.1007/s11280-013-0257-x
http://dx.doi.org/10.1007/s11280-013-0257-x

Jesús M. Almendros-Jiménez 55

[6] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes & Axel Polleres (2012): Mapping be-
tween RDF and XML with XSPARQL. Journal on Data Semantics 1(3), pp. 147–185, doi:10.1007/s13740-
012-0008-7.

[7] Matthias Droop, Markus Flarer, Jinghua Groppe, Sven Groppe, Volker Linnemann, Jakob Pinggera, Flo-
rian Santner, Michael Schier, Felix Schöpf & Hannes Staffler (2009): Bringing the XML and semantic web
worlds closer: transforming XML into RDF and embedding XPath into SPARQL. In: Enterprise Information
Systems, Springer, pp. 31–45, doi:10.1007/978-3-642-00670-8_3.

[8] Sven Groppe, Jinghua Groppe, Volker Linnemann, Dirk Kukulenz, Nils Hoeller & Christoph Reinke (2008):
Embedding SPARQL into XQUERY/XSLT. In: Proceedings of the 2008 ACM symposium on Applied com-
puting, ACM, pp. 2271–2278, doi:10.1145/1363686.1364228.

[9] Christian Grun (2014): BaseX. The XML Database. http://basex.org.
[10] Matthew Horridge (2009): OWL Reasoner API. http://owlapi.sourceforge.net/javadoc/org/

semanticweb/owlapi/reasoner/OWLReasoner.html.
[11] Matthew Horridge & Sean Bechhofer (2011): The OWL API: A Java API for OWL Ontologies. Semant. web

2(1), pp. 11–21. Available at http://dl.acm.org/citation.cfm?id=2019470.2019471.
[12] Ian Horrocks, Boris Motik & Zhe Wang (2012): The HermiT OWL Reasoner. In Ian Horrocks, Mikalai

Yatskevich & Ernesto Jiménez-Ruiz, editors: Proceedings of the 1st International Workshop on OWL Rea-
soner Evaluation (ORE-2012), Manchester, UK, July 1st, 2012, CEUR Workshop Proceedings 858, CEUR-
WS.org. Available at http://ceur-ws.org/Vol-858/ore2012_paper13.pdf.

[13] Michael Kay (2008): Ten Reasons Why Saxon XQuery is Fast. IEEE Data Eng. Bull. 31(4), pp. 65–74.
Available at http://sites.computer.org/debull/A08dec/saxonica.pdf.

[14] Wolfgang Meier (2003): eXist: An open source native XML database. In: Web, Web-Services, and Database
Systems, Springer, pp. 169–183, doi:10.1007/3-540-36560-5_13.

[15] Ralf Möller, Volker Haarslev & Sebastian Wandelt (2008): The Revival of Structural Subsumption in
Tableau-based Reasoners. In Franz Baader, Carsten Lutz & Boris Motik, editors: Proceedings of the
21st International Workshop on Description Logics (DL2008), Dresden, Germany, May 13-16, 2008,
CEUR Workshop Proceedings 353, CEUR-WS.org. Available at http://ceur-ws.org/Vol-353/
MoellerHaarslevWandelt.pdf.

[16] Evren Sirin, Bijan Parsia, Bernardo C. Grau, Aditya Kalyanpur & Yarden Katz (2007): Pellet: A practical
OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), pp. 51–53,
doi:10.1016/j.websem.2007.03.004.

[17] Steffen Staab & Rudi Studer (2010): Handbook on ontologies. Springer, doi:10.1007/978-3-540-92673-3.
[18] Dmitry Tsarkov & Ian Horrocks (2006): FaCT++ Description Logic Reasoner: System Description. In

Ulrich Furbach & Natarajan Shankar, editors: Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lecture Notes in Computer Science 4130,
Springer, pp. 292–297, doi:10.1007/11814771_26.

http://dx.doi.org/10.1007/s13740-012-0008-7
http://dx.doi.org/10.1007/s13740-012-0008-7
http://dx.doi.org/10.1007/978-3-642-00670-8_3
http://dx.doi.org/10.1145/1363686.1364228
http://basex.org
http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/reasoner/OWLReasoner.html
http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/reasoner/OWLReasoner.html
http://dl.acm.org/citation.cfm?id=2019470.2019471
http://ceur-ws.org/Vol-858/ore2012_paper13.pdf
http://sites.computer.org/debull/A08dec/saxonica.pdf
http://dx.doi.org/10.1007/3-540-36560-5_13
http://ceur-ws.org/Vol-353/MoellerHaarslevWandelt.pdf
http://ceur-ws.org/Vol-353/MoellerHaarslevWandelt.pdf
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1007/978-3-540-92673-3
http://dx.doi.org/10.1007/11814771_26

	1 Introduction
	2 OWL
	3 XQOWL
	3.1 The Java API
	3.2 XQOWL: SPARQL
	3.3 XQOWL: OWL Reasoners

	4 Using XQOWL for XML Analysis
	5 Conclusions and Future Work

