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FASILL (acronym of “Fuzzy Aggregators and Similarity Into aLogic Language”) is a fuzzy logic
programming language with implicit/explicit truth degreeannotations, a great variety of connec-
tives and unification by similarity. FASILL integrates and extends features coming from MALP
(Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules) and
Bousi∼Prolog (which uses a weak unification algorithm and is well suited for flexible query an-
swering). Hence, it properly manages similarity and truth degrees in a single framework combining
the expressive benefits of both languages. This paper presents the main features and implementations
details of FASILL. Along the paper we describe its syntax andoperational semantics and we give
clues of the implementation of the lattice module and the similarity module, two of the main building
blocks of the new programming environment which enriches the FLOPER system developed in our
research group.
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1 Introduction

The challenging research area ofFuzzy Logic Programmingis devoted to introducefuzzy logiccon-
cepts intologic programmingin order to explicitly treat with uncertainty in a natural way. It has pro-
vided a wide variety of PROLOG dialects along the last three decades.Fuzzy logic languagescan be
classified (among other criteria) regarding the emphasis they assign when fuzzifying the original uni-
fication/resolution mechanisms of PROLOG. So, whereas some approaches are able to cope with sim-
ilarity/proximity relations at unification time [9, 1, 29],other ones extend their operational principles
(maintaining syntactic unification) for managing a wide variety of fuzzy connectives and truth degrees
on rules/goals beyond the simpler case oftrue or false[16, 19, 24].

The first line of integration, where the syntactic unification algorithm is extended with the ability
of managing similarity/proximity relations, is of specialrelevance for this work. Similarity/proximity
relations put in relation the elements of a set with a certainapproximation degree and serve for weakening
the notion of equality and, hence, to deal with vague information. With respect to this line, the related
work can be summarized as follows:
∗This work was supported by the EU (FEDER), and the Spanish MINECO Ministry (Ministerio de Economı́a y Competi-

tividad) under grant TIN2013-45732-C4-2-P.

http://dx.doi.org/10.4204/EPTCS.173.6


72 A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

Firstly, the pioneering papers [4, 8, 9] and [3], where the concept of unification by similarity was first
developed. Note that, we share their objectives, using similarity relations as a basis, but contrary to our
proposal, they use the sophisticated (but cumbersome) notions ofclouds, systems of cloudsandclosure
operatorsin the definition of the unification algorithm, that may endanger the efficiency of the derived
operational semantics.

More closely tied to our proposal, is the work presented in [29] by Maria Sessa. She defines an
extension of the SLD-resolution principle, incorporatinga similarity-based unification procedure which
is a reformulation of Martelli and Montanari’s unification algorithm [18] where symbols match if they
are similar (instead of syntactically equal). The resulting algorithm uses a generalized notion of most
general unifier that provides a numeric value, which gives a measure of the approximation degree, and
a graded notion of logical consequence. Sessa’s approach tounification can be considered our starting
point.

From a practical point of view, similarity-based approaches have produced three main experimental
realizations. The first two system prototypes described in the literature were: the fuzzy logic language
LIKELOG (LIKEness in LOGic) [2] (an interpreter implemented in PROLOG using rather direct tech-
niques and the aforementioned cloud and closure concepts described in [3, 4, 9, 8]) andSiLog [17] (an
interpreter written in Java based on the ideas introduced in[29]). NeitherLIKELOG nor SiLog are pub-
licly available, what prevent a real evaluation of these systems, and they seem immature prototypes. In
this same line of work,Bousi∼Prolog [12, 15], on the other hand, is the first fuzzy logic programming
system which is a true PROLOG extension and not a simple interpreter able to execute a weakSLD-
resolution procedure. Also it is the first fuzzy logic programming language that proposed the use of
proximity relations as a generalization of similarity relations [11]. It is worth saying that, in order to deal
with proximity relations,Bousi∼Prolog has needed to develop new theoretical [14] and conceptual [28]
basis.

A related programming framework, akin to Fuzzy Logic Programming, isQualified Logic Program-
ming (QLP) [26], which is a derivation of van Emden’sQuantitative Logic Programming[7] andAnno-
tated Logic Programming[16]. In QLP a qualification domainD is associated to a program and their
rules annotated with qualification values, resulting a parametric framework: QLP(D). In [5] they in-
troduce similarity relations in their QLP(D) framework by adopting a transformational approach. The
new Similarity-based QLP(D) scheme, named SQLP(D), transforms a similarity relation into a set of
QLP(D) rules able to emulate a unification by similarity process. In [27, 6] they go a step further integrat-
ing constraints and proximity relations in their generic scheme, obtaining a really flexible programming
framework named SQCLP.

Ending this section, it is important to say that our researchgroup has been involved both on the de-
velopment of similarity-based logic programming systems and those that extend the resolution principle,
as reveals the design of the Bousi∼Prolog language1 [11, 13, 28], where clauses cohabit with similar-
ity/proximity equations, and the development of the FLOPERsystem2, which manages fuzzy programs
composed by rules richer than clauses [20, 23]. Our unifyingapproach is somehow inspired by [6], but
in our framework we admit a wider set of connectives inside the body of programs rules. In this paper,
we make a first step in our pending task of embedding into FLOPER theweak unificationalgorithm of
Bousi∼Prolog.

The structure of this paper is as follows. Firstly, in Sections 2 and 3 we formally define and illustrate
both the syntax and operational semantics, respectively, of the FASILL language. Next, Section 4 is

1Two different programming environments for Bousi∼Prolog are available athttp://dectau.uclm.es/bousi/.
2The tool is freely accessible from the Web sitehttp://dectau.uclm.es/floper/.

 http://dectau.uclm.es/bousi/
 http://dectau.uclm.es/floper/
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concerned with implementation and practical issues. Finally, in Section 5 we conclude by proposing too
further research.

2 The FASILL language

FASILL is a first order language built upon a signatureΣ, that contains the elements of a countably
infinite set of variablesV , function symbols and predicate symbols with an associatedarity –usually
expressed as pairsf/n or p/n wheren represents its arity–, the implication symbol (←) and a wide set
of others connectives. The language combines the elements of Σ as terms, atoms, rules and formulas. A
constant cis a function symbol with arity zero. Aterm is a variable, a constant or a function symbolf/n
applied ton termst1, . . . , tn, and is denoted asf (t1, . . . , tn). We allow values of a latticeL as part of the
signatureΣ. Therefore, a well-formed formula can be either:

• r, if r ∈ L

• p(t1, . . . , tn), if t1, . . . , tn are terms andp/n is an n-ary predicate. This formula is calledatom.
Particularly, atoms containing no variables are calledground atoms, and atoms built from nullary
predicates are calledpropositional variables

• ς(F1, . . . ,Fn), if F1, . . . ,Fn are well-formed formulas andς is an n-ary connective with truth
function ς̇ : Ln→ L

Definition 2.1 (Complete lattice). A complete lattice is a partially ordered set(L,≤) such that every
subset S of L has infimum and supremum elements. Then, it is a bounded lattice, i.e., it has bottom and
top elements, denoted by⊥ and⊤, respectively. L is said to be the carrier set of the lattice,and≤ its
ordering relation.

The language is equipped with a set ofconnectives3 interpreted on the lattice, including

• aggregators denoted by @, whose truth functions@̇ fulfill the boundary condition:̇@(⊤,⊤) =⊤,
@̇(⊥,⊥) =⊥, and monotonicity:(x1,y1)≤ (x2,y2)⇒ @̇(x1,y1)≤ @̇(x2,y2).

• t-norms and t-conorms [25] (also named conjunctions and disjunctions, that we denote by & and
|, respectively) whose truth functions fulfill the followingproperties:

· Commutative: &̇(x,y) = &̇(y,x) |̇(x,y) = |̇(y,x)
· Associative: &̇(x, &̇ (y,z)) = &̇(&̇(x,y),z) |̇(x, |̇(y,z)) = |̇(|̇(x,y),z)
· Identity element: &̇(x,⊤) = x |̇(x,⊥) = x

· Monotonicity in each argument:z≤ t⇒

{

&̇(z,y) ≤ &̇(t,y) &̇(x,z) ≤ &̇(x, t)
|̇(z,y) ≤ |̇(t,y) |̇(x,z) ≤ |̇(x, t)

Example 1. In this paper we use the lattice([0,1],≤), where≤ is the usual ordering relation on real
numbers, and three sets of connectives corresponding to thefuzzy logics of G̈odel, Łukasiewicz and
Product, defined in Figure 1, where labelsL, G andP mean respectivelyŁukasiewicz logic, Gödel logic
andproduct logic(with different capabilities for modelingpessimistic, optimisticandrealistic scenarios).

It is possible to include also other connectives. For instance, the arithmetical average, defined by
connective@aver (with truth function@̇aver(x,y) ,

x+y
2 ), that is a stated, easy to understand connective

that does not belong to a known logic. Connectives with arities different from 2 can also be used, like
the@very aggregation, defined bẏ@very(x), x2, that is a unary connective.

3Here, the connectives are binary operations but we usually generalize them with an arbitrary number of arguments.
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&̇P(x,y) , x∗y |̇P(x,y) , x+y−xy Product
&̇G(x,y) ,min(x,y) |̇G(x,y) ,max(x,y) Gödel
&̇L(x,y) ,max(0,x+y−1) |̇L(x,y) ,min(x+y,1) Łukasiewicz

Figure 1: Conjunctions and disjunctions in[0,1] for Product, Łukasiewicz, andGödel fuzzy logics

Definition 2.2 (Similarity relation). Given a domainU and a lattice L with a fixed t-norm∧, a similarity
relation R is a fuzzy binary relation onU , that is a fuzzy subset onU ×U (namely, a mappingR :
U ×U → L), such that fulfils the following properties4:

• Reflexive:R(x,x) =⊤,∀x∈U

• Symmetric:R(x,y) = R(y,x),∀x,y∈U

• Transitive:R(x,z) ≥R(x,y)∧R(y,z),∀x,y,z∈U

Certainly, we are interested in fuzzy binary relations on a syntactic domain. We primarily define sim-
ilarities on the symbols of a signature,Σ, of a first order language. This makes possible to treat as
indistinguishable two syntactic symbols which are relatedby a similarity relationR. Moreover, a simi-
larity relationR on the alphabet of a first order language can be extended to terms by structural induction
in the usual way [29]. That is, the extension,R̂, of a similarity relationR is defined as:

1. letx be a variable,R̂(x,x) = R(x,x) = 1,

2. let f andg be twon-ary function symbols and lett1, . . . ,tn, s1, . . . ,sn be terms,

R̂( f (t1, . . . , tn),g(s1, . . . ,sn)) = R( f ,g)∧ (
∧n

i=1R̂(ti ,si))

3. otherwise, the approximation degree of two terms is zero.

Analogously for atomic formulas. Note that, in the sequel, we shall not make a notational distintion
between the relationR and its extensionR̂.

Example 2. A similarity relationR on the elements ofU = {vanguardist,elegant,metro, taxi,bus} is
defined by the following matrix:

R vanguardist elegant metro taxi bus

vanguardist 1 0.6 0 0 0
elegant 0.6 1 0 0 0
metro 0 0 1 0.4 0.5
taxi 0 0 0.4 1 0.4
bus 0 0 0.5 0.4 1

It is easy to check thatR
fulfills the reflexive, symmetric
and transitive properties. Par-
ticularly, using theGödelcon-
junction as the t-norm∧, we
have that: R(taxi,metro) ≥
R(metro,bus)∧R(bus, taxi) =
0.5∧0.4.

Furthermore, the extension̂R of R determines that the terms elegant(taxi) and vanguardist(metro)
are similar, since:R̂(elegant(taxi),vanguardist(metro)) =R(elegant,vanguardist)∧R̂ (taxi,metro) =
0.6∧R(taxi,metro) = 0.6∧0.4= 0.4.

Definition 2.3 (Rule). A rule has the form A←B, where A is an atomic formula called head andB,
called body, is a well-formed formula (ultimately built from atomic formulas B1, . . . ,Bn, truth values of

4For convenience,R(x,y), also denotedxRy, refers to both the syntactic expression (that symbolizes that the elements
x,y ∈ U are related byR) and the truth degreeµR(x,y), i.e., the affinity degree of the pair(x,y) ∈ U ×U with the verbal
predicateR.
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L and connectives)5. In particular, when the body of a rule is r∈ L (an element of lattice L), this rule is
called fact and can be written as A← r (or simply A if r=⊤).

Definition 2.4 (Program). A programP is a tuple〈Π,R,L〉 whereΠ is a set of rules,R is a similarity
relation between the elements ofΣ, and L is a complete lattice.

Example 3. The set of rulesΠ given below, the similarity relationR of Example 2 and lattice L=
([0,1],≤) of Example 1, form a programP = 〈Π,R,L〉.

Π















R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4 : good hotel(x) ←@aver(elegant(x),@very(close(x,metro)))

3 Operational Semantics ofFASILL

Rules in a FASILL program have the same role than clauses in PROLOG (or MALP [19, 10, 22])
programs, that is, stating that a certain predicate relatessome terms (thehead) if some conditions (the
body) hold.

As a logic language, FASILL inherits the concepts of substitution, unifier and most general uni-
fier (mgu). Some of them are extended to cope with similarities. Concretely, following the line of
Bousi∼Prolog [11], the most general unifier is replaced by the concept of weak most general unifier
(w.m.g.u.) and a weak unification algorithm is introduced tocompute it. Roughly speaking, theweak uni-
fication algorithmstates that twoexpressions(i.e, terms or atomic formulas)f (t1, . . . , tn) andg(s1, . . . ,sn)
weakly unify if the root symbolsf andg are close with a certain degree (i.e.R( f ,g) = r >⊥) and each
of their argumentsti andsi weakly unify. Therefore, there is a weak unifier for two expressions even if
the symbols at their roots are not syntactically equals (f 6≡ g).

More technically, the weak unification algorithm we are using is a reformulation/extension of the one
which appears in [29] for arbitrary complete lattices. We formalize it as a transition system supported by
a similarity-based unification relation “⇒”. The unification of the expressionsE1 andE2 is obtained by a
state transformation sequence starting from an initial state 〈G≡ {E1≈ E2}, id,α0〉, whereid is the iden-
tity substitution andα0 = ⊤ is the supreme of(L,≤): 〈G, id,α0〉 ⇒ 〈G1,θ1,α1〉 ⇒ ·· · ⇒ 〈Gn,θn,αn〉.
When the final state〈Gn,θn,αn〉, with Gn = /0, is reached (i.e., the equations in the initial state have
been solved), the expressionsE1 andE2 are unifiable by similarity with w.m.g.u.θn and unification
degreeαn. Therefore, the final state〈 /0,θn,αn〉 signals out the unification success. On the other hand,
when expressionsE1 andE2 are not unifiable, the state transformation sequence ends with failure (i.e.,
Gn = Fail ).

The similarity-based unification relation, “ ⇒”, is defined as the smallest relation derived by the
following set of transition rules (whereV ar(t) denotes the set of variables of a given termt)

〈{ f (t1, . . . , tn)≈ g(s1, . . . ,sn)}∪E,θ , r1〉 R( f ,g) = r2 >⊥

〈{t1≈ s1, . . . , tn≈ sn}∪E,θ , r1∧ r2〉
1

5In order to subsume the syntactic conventions of MALP, in ourprograms we also admitweighted ruleswith shape “A←i
B with v”, which are internally treated as “A← (v& iB)” (this transformation preserves the meaning of rules as proved in [21]).
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〈{X ≈ X}∪E,θ , r1〉

〈E,θ , r1〉
2

〈{X ≈ t}∪E,θ , r1〉 X /∈ V ar(t)

〈(E){X/t},θ{X/t}, r1〉
3

〈{t ≈ X}∪E,θ , r1〉

〈{X ≈ t}∪E,θ , r1〉
4

〈{X ≈ t}∪E,θ , r1〉 X ∈ V ar(t)

〈Fail ,θ , r1〉
5

〈{ f (t1, . . . , tn)≈ g(s1, . . . ,sn)}∪E,θ , r1〉 R( f ,g) =⊥

〈Fail ,θ , r1〉
6

Rule 1 decomposes two expressions and annotates the relation between the function (or predicate) sym-
bols at their root. The second rule eliminates spurious information and the fourth rule interchanges the
position of the symbols to be handled by other rules. The third and fifth rules perform an occur check of
variableX in a termt. In case of success, it generates a substitution{X/t}; otherwise the algorithm ends
with failure. It can also end with failure if the relation between function (or predicate) symbols inR is
⊥, as stated by Rule 6.

Usually, given two expressionsE1 and E2, if there is a successful transition sequence,〈{E1 ≈
E2}, id,⊤〉⇒⋆ 〈 /0,θ , r〉, then we write thatwmgu(E1,E2) = 〈θ , r〉, beingθ theweak most general unifier
of E1 andE2, andr is theirunification degree.

Finally note that, in general, a w.m.g.u. of two expressionsE1 and E2 is not unique [29]. Cer-
tainly, the weak unification algorithm only computes a representative of a w.m.g.u. class, in the sense
that, if θ = {x1/t1, . . . ,xn/tn} is a w.m.g.u., with degreeβ , then, by definition, any substitutionθ ′ =
{x1/s1, . . . ,xn/sn}, satisfyingR(si , ti) > ⊥, for any 1≤ i ≤ n, is also a w.m.g.u. with approximation
degreeβ ′ = β ∧ (

∧n
1R(si , ti)), where “∧” is a selected t-norm. However, observe that, the w.m.g.u.

representative computed by the weak unification algorithm is one with an approximation degree equal
or greater than any other w.m.g.u. As in the case of the classical syntactic unification algorithm, our
algorithm always terminates returning a success or a failure.

Next, we illustrate the weak unification process in the following example.

Example 4. Consider the lattice L= ([0,1],≤) of Example 1 and the relationR of Example 2. Given
terms elegant(taxi) and vanguardist(metro), it is possible the following weak unification process:

〈{elegant(taxi) ≈ vanguardist(metro)}, id,1〉
1
⇒〈{taxi≈metro}, id,0.6〉

1
⇒

〈{}, id,0.6∧0.4〉 = 〈{}, id,0.4〉

Also it is possible the unification of the terms elegant(taxi) and vanguardist(X), since:

〈{elegan(taxi) ≈ vanguardist(X)}, id,1〉
1
⇒〈{taxi≈ X}, id,0.6〉

4
⇒

〈{X ≈ taxi}, id,0.6〉
3
⇒〈{},{X/taxi},0.6〉

and the substitution{X/taxi} is their w.m.g.u. with unification degree0.6.

In order to describe the procedural semantics of the FASILL language, in the following we denote
by C [A] a formula whereA is a sub-expression (usually an atom) which occurs in the –possibly empty–
contextC [] whereasC [A/A′] means the replacement ofA by A′ in the contextC []. Moreover,V ar(s)
denotes the set of distinct variables occurring in the syntactic objects andθ [V ar(s)] refers to the sub-
stitution obtained fromθ by restricting its domain toV ar(s). In the next definition, we always consider
thatA is the selected atom in a goalQ andL is the complete lattice associated toΠ.
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Figure 2: Screen-shot of a work session with FLOPER managinga FASILL program

Definition 3.1 (Computational Step). Let Q be a goal and letσ be a substitution. The pair〈Q;σ〉 is a
state. Given a program〈Π,R,L〉 and a t-norm∧ in L, a computationis formalized as a state transition
system, whose transition relation is the smallest relation satisfying these rules:

1) Successful step(denoted as
SS
 ):

〈Q[A],σ〉 A′←B ∈Π wmgu(A,A′) = 〈θ , r〉
〈Q[A/B∧ r]θ ,σθ〉

SS

2) Failure step(denoted as
FS
 ):

〈Q[A],σ〉 ∄A′←B ∈Π : wmgu(A,A′) = 〈θ , r〉, r >⊥
〈Q[A/⊥],σ〉

FS

3) Interpretive step(denoted as
IS
 ):

〈Q[@(r1, . . . , rn)];σ〉 @̇(r1, . . . , rn) = rn+1

〈Q[@(r1, . . . , rn)/rn+1];σ〉
IS

A derivation is a sequence of arbitrary lenght〈Q; id〉  ∗〈Q′;σ〉. As usual, rules are renamed apart.
WhenQ′ = r ∈ L, the state〈r;σ〉 is called afuzzy computed answer(f.c.a.) for that derivation.

Example 5. LetP = 〈Π,R,L〉 be the program from Example 3, andQ = good hotel(X) be a goal. It
is possible to perform these two derivations forP andQ:
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D1 : 〈good hotel(X), id〉
SS
 

R4

〈@aver(elegant(X),@very(close(X,metro))),{X1/X}〉
SS
 

R2

〈@aver(0.8,@very(close(ritz,metro))),{X1/ritz,X/ritz}〉
FS
 

〈@aver(0.8,@very(0)),{X1/ritz,X/ritz}〉
IS
 

〈@aver(0.8,0),{X1/ritz,X/ritz}〉
IS
 

〈0.4,{X1/ritz,X/ritz}〉

D2 : 〈good hotel(X), id〉
SS
 

R4

〈@aver(elegant(X),@very(close(X,metro))),{X1/X}〉
SS
 

R1

〈@aver(&godel(0.9,0.6),@very(close(hydropolis,metro))),{X1/hydropolis,X/hydropolis}〉
SS
 

R3

〈@aver(&godel(0.9,0.6),@very(&godel(0.7,0.4))),{X1/hydropolis,X/hydropolis}〉
IS
 

〈@aver(0.6,@very(0.4)),{X1/hydropolis,X/hydropolis}〉
IS
 

〈@aver(0.6,0.16),{X1/hydropolis,X/hydropolis}〉
IS
 

〈0.38,{X1/hydropolis,X/hydropolis}〉

with fuzzy computed answers〈0,4,{X/ritz}〉 and〈0.38,{X/hydropolis}〉, respectivelly.

4 Implementation of FASILL in FLOPER

During the last years we have developed the FLOPER tool, initially intended for manipulating MALP
programs6. In its current development state, FLOPER has been equippedwith new features in order to
cope with more expressive languages and, in particular, with FASILL. The new version of FLOPER
is freely accessible in the URLhttp://dectau.uclm.es/floper/?q=sim where it is possible to
test/download the new prototype incorporating the management of similarity relations. In this section
we briefly describe the main features of this tool before presenting the novelties introduced in this work.

FLOPER has been implemented in Sicstus Prolog v.3.12.5 (rounding about 1000 lines of code,
where our last update supposes approximately a 30% of the final code) and it has been recently equipped
with a graphical interface written in Java (circa 2000 linesof code). More detailed, the FLOPER system
consists in a JAR (Java archive) file that runs the graphical interface. This JAR file calls a PROLOG file
containing the two main independent blocks: 1) the Parsing block parses FASILL files into two kinds
of PROLOG code (a high level platform-independent PROLOG program and a set of facts to be used by
FLOPER), and 2) the Procedural block performs the evaluation of a goal against the program, imple-
menting the procedural semantics previously described. This code is completed with a configuration file
indicating the location of the PROLOG interpreter as well as some other data.

FLOPER provides a traditional command interpreter. When the command interpreter is executed, it
offers a menu with a set of commands grouped in four submenus:

• “Program Menu”: includes options forparsing a FASILL program from a file with extension
“.fpl”, saving the generated PROLOG code to a “.pl” file, loading/parsinga pure PROLOG

program,listing the rules of the parsed program andcleaningthe database.

6 The MALP language is nowadays fully subsumed by the new FASILL language just introduced in this paper, since, given
a FASILL programP = 〈Π,R,L〉, if R is the identity relation (that is, the one where each elementof a signatureΣ is only
similar to itself, with the maximum similarity degree) andL is a complete lattice also containingadjoint pairs[19], thenP is
a MALP program too.

 http://dectau.uclm.es/floper/?q=sim
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Figure 3: An execution tree as shown by the FLOPER system

• “Lattice Menu”: allows the user to change and show the lattice (implemented in PROLOG) associ-
ated to a fuzzy program through optionslat andshow, respectively.

• “Similarity Menu”: option sim allows the user to load a similarity file (with extension “.sim”,
and whose syntax is detailed further in the Similarity Module subsection ) andtnorm sets the
conjunction to be used in the transitive closure of the relation.

• “Goal Menu”: by choosing optionintro the user introduces the goal to be evaluated. Option
treedraws the execution tree for that goal whereasleavesonly shows the fuzzy computed answer
contained on it, anddepthis used for fixing its maximum depth.

The syntax of FASILL presented in Section 1 is easily translated to be written by a computer. As
usual in logic languages, variables are written as identifiers beginning by an upper case character or
an underscore “”, while function and predicate symbols are expressed with identifiers beginning by a
lower case character, and numbers are literals. Terms and atoms have the usual syntax (the function or
predicate symbol, if no nullary, is followed by its arguments between parentheses and separated by a
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colon). Connectives are labeled with their name immediately after. The implication symbol is written
as “<-”, and each rule ends with a dot. Additionally it is possible to include pure PROLOG expressions
inside the body of a rule by encapsuling them between curly brackets “{}”, and PROLOGclauses between
the dollar symbol “$”, together with FASILL rules.

The graphical interface (written in Java) supports a friendly interaction with the user, as seen in
Figure 3. The graphical interface shows three areas. The leftmost one draws the project tree (grouping
each category of file into its own directory). In the right part, the upper area displays the selected file of
the tree and the lower one shows the code and the solutions of executing a goal. This interface groups
files into projects which include a set offuzzyfiles (.fpl), PROLOG files (.pl), similarity files (.sim),
script files -containing a list of commands to be executed consecutively- (.vfs) and just one lattice file
(.lat). When executing a goal, the tool considers the whole program merged from the set of files, thus
obtaining only one fuzzy program, one similarity relation,one lattice and one PROLOG file.

The lattice module. Lattices are described in a.lat file using a language that is a subset of PROLOG

where the definition of some predicates are mandatory, and the definition of aggregations follows a
certain syntax. The mandatory predicates aremember/1, that identifies the elements of the lattice,bot/1

andtop/1, that stand for the infimum and supremum elements of the lattice, andleq/2, that implements
the ordering relation. Predicatemembers/1, that returns in a list all the elements of the lattice, is only
required if it is finite. Connectives are defined as predicates whose meaning is given by a number of
clauses. The name of a predicate has the formand label, or label or agr label depending on whether
it implements a conjunction, a disjunction or an aggregator, wherelabel is an identifier of that particular
connective (this way one can define several conjunctions, disjunctions and other kind of aggregators
instead of only one). The arity of the predicate isn+ 1, wheren is the arity of the connective that it
implements, so its last parameter is a variable to be unified with the truth value resulting of its evaluation.

?− agr label(r1, . . . , rn,R).
R= r.

}

if @label(r1, . . . , rn) = r

Example 6. For instance, the following clauses show thePROLOG program modeling the lattice of the
real interval [0,1] with the usual ordering relation and connectives (conjunction and disjunction of the
Product logic, as well as the average aggregator):

member(X):- number(X), 0=<X, X=<1. leq(X,Y):- X=<Y.

and_prod(X,Y,Z) :- Z is X*Y. bot(0).

or_prod(X,Y,Z) :- U1 is X*Y, U2 is X+Y, Z is U2-U1. top(1).

agr_aver(X,Y,Z) :- U1 is X+Y, Z is U1/2.

The similarity module. We describe now the main novelty introduced in the tool, thatis the ability
to take into account a similarity relation. The similarity relationR is loaded from a file with extension
.sim through optionsim. The relation is represented following a concrete syntax:

〈Relation〉 ::= 〈Sim〉 〈Relation〉 | 〈Sim〉
〈Sim〉 ::= 〈Id f 〉[‘/’ 〈Intn〉] ‘∼’ 〈Idg〉[‘/’ 〈Intn〉] ‘=’ 〈r〉 ‘.’ | ‘∼’ ‘tnorm’ ‘=’ 〈tnorm〉

TheSimoption parses expressions like “f ∼ g= r”, where f andg are propositional variables or con-
stants andr is an element ofL. It also copes with expressions including arities, like “f/n∼ g/n = r”
(then, f andg are function or predicate symbols). In this case, both arities have to be the same. It is
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also possible to explicit, through a line like “∼ tnorm= 〈label〉” the conjunction to be used further in
the construction of the transitive closure of the relation.Internally FLOPER stores each relation as a
fact r in an ad hoc modulesim as r( f/n,g/n, r), wheren = 0 if it has not been specified (that is, the
symbol is considered as a constant). The.sim file contains only a small set of similarity equations that
FLOPER completes by performing the reflexive, symmetric andtransitive closure. The first one simply
consists of the assertion of the factr(A,A,⊤). The symmetric closure produces, for eachr(a,b, r), the
assertion of its symmetric entryr(b,a, r) if there is not already somer(b,a, r ′) wherer ≤ r ′ (in this case
r(a,b, r) will be rewritten asr(a,b, r ′) when consideringr(b,a, r)). The transitive closure is computed by
the next algorithm7, where∧ stands for the conjunction specified by the directive “tnorm”, and “assert”
and “retract” are self-explainable and defined as in PROLOG:

Transitive Closure
forall r(A,B,r1) in sim

forall r(B,C,r2) in sim

r = r1∧ r2

if r(A,C,r ′) in sim and r ′ < r
retract r(A,C,r ′) from sim

retract r(C,A,r ′) from sim

end if
if r(A,C,r ′) not in sim

assertr(A,C,r) in sim

assertr(C,A,r) in sim

end if
end forall

end forall

It is important to note that, it is not relevant if the user provides (apparently) inconsistent similarity equa-
tions, since FLOPER automatically changes the user values by the appropriate approximation degrees
in order to preserve the properties of a similarity. For instance, if a user provides a set of equations such
as,a∼ b= 0.8, b∼ c= 0.6 anda∼ c= 0.3, after the application of our algorithm for the construction
of a similarity, results in the set of equationsa∼ b= 0.8, b∼ c= 0.6 anda∼ c= 0.6, which positively
preserves the transitive property8.

Example 7. Let L be the lattice([0,1],≤). To illustrate the enhanced expressiveness ofFASILL, con-
sider the program〈Π,R,L〉 that models the concept ofgood hotel, that is, an elegant hotel that is
very close to a metro entrance, as seen in Figure 3. Here, we use an average aggregator defined as
@̇avg(x, y) , (x+ y)/2, whereasvery is a linguistic modifier implemented as well as an aggregator
(with arity 1) with truth function@̇very x, x2. The similarity relationR states thatelegantis similar to
vanguardist, andmetroto busand (by transitivity) totaxi:

~tnorm = godel metro ~ bus = 0.5.

elegant/1 ~ vanguardist/1 = 0.6. bus ~ taxi = 0.4.

We also state that the t-norm to be used in the transitive closure is the conjunction of G̈odel (i.e., the
infimum between two elements). For this program (the set of rules of Figure 3, the lattice L and the
similarity relation, R, just described before), the goalgood hotel(X) produces two fuzzy computed
answers:<0.4, {X/ritz}> and<0.38, {X/hydropolis}>. Each one corresponds to the leaves of

7 It is important to note that this algorithm must be executed right after performing the symmetric, reflexive closure.
8 For simplicity, we have omitted the equations obtained during the construction of the reflexive, symmetric closure.
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the tree9 depicted in Figure 3. Note that for reaching these solutions, a failure step was performed in
the derivation of the left-most branch, whereas in the right-most one (and this is the crucial novelty w.r.t.
previous versions of theFLOPERtool) there exist two successful steps exploiting the similarity relation
atomclose(hydropolis,metro), which illustrates the flexibility of our system.

Ending this section, it is worthy to say that our approach differs from the one presented in [6] since
they employ a combination of transformation techniques to first extract the definition of a predicate “∼”,
simulating weak unification in terms of a set of complex program rules that extends the original program.
Finally, this predicate “∼” is reduced to a built-in proximity/similarity unificationoperator (in this case
not implemented by rules and very close to the implementation of our weak unification algorithm) that
highly improves the efficiency of their previous programming systems.

4.1 FLOPER online

Aside from the textual and graphical interfaces seen above,we have recently developed a web page aim-
ing at offering the FLOPER system via the Internet, without requiring any further installation. The inter-
action with the system is possible through the URLhttp://dectau.uclm.es/floper/?q=sim/test.
Under the title ofFLOPER Onlineit shows an interface divided in two areas. TheInput area, shown in
Figure 4, is located in the upper part of the window, and theOutput area is in the lower part of the
window, and is illustrated by Figure 5.

The Input area shows three boxes. The first one, under the label “FASILLprogram” is intended to
contain a set of FASILL rules, that is, the fuzzy program. Thesecond one contains the lattice associated
to the previously introduced program. By default it includes the([0,1],≤) lattice, obviously expressed
as a PROLOG program following the restrictions previously detailed, with the usual operators. The user
is free to implement here any complete lattice as far as it fulfils the syntactic constrains. In the third
box the user can write a set of similarity equations using theprogram’s signature. After these boxes the
user can introduce a goal in a text box (in Figure 4, the goal isgood hotel(X)). Finally, by clicking the
Submitbutton, the fuzzy program, together with its associated lattice and the similarity relation, is sent
to the server with the goal to be executed.

The result appears in theOutputarea in two ways. In the first place, under the labelF.c.a’s for goal . . .
(including the proper goal), the system shows the fuzzy computed answers for the introduced program
and goal. In the figure this corresponds to< 0.4, {X/Ritz} > and< 0.38, {X/hydropolis} >, as
expected. Further, in the box below, the derivation tree is depicted in a textual way.

The tool has been implemented as a php page inside the web of FASILL. This php document sends
the content of the text boxes (the FASILL program, the lattice, the similarity equations and the goal) to
itself via the “post” method. When the php loads again with non empty “post” parameters, it creates files
in the server to host the FASILL program, the lattice and the similarity equations, and calls the PROLOG

interpreter. Then, it consults the FLOPER environment, loads the files and queries the goal. The output
of this task (that is, the corresponding f.c.a’s and execution tree) are finally shown in the window.

9Each state contains its corresponding goal and substitution components and they are drawn inside yellow ovals. Compu-
tational steps, colored in blue, are labeled with the program rule they exploit in the case ofsuccessfulsteps or the annotation
“R0” in the case offailure steps (observe that, “R0” is a simple notation and do not correspond with any existing rule). Finally,
the blue circles annotated with the word “is”, correspond tointerpretivesteps.

http://dectau.uclm.es/floper/?q=sim/test
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Figure 4: Screenshot of the FLOPER online tool input

5 Conclusions and Future Work

This paper describes an extension of the FLOPER system to cope with the twofold integrated fuzzy
programming language FASILL, whose procedural principle is centered upon a weak –instead of a
syntactic– unification algorithm based on similarity relations. After a brief introduction of the syntactic
and operational features of FASILL, we describe the implementation details of the renewed FLOPER
system which gives support to FASILL. We center our attention on the description of thesimilarity
module, providing insights of the internal representation of a similarity relation and its automatic con-
struction, via built-in closure algorithms. Also we describe the new tool ofFLOPER online, that allows
the execution of FASILL programs thru the web.

On the other hand, in [11, 10, 22] we provided some advances inthe design of declarative semantics
and/or correctness properties regarding the development of fuzzy logic languages dealing with similar-
ity/proximity relations (Bousi∼Prolog) or highly expressive lattices modeling truth degrees (MALP).
As a matter of future work we want to establish that analogous–but reinforced– formal properties also
hold in the language FASILL.
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Figure 5: Screenshot of the FLOPER online tool output
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