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Termination of programs, i.e., the absence of infinite computations, ensures the existence of normal
forms for all initial expressions, thus providing an essential ingredient for the definition of anor-
malization semanticsfor functional programs. Inlazy functional languages, though,infinite data
structuresare often delivered as theoutcomeof computations. For instance, the list of all prime
numbers can be returned as a neverendingstreamof numerical expressions or data structures. If
such streams are allowed, requiring termination is hopeless. In this setting, the notion ofproductivity
can be used to provide an account of computations with infinite data structures, as it “captures the
idea of computability, of progress of infinite-list programs” (B.A. Sijtsma, On the Productivity of
Recursive List Definitions,ACM Transactions on Programming Languages and Systems11(4):633-
649, 1989). However, in the realm ofTerm Rewriting Systems, which can be seen as (first-order,
untyped, unconditional) functional programs, termination of Context-Sensitive Rewriting(CSR) has
been showedequivalentto productivity of rewrite systems through appropriate transformations. In
this way, tools for proving termination ofCSR can be used to prove productivity. In term rewriting,
CSR is the restriction of rewriting that arises when reductionsare allowed on selected arguments of
function symbols only. In this paper we show that well-knownresults about the computational power
of CSRare useful to better understand the existing connections between productivity of rewrite sys-
tems and termination ofCSR, and also to obtain more powerful techniques to prove productivity of
rewrite systems.
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1 Introduction

The computation ofnormal formsof initial expressions provides an appropriate computational principle
for the semantic description of functional programs by means of anormalization semanticswhere initial
expressions are given an associated normal form, i.e., an expression that do not issue any computation.
However, lazy functional languages (likeHaskell [14]) admit giving infinite valuesas the meaning of
expressions. Infinite values are limits of converging infinite sequences ofpartially definedvalues which
are more and more defined and only containconstructor symbols. An appropriate notion ofprogressin
lazy functional computations is given by the notion ofproductivity [27] which concerns the progress in
the computation of infinite values when normal forms cannot be obtained.

Term Rewriting Systems (TRSs [4, 25, 28]) provide suitable abstractions for functional programs
which are often useful to investigate their computational properties. We can see a term rewriting system
as a first-order functional program without any kind of type information associated to any expression,
and where all rules in the program are unconditional rulesℓ→ r whereℓ is a termf (ℓ1, . . . , ℓk) for some
function symbolf and termsℓ1, . . . , ℓk, andr is a term whose variables already occur inℓ. The following
example illustrates the use of infinite data structures withterm rewriting systems.
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evenNs → cons(0, incr(oddNs)) (1)

oddNs → incr(evenNs) (2)

incr(cons(x,xs)) → cons(s(x), incr(xs)) (3)

take(0,xs) → nil (4)

take(s(n),cons(x,xs)) → consF(x, take(n,xs)) (5)

zip(nil,xs) → nil (6)

zip(xs,nil) → nil (7)

zip(cons(x,xs),cons(y,ys)) → cons(frac(x,y),zip(xs,ys)) (8)

tail(cons(x,xs)) → xs (9)

rep2(nil) → nil (10)

rep2(cons(x,xs)) → cons(x,cons(x, rep2(xs))) (11)

0+ x → x (12)

s(x)+ y → s(x+ y) (13)

0× y → 0 (14)

s(x)× y → y+(x× y) (15)

prodFrac(frac(x,y), frac(z, t)) → frac(x× z,y× t) (16)

prodOfFracs(nil) → frac(s(0),s(0)) (17)

prodOfFracs(consF(p, ps)) → prodFrac(p,prodOfFracs(ps)) (18)

halfPi(n) → prodOfFracs(take(n,zip(rep2(tail(evenNs)), tail(rep2(oddNs))))) (19)

Figure 1: Computing Wallis’ approximation toπ2

Example 1 The TRSR in Figure 1 [1, Example 1] can be used to compute approximations to π
2 as π
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2n+1 (Wallis’ product). InR, symbols0 ands implement Peano’s representation of

natural numbers; we also have the usual arithmetic operationsaddition andproduct. Symbolscons and
nil are list constructorsto build (possibly infinite) lists of natural numbers likeevenNs (the infinite list of
even numbers) andoddNs (the infinite list of odd numbers), which are defined by mutualrecursion with
rules (1) and (2). Functionincr increases the elements of a list in one unit through the application ofs
(rule (3)). Functionzip merges a pair of lists into a list of fractions (rules (6) to (8)), andtail returns the
elements of a list after removing the first one (rule (9)). Function take (defined by rules (4) and (5)) is
used to obtain the components of a finite approximation toπ

2 which we multiply withprodOfFracs, which
calls the usual addition and product of natural numbers defined by rules (12) to (15). The explicit use
of consF to build finite lists of fractions of natural numbers by means oftake ensures that the product of
their elements computed byprodOfFracs is well-defined. A callhalfPi(sn(0)) for some n> 0 returns the
desired approximation whose computation is launched by rule (19).

Note thatR is nonterminating. For instance we have the following infinite rewrite sequence:

evenNs→ cons(0, incr(oddNs))→ cons(0, incr(incr(evenNs)))→ ··· → ·· · (20)

Context-sensitive rewriting(CSR [20, 21]) is a restriction of rewriting which imposes fixed,syntactic
restrictions on reductions by means of areplacement mapµ that, for eachk-ary symbolf , discriminates
the argument positionsi ∈ µ( f )⊆ {1, . . . ,k} whichcanbe rewritten and forbids them ifi 6∈ µ( f ). These
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restrictions are raised to arbitrary subterms of terms in the obvious way. WithCSR we can achieve a
terminating behaviourfor TRSsR which (as in Example 1) are not terminating in the unrestricted case.

Example 2 Let the replacement mapµ be given by:

µ(cons) =∅ andµ( f ) = {1, . . . ,ar( f )} for all f ∈ F −{cons}

That is,µ disallows rewriting on the arguments of the list constructor cons (due toµ(cons) = ∅). This
makes a kind oflazy evaluationof lists possible. For instance, the rewrite sequence (20) above isnot
possible withCSR. The secondstep is disallowed because the replacement is issued on thesecond
argument ofcons and2 /∈ µ(cons), i.e.,

cons(0, incr(oddNs)) 6 →֒µ cons(0, incr(incr(evenNs)))

where we write֒→µ to emphasize that the rewriting step is issued usingCSRunder the replacement map
µ . This makes the infinite sequence impossible. Termination of CSR for the TRSR and µ in Example 1
can be automatically proved with the termination toolMU-TERM [2].

A number of programming languages likeCafeOBJ, [10], OBJ2, [9], OBJ3, [12], andMaude [5] ad-
mit the explicit specification of replacement restrictions under the so-called local strategies, which are
sequences of argument indices associated to each symbol in the program.

Restrictions of rewriting may turn normal forms of some terms unreachable, leading toincomplete
computations. Sufficient conditions ensuring that context-sensitive computations stop yielding head-
normal forms, values or even normal forms have been investigated in [17, 18, 19, 20, 21].

The notion ofproductivity in term rewriting has to do with the ability of TRSs to computepossibly
infinite valuesrather than arbitrary normal forms (as discussed in [6, 15],for instance). InCSR, early
results showed that, for left-linear TRSsR, if the replacement mapµ is madecompatiblewith the left-
hand sidesℓ of the rulesℓ→ r of R, thenCSRhas two properties which are specifically relevant for the
purpose of this paper:

1. everyµ-normal form (i.e., a termt where no further rewritings are allowed withCSRunderµ) is a
head-normal form(i.e., a term that does not rewrite into a redex) [20, Theorem8],

2. every term that rewrites into aconstructor head-normal formcan be rewrittenwith CSR into a
constructor head-normal form with the same head symbol [20,Theorem 9].

The aforementionedcompatibilityof the replacement mapµ with the left-hand sides of the rules (which
is then called acanonicalreplacement map) just ensures that the positions of nonvariable symbols inℓ
are alwaysreducibleunderµ . For instance,µ in Example 1 is a canonical replacement map forR in
the example. See also [22] where the role of the canonical replacement in connection with the algebraic
semantics of computations withCSR, as defined in [13] and also [24], has been investigated.

In the following, we show that the facts (1) and (2)sufficeto prove that termination ofCSR is a
sufficientcondition for productivity (see Theorem 5 below). As mentioned before, the connection be-
tween termination ofCSR and productivity is not new. In particular, Zantema and Raffelsieper proved
that termination ofCSR is a sufficient condition for productivity [30], and then Endrullis and Hendriks
proved that, in fact, and provided that some appropriate transformations are used, it is alsonecessary,
i.e., termination ofCSRcharacterizesproductivity [8].
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Example 3 The following TRSR can be used to defineordinal numbers[8, Example 6.8]:

x+0 → x x×0 → 0

x+S(y) → S(x+y) x×S(y) → (x×y)+x
x+L(σ)) → L(x+L σ) x×L(σ) → L(x×L σ)

x+L (y : σ) → (x+y) : (x+L σ) x×L (y : σ) → (x×y) : (x×L σ)
nats(x) → x : nats(S(x)) ω → L(nats(0))

Here,0 andS are the usual constructors for natural numbers in Peano’s notation; a stream of ordinals
can be obtained by means of the list constructor ‘:’ that combines an ordinal and a stream of ordinals
to obtain a new stream of ordinals; finally,L represents alimit ordinal defined by means of a stream of
ordinals. For instanceω is given as the limitL(nats(0)) of nats(0), the stream that contains all natural
numbers. Finally,+ and× are intended to, respectively,addand multiply ordinal numbers; symbol
+L is an auxiliary operator that adds an ordinal number x to a stream or ordinals by adding x to each
component of the stream using+. Operation×L performs a similar task with×. Endrullis and Hendriks
use a transformation which introduces the replacement mapµ(+) = µ(+L) = µ(×) = µ(×L) = {2},
µ(S) = {1}, andµ(L) = µ(:) = µ(nats) =∅, and also adds some rules to proveR productive.

So, what is our contribution? First, we show that the abilityof CSR to prove productivity is a conse-
quence of essential properties ofCSR, like (1) and (2) above. This theoretical clarification is valuable
and useful for further developments in the field and, as far aswe know, has not been addressed before.
From a practical point of view, we are able to improve Zantemaand Raffelsieper’s criterion that uses
unnecessarily ‘permisive’ replacement maps which can failto conclude productivity as termination of
CSR in many cases. For instance, we can prove productivity ofR in Example 3 as termination ofCSR

for the replacement mapµ in the example. Furthermore, we can do it automatically by using existing
tools likeAProVE [11] or MU-TERM. In contrast, with the replacement mapµ ′ that would be obtained
according to [30],R is not terminating forCSR; thus, productivity cannot be proved by using Zantema
and Raffelsieper’s technique. We are also able to improve the treatment in [8] because they need to apply
a transformation toR that we do not need to use. In fact, we were able to deal with allexamples of
productivity in those papers by using our main result together with the aforementioned termination tools
to obtain automatic proofs. Our result, though, doesnot provide a characterization of productivity, as we
show by means of an example.

However, our results apply toleft-linear TRSs, whereas [8, 30] deal withorthogonal(constructor-
based) TRSs only. Actually, we also supersede the main result of [26] which applies to non-orthogonal
TRSs which are still left-linear. This is also interesting to understand the role ofCSR in proofs of pro-
ductivity. Actually, the results in the literature about completeness ofCSR to obtain head-normal forms
and values concern left-linear TRSs and canonical replacement maps only. The additional restrictions
that are usually imposed on TRSs to achieve productivity as termination ofCSR(in particular,exhaustive
patterns in the left-hand sides) have to do with the notion ofproductivity rather than withCSR itself.

After some preliminaries in Section 2, Section 3 introducesthe notions aboutCSR that we need for
the development of our results on productivity via termination of CSR in Section 4. Section 5 compares
with related work and Section 6 concludes.

2 Preliminaries

This section collects a number of definitions and notations about term rewriting [4, 28]. Throughout
the paper,X denotes a countable set of variables andF denotes a signature, i.e., a set of function
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symbols{f,g, . . .}, each having a fixed arity given by a mappingar : F → N. The set of terms built
from F andX is T (F ,X ). Given a (set of) term(s)t ∈ T (F ,X ) (resp.T ⊆ T (F ,X )), we write
F (t) (resp.F (T)) to denote the subset of symbols inF occurring int (resp. T). A term is said to
be linear if it has no multiple occurrences of a single variable. Terms are viewed as labelled trees in
the usual way. Positionsp,q, . . . are represented by chains of positive natural numbers used to address
subterms oft. Given positionsp,q, we denote its concatenation asp.q. Positions are ordered by the
standard prefix ordering≤. Given a set of positionsP, minimal≤(P) is the set of minimal positions of
P w.r.t. ≤. If p is a position, andQ is a set of positions,p.Q = {p.q | q ∈ Q}. We denote the empty
chain byΛ. The set of positions of a termt is Pos(t). Positions of non-variable symbols int are
denoted asPosF (t), andPosX (t) are the positions of variables. The subterm at positionp of t is
denoted ast|p andt[s]p is the termt with the subterm at positionp replaced bys. The symbol labelling
the root oft is denoted asroot(t). Given termst ands, Poss(t) denotes the set of positions ofs in
t, i.e., Poss(t) = {p ∈ Pos(t) | t|p = s}. A substitution is a mappingσ : X → T (F ,X ) which is
homomorphically extended to a mappingσ : T (F ,X )→T (F ,X ) which, by abuse, we denote using
the same symbolσ .

A rewrite rule is an ordered pair(l , r), written l → r, with l , r ∈ T (F ,X ), l 6∈ X andV ar(r) ⊆
V ar(l). The left-hand side (lhs) of the rule isl and r is the right-hand side (rhs). A TRS is a pair
R =(F ,R) whereR is a set of rewrite rules.L(R) denotes the set oflhs’s of R. An instanceσ(l) of a lhs
l of a rule is a redex. The set of redex positions int isPosR(t). A TRSR is left-linear if for all l ∈ L(R),
l is a linear term. GivenR = (F ,R), we considerF as the disjoint unionF =C ⊎D of symbolsc∈C ,
calledconstructorsand symbolsf ∈ D , calleddefined functions, whereD = {root(l) | l → r ∈ R} and
C = F −D . Then,T (C ,X ) (resp.T (C )) is the set of constructor (resp. ground constructor) terms.
A TRSR = (C ⊎D ,R) is aconstructor system(CS) if for all f (ℓ1, . . . , ℓk)→ r ∈ R, ℓi ∈ T (C ,X ), for
1≤ i ≤ k.

A term t ∈ T (F ,X ) rewrites tos (at positionp), written t
p
→R s (or just t → s), if t|p = σ(l) and

s= t[σ(r)]p, for some ruleρ : l → r ∈ R, p∈ Pos(t) and substitutionσ . A TRS is terminating if→ is
terminating. A terms is root-stable (or a head-normal form) if∀t, if s→∗ t, thent is not a redex. A term
is said to be head-normalizing if it rewrites into a head-normal form.

3 Context-sensitive rewriting

A mappingµ : F → ℘(N) is a replacement map(F -map) if for all f ∈ F , µ( f ) ⊆ {1, . . . ,ar( f )}
[16, 20]. MF is the set ofF -maps. Replacement maps can be compared according to their ‘restriction
power’: µ ⊑ µ ′ if for all f ∈F , µ( f )⊆ µ ′( f ). If µ ⊑ µ ′, we say thatµ is more restrictivethanµ ′. Then,
(℘(N),⊆,∅,N,∪) induces a complete lattice(MF ,⊑,µ⊥,µ⊤,⊔): the minimum (maximum) element is
µ⊥ (µ⊤), given byµ⊥( f ) = ∅ (µ⊤( f ) = {1, . . . ,ar( f )}) for all f ∈ F . The lub ⊔ is given by(µ ⊔
µ ′)( f ) = µ( f )∪µ ′( f ) for all f ∈ F .

The replacement restrictions introduced by a replacement mapµ on theargumentsof functionsym-
bolsare raised topositionsof terms t∈ T (F ,X ): the setPosµ(t) of µ-replacing positionsof t is:

Posµ(t) =

{

{Λ} if t ∈ X

{Λ}∪
⋃

i∈µ(root(t)) i.Posµ(t|i) if t 6∈ X

Given termss, t ∈ T (F ,X ), Posµ
s (t) is the set of positions corresponding toµ-replacing occurrences

of s in t: Posµ
s (t) = Posµ(t)∩Poss(t). The set ofµ-replacing variablesoccurring int ∈ T (F ,X )

is V arµ (t) = {x∈ X | Posµ
x (t) 6=∅}.
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3.1 Canonical replacement map

Given t ∈ T (F ,X ), a replacement mapµ ∈ MF , is calledcompatiblewith t (and vice versa) if
PosF (t) ⊆ Posµ(t). Furthermore,µ is calledstrongly compatiblewith t if PosF (t) = Posµ(t).
And µ is (strongly) compatible withT ⊆ T (F ,X ) if for all t ∈ T, µ is (strongly) compatible witht
[18, 20]. Theminimumreplacement map which is compatible witht ∈ T (F ,X ) is [20]:

µt =

{

µ⊥ if t ∈ X

µΛ
t ⊔µt|1 ⊔ ·· ·⊔µt|ar(root(t))

if t 6∈ X

with µΛ
t (root(t)) = {i ∈ {1, . . . ,ar(root(t))} | t|i 6∈ X } andµΛ

t ( f ) =∅ if f 6= root(t).
For a TRSR = (F ,R), we useMR instead ofMF . The canonical replacement mapµcan

R
of R is the

most restrictive replacement map ensuring that the non-variable subterms of the left-hand sides of the
rules ofR are active.

Definition 1 [20] LetR be a TRS. Thecanonical replacement mapof R is µcan
R

= ⊔l∈L(R)µl .

Note thatµcan
R

can be automatically associated toR by means of a very simple calculus: for each symbol
f ∈F andi ∈ {1, . . . ,ar( f )}, i ∈ µcan

R
( f ) iff ∃l ∈ L(R), p∈PosF (l),(root(l |p) = f ∧ p.i ∈PosF (l)).

Given a TRSR, CMR = {µ ∈ MR | µcan
R

⊑ µ} is the set of replacement maps that are equal to or
less restrictivethan the canonical replacement map. Ifµ ∈ CMR, we also say thatµ is a canonical
replacement map forR.

Example 4 For R in Example 3, we have1:

µcan
R

(S) = µcan
R

(L) = µcan
R

(nats) = µcan
R

(:) = ∅

µcan
R

(+) = µcan
R

(+L) = µcan
R

(×) = µcan
R

(×L) = {2}

For instance,µcan
R

(S) =∅ because for all subtermsS(t) in the left-hand sidesℓ of the rulesℓ→ r of R,
t is always avariable. However,µcan

R
(+) = {2} because the second argument of+ in the left-hand side

x+0 of the first rule inR is not a variable.
Note that,µ in Example 3 prescribesµ(S) = {1}. Thus,µcan

R
❁ µ andµ ∈ CMR but µ 6= µcan

R
.

3.2 Strongly compatible TRSs

Givent ∈T (F ,X ), the onlyF (t)-mapµ (if any) which is strongly compatible witht is µt [18, Propo-
sition 3.6]. We callt ∈ T (F ,X ) strongly compatible ifµt is strongly compatible witht. Similarly,
the onlyF (T)-map µ which can be strongly compatible withT is µT = ⊔t∈T µt . We call T strongly
compatibleif µT is strongly compatible withT; we callT weakly compatibleif t is strongly compatible
for all t ∈ T.

Definition 2 [18, 19]A TRSR is strongly(weakly) compatible, if L(R) is a strongly (weakly) compati-
ble set of terms.

The only replacement map (if any) which makesR strongly compatible isµcan
R

. For instance,R in
Example 3 is strongly compatible, butµ is not strongly compatible withL(R) (variabley in the left-
hand side of the second rule isµ-replacing).

1The specification for constant symbolsa is omitted, as it is always the empty setµ(a) =∅.
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3.3 Context-sensitive rewriting

Given a TRSR = (F ,R), µ ∈MR, ands, t ∈T (F ,X ), sµ-rewrites tot at positionp, writtens
p
→֒R,µ t

(or s →֒R,µ t, s →֒µ t, or evens →֒ t), if s
p
→R t andp∈ Posµ(s) [16, 20]. A TRSR is µ-terminating

if →֒µ is terminating. Several tools can be used to prove termination of CSR; for instance,AProVE and
MU-TERM, among others.

Remark 1 In the following, when considering a TRSR together with a canonical replacement map
µ ∈ CMR, we often say that֒→µ performscanonicalcontext-sensitive rewriting steps [21].

The→֒µ -normal forms are calledµ-normal forms, andNFµ
R

is the set ofµ-normal forms for a given TRS
R. As for unrestricted rewriting,t ∈ NF

µ
R

if and only if Posµ
R
(t) = ∅ (i.e., t contains noµ-replacing

redex). Rewriting with canonical replacement mapsµ has important computational properties that we
enumerate here and use below.

Theorem 1 [20, Theorem 8]Let R be a left-linear TRS andµ ∈ CMR. Every µ-normal form is a
head-normal form.

Theorem 2 [20, Theorem 9]Let R = (F ,R) = (C ⊎D ,R) be a left-linear TRS andµ ∈ CMR. Let
s∈ T (F ,X ), and t= c(t1, . . . , tk) for some c∈ C . If s→∗ t, then there is u= c(u1, . . . ,uk) such that
s →֒∗ u and, for all i,1≤ i ≤ k, ui →

∗ ti .

4 Productivity and termination of CSR

The operational semantics of rewriting-based programminglanguages can be abstracted, for each pro-
gram (i.e., TRS)R, as a mapping from termss∈ T (F ,X ) into (possibly empty) sets of (possibly
infinite) termsTs ⊆ T ω(F ,X ), which are (possibly infinite)reductsof s. Theintended shapeof terms
in Ts depends on the application:

1. In functional programming, (ground)values t∈ T (C ) are the meaningful reducts of (ground)
initial expressionss (evaluationsemantics) andTs ⊆ T (C ).

2. In lazy functional programminginfinite valuesare also accepted in the semantic description, i.e.,
Ts ⊆ T ω(C ), but the infinite terms are not actually obtained but onlyapproximatedas sequences
of appropriate finite terms which areprefixesof the infinite values2.

3. In equational programmingand rewriting-based theorem provers, computingnormal formsis en-
visaged (normalizationsemantics), i.e.,Ts ⊆ NFR .

In functional programming (both in theeagerandlazycase), computations can be understood as decom-
posed into the computation of a head-normal formt ′ (i.e., s→∗ t ′) which is then rewritten (below the
root!) into t. When a head-normal formt ′ is obtained, the root symbolf = root(t ′) is checked. Iff is a
constructor symbol, then the evaluation continues on an argument oft ′. Otherwise, the evaluationfails
and an error is reported (this corresponds toTs empty). Thus, a head-normalization process is involved
in the computation of the semantic setsTs.

The notion ofproductivity in term rewriting has to do with the ability of TRSs to computepossibly
infinite values. Most presentations of productivity analysis use sorted signatures and terms [8, 30]. The

2Such finite approximations to infinite terms are described aspartial valuesusing a special symbol⊥ to denote undefined-
ness. An infinite valueδ ∈ T ω(C ) is the limit of an infinite sequenceδ1, . . . ,δn, . . . of such partial values where, for alli ≥ 1,
δi+1 ∈T (C ∪{⊥}) is obtained fromδi ∈T (C ∪{⊥}) by replacing occurrences of⊥ in δi by partial values different from⊥.
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set of sortsS is partitioned intoS = ∆∪Γ, where∆ is the set of data sorts, intended to model inductive
data types (booleans, natural numbers, finite lists, etc.).On the other hand,Γ is the set ofcodatasorts,
intended to model coinductive datatypes such as streams andinfinite trees. Terms of sort∆ are called
data termsand terms of sortsΓ are calledcodataterms. Given a symbolf : τ1×·· ·× τn → τ , ar∆( f )
(resp.arΓ( f )) is the number of arguments off of sort∆ (resp.Γ). Endrullis et al. (and also [30]) assume
all data arguments to be in the first argument positions of thesymbols.

Definition 3 [8, Definition 3.1]A tree specificationis a(∆∪Γ)-sorted, orthogonal, exhaustive construc-
tor TRSR where∆∩Γ =∅.

Here,R is calledexhaustiveif for all f ∈ F , every termf (t1, . . . , tk) is a redex wheneverti ∈ T ω(C )
are (possiby infinite) closed constructor terms for alli, 1≤ i ≤ k [8, Definition 2.9]. As in [8, Definition
2.4], we assume here a generalized notion of substitution asanS -sorted mappingσ : X →T ω(F ,X )
which is also extended to a mappingσ : T ω(F ,X )→ T ω(F ,X ).

Example 5 Consider the tree specificationR in Example 3, where, according to [8, Example 6.8],∆ =
{Ord} withOrd a data sort for ordinals andΓ = {Str} withStr a codata sort for streams of ordinals. The
types for the constructor symbols are:0 :: Ord, S ::Ord→Ord, L :: Str→Ord and(:) ::Ord×Str→ Str.
Thus,C∆ = {0,S,L}, CΓ = {:}, D∆ = {+,×,ω}, andDΓ = {+L,×L,nats}.

Definition 4 [8, Definition 3.5] A tree specificationR is constructor normalizingif all finite ground
terms t∈ T (F ) rewrite to a possibly infinite constructor normal formδ ∈ T ω(C ).

Being exhaustive is a necessary condition for productivity.

Theorem 3 If R is constructor normalizing, then it is exhaustive.

PROOF. If not, then there is a finite ground normal formt containing a defined symbol. This contradicts
R being constructor normalizing. ✷

Theorem 4 Let R be an exhaustive, left-linear TRS andµ ∈ CMR . If R is µ-terminating, thenR is
constructor normalizing.

PROOF. SinceR is µ-terminating, every ground terms has a (finite)µ-normal formt. By Theorem 1,
t is a head-normal form. We prove by induction ont that t rewrites into a (possibly infinite) constructor
term δ ∈ T ω(C ). If t is a constant, then sincet is a µ-normal form, it must be a normal form. Since
R is exhaustive,t = δ ∈ T (C ). If t = f (t1, . . . , tk) for ground termst1, . . . , tk, then by the induction
hypothesis, for alli, 1≤ i ≤ k, ti has a (possibly infinite) constructor normal formδi ∈ T ω(C ). We have
two cases:

1. If f ∈ C , thent has a (possibly infinite) constructor normal formf (δ1, . . . ,δk).

2. If f /∈ C , then, sincet is a head-normal form,f (δ1, . . . ,δk) is a ground (possibly infinite) normal
form which contradicts thatR is exhaustive.

Thus,shas a (possibly infinite) constructor normal form as well andR is constructor normalizing. ✷

Since tree specifications are left-linear and exhaustive, Theorem 4 holds for tree specifications.

Example 6 The following tree specificationR (cf. [30, Example 4.6])

p → zip(alt,p)

alt → 0 : 1 : alt

zip(x : σ ,τ) → x : zip(τ ,σ)
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(where no constant for empty lists is included!) is easily provedµcan
R

-terminating (useMU-TERM). By
Theorem 4, it is constructor normalizing. Note thatR is exhaustivedue to the sort discipline (for
instance, zip(0,0) is not allowed) and to the fact that no constructor for lists is provided (i.e., there is no
finite list and all lists are of the form cons(s, t) for terms s, t where t is always infinite).

As remarked in [8, Section 3.2], several authors defineR to be productive if it is constructor nor-
malizing (e.g., [7, 29, 30]). Endrullis and Hendriks give a more elaborated (and restrictive) definition of
productivity. Givent ∈T ω(F ,X ) andF ′ ⊆F , aF ′-path int is a (finite or infinite) sequence〈p1,c1〉,
〈p2,c2〉, . . . such thatci = root(t|pi ) ∈ F ′ andpi+1 = pi . j with 1≤ j ≤ ar(ci) [8, Definition 3.7].

Definition 5 [8, Definition 3.8] A tree specification is saiddata-finite if for all finite ground terms
s∈ T (F ) and (possibly infinite) constructor normal forms t of s, every C∆-path in t (containing data
constructors only) is finite.

Definition 6 [8, Definition 3.11]A tree specificationR is productiveif R is constructor normalizing
and data-finite.

In the following result,µ∆ is given byµ∆(c) = {1, . . . ,ar∆(c)} for all c∈ C∆, andµ∆( f ) =∅ for all other
symbols f .

Theorem 5 Let R be a left-linear, exhaustive TRS andµ ∈ MR be such thatµcan
R

⊔ µ∆ ⊑ µ . If R is
µ-terminating, thenR is productive.

PROOF. Sinceµcan
R

⊑ µ , constructor normalization ofR follows by Theorem 4. Thus, ifR is not
productive, there must be a ground normal formt of a terms with an infiniteC∆-path. Without loss of
generality, we can assume thats→∗ s1 = c1(s1

1, . . . ,s
1
k1
) for somec1 ∈ C∆, and thens1

i1 →
∗ c2(s2

1, . . . ,s
2
k2
)

for somei1, 1≤ i1 ≤ ar∆(c1) andc2 ∈ C∆, etc., in such a way that this reduction sequences follow the
computation oft and produce theC∆-path〈Λ,c1〉, 〈i1,c2〉, 〈i1.i2,c3〉,. . .

By Theorem 2,s →֒∗ s1 = c1(s1
1, . . . ,s

1
k1
) for some termss1

1, . . . ,s
1
k1

such thats1
j →

∗ s1
j for all j,

1≤ j ≤ k1. Thus, by Theorem 2 we also haves1
i1 →֒∗ c2(s2

1, . . . ,s
2
k2
) ands2

j →
∗ s2

j for all j, 1≤ j ≤ k2.
Sincei1 ∈ µ∆(c1), we haves →֒∗ s2 = c1(s1

1, . . . ,s
1
i1−1,c2(s2

1, . . . ,s
2
i2, . . . ,s

2
k2
), . . . ,s1

k1
) with s2

i2 →
∗ s2

i2 again.
Sincei1.i2 ∈Posµ∆(s2), we can continue with this construction to obtain an infiniteµ-rewriting sequence
which contradictsµ-termination ofR. ✷

Example 7 For the tree specificationR in Example 3 (see also Example 5), we have ar∆(S) = 1 and
ar∆(L) = 0. Then,µ∆(S) = {1} and µ∆(L) = ∅. Now µ = µcan

R
⊔ µ∆ is as given in Example 3. The

µ-termination ofR can be proved withMU-TERM. By Theorem 5, productivity ofR follows.

Example 8 We also prove productivity ofR in Example 6. Here,∆ = {d} andΓ = {s} with C∆ = {0,1}
and CΓ = {cons} where ar∆(cons) = 1. Thus,µ = µcan

R
⊔ µ∆ yields µ(zip) = µ(cons) = {1}. The

µ-termination ofR can be proved withMU-TERM and by Theorem 5 productivity ofR follows.

In general, Theorem 5 doesnot hold in the opposite direction, i.e., productivity ofR does not imply its
µ-termination.

Example 9 LetR be (cf. [8, Example 5.3]):

s → b : s

f(a,σ) → σ
f(b,x : y : σ) → b : f(b,y : σ)

Note thatµcan
R

(:) = {2} due to the third rule. This makesR non-µcan
R

-terminating due to the first rule.
We cannot use Theorem 5 to proveR productive, but it is (see Example 10 below).
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Regarding constructor normalization, we have:

Theorem 6 LetR be a orthogonal strongly compatible TRS such that either

1. µcan
R

(c) =∅ for all c ∈ C , or

2. R contains no collapsing rule andµcan
R

(c) = ∅ for all constructor symbols c∈ CR such that
c= root(r) for someℓ→ r ∈ R.

If R is constructor normalizing, then it isµcan
R

-terminating.

PROOF. SinceR is constructor normalizing,R is head-normalizing, i.e., every terms has a (construc-
tor) head-normal formt, i.e.,root(t) ∈ C . By [18, Theorem 4.6], everyµcan

R
-replacing redex in a terms

which is not a head-normal form is root-needed (see [23]). Thus, everyµcan
R

-reduction sequence withR
is head-normalizing. Furthermore, since every terms is head-normalizing, everyµcan

R
-rewrite sequence

starting froms yields a head-normal formt which, by confluence ofR, is a constructor head-normal
form, i.e.,t = c(t1, . . . , tk) for somec∈ C . We have two cases:

1. If µcan
R

(c) =∅ for all constructor symbolsc, thent is aµ-normal form.

2. Otherwise, we can assume thats is not a head-normal form and then, since there is no collapsing
rule, the root symbolc of t must be introduced by the last rule applied to the root in the head-
normalizing sequence. Hence, by our assumption,µ(c) =∅ as well.

Thus, everyµcan
R

-rewrite sequence starting from any terms is finite andR is µcan
R

-terminating. ✷

5 Related work

In [30], Zantema and Raffelsieper develop a general technique to prove productivity of specifications
of infinite objects based on proving context-sensitive termination. In the following result, we use the
terminology in Section 4, borrowed from [8]. Consistently,since the notion of ‘productivity’ in [30],
corresponds to constructor normalization (see Section 4),we have the following.

Theorem 7 [30, Theorem 4.1]Let R be a proper tree specification andµ ∈ MR given byµ( f ) =
{1, . . . ,ar( f )} if f ∈ D and µ(c) = {1, . . . ,ar∆(c)} if c ∈ C . If R is µ-terminating, thenR is con-
structor normalizing.

Remark 2 Theorem 7 is a particular case of Theorem 4: proper tree specifications are TRSs with
rules ℓ → r whose left-hand sidesℓ contain no nested constructor symbols, i.e., they are of theform
ℓ = f (δ1, . . . ,δk), whereδi is either a variable or aflat constructor term ci(x1, . . . ,xm) for some con-
structor symbol ci and variables x1, . . . ,xm. In this case, the replacement mapµ required in Theorem 7
is canonical, i.e.,µ ∈ CMR .

Example 6 is given in [30, Example 4.6] to illustrate a tree specificationR where Theorem 7 cannot be
used to prove constructor normalization. Indeed,R is not µ-terminating ifµ is defined as required in
Theorem 7. In contrast, Theorem 4 was used in Example 6 to prove constructor normalization ofR and
Theorem 5 was used in Example 8 to prove productivity ofR.

In [8] Endrullis and Hendriks have devised a sound and complete transformation of productivity to
context-sensitive termination. The transformation proceeds in two steps. First, aninductively sequential
(see [3]) tree specificationR is transformed into ashallow tree specificationR ′ by aproductivity pre-
servingtransformation [8, Definition 5.1] and [8, Theorem 5.5]. Here, R is shallow if for eachk-ary
defined symbolf ∈ D there is a setI f ⊆ {1, . . . ,k} such that for each rulef (p1, . . . , pk) → r, everypi

satisfies [8, Definition 3.14]:
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1. If i ∈ I f , thenpi = ci(x1, . . . ,xm) for somec∈ C and variablesx1, . . . ,xm ∈ X ; and

2. If i /∈ I f , thenpi ∈ X .

Example 10 The (inductively sequential) TRSR in Example 9 isnot shallow, but it is transformed by
the first transformation into the following TRSR ′ (adapted from [8, Example 5.3]):

s → b : s

f(a,σ) → fa(σ)

fa(σ) → σ
f(b,σ) → fb(σ)

fb(x : σ) → fb:(x,σ)

fb:(x,y : σ) → b : f(b,y : σ)

SinceR ′ is productive if and only ifR is, we use now Theorem 5 (withµ = µcan
R

, sinceµ∆ = µ⊥) to
proveR productive. This shows (see Example 9) that Theorem 5 does not extend to a characterization
of productivity as termination ofCSR.

Proposition 1 Shallow tree specificationsR are strongly compatible constructor TRSs whereµcan
R

(c) =
∅ for all c ∈ C .

PROOF. Let µ( f ) = I f for all f ∈ D and µ( f ) = ∅ for all f ∈ C . For all ℓ ∈ L(R), Posµ(ℓ) =
PosF (ℓ), i.e.,R is strongly compatible. Sinceµcan

R
is the only replacement map that makesR strongly

compatible,µ = µcan
R

andµcan
R

(c) =∅ for all c∈ C . ✷

In Endrullis and Hendriks’ approach, a second transformation obtains a CS-TRS(R ′′,µ) from R ′

(see [8, Definition 6.1]) in such a way thatµ-termination ofR ′′ is equivalentto productivity ofR ′ [8,
Theorem 6.6].

Remark 3 First Endrullis and Hendriks’ transformation preserves productivity. Thus, we can useR ′

together with Theorem 5 to prove productivity ofR without usingthe second transformation. We proceed
in this way in Example 10, where we conclude productivity ofR ′ without using the second transformation
described in [8, Definition 6.1].

By Theorem 6 and Proposition 1, we have:

Corollary 1 Constructor normalizing shallow tree specificationsR are µcan
R

-terminating.

With Theorem 4, we have the following characterization of shallow tree specifications (see also [8,
Theorem 6.5]).

Corollary 2 A shallow tree specificationR is constructor normalizing if and only if it isµcan
R

-terminating.

However, we also have

Corollary 3 A strongly compatible tree specificationR without collapsing rules and such thatµcan
R

(c) =
∅ for all constructor symbols c∈CR such that c= root(r) for someℓ→ r ∈R is constructor normalizing
if and only if it isµcan

R
-terminating.

Since productive tree specifications are constructor normalizing, we have the following.

Corollary 4 Productive shallow tree specificationsR are µcan
R

-terminating.
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In [26], Raffelsieper investigates productivity of non-orthogonal TRSs. However, he still requires
left-linearity and exhaustiveness ofR. Thus, our results in Section 4 also apply to his framework.
Raffelsieper also introduces the notion ofstrong productivitymeaning that every maximal outermost-
fair R-sequence starting from a term of sort∆ is constructor head-normalizing [26, Definition 6 and
Proposition 7]. He also uses termination ofCSRto prove strong productivity of hisproper specifications.
He defines a replacement mapµS (see [26, Definition 11]) which is, however,lessrestrictive than our
replacement mapµ∆ in Theorem 5. Thus, his main result in this respect [26, Theorem 12] is a particular
case of our Theorem 5.

6 Conclusions and future work

We have identified Theorems 1 and 2 (originally in [20]) as bearing the essentials of the use of termi-
nation of canonical CSR to prove productivity of rewrite systems (see the proofs of Theorems 4 and
5). Although termination ofCSR had been used before to prove (and even characterize) productivity,
we believe that our presentation sheds new light on this connection and also shows that the use of such
well-known results aboutCSR also simplifies the proofs of the results that connect termination of CSR

and productivity. Furthermore, the use of the canonical replacement map as one of the (bounding) com-
ponents of the replacement map at stake is new in the literature and improves on previous approaches
that systematically use less restrictive replacement maps, thus losing opportunities to prove termination
of CSR and hence productivity. We improved Endrullis and Hendriks’ approach because we avoid the
use of transformations, being able to directly prove productivity of a non-shallow TRSR as termina-
tion of CSR for R itself. For instance, we directly prove productivity ofR in Example 3 without any
transformation, whereas Endrullis and Hendriks require the addition of new rules due to their second
transformation (see [8, Example 6.8]). In Example 10, we conclude productivity ofR ′ without using
their second transformation. As a matter of fact, we were able to find automatic proofs of productivity
for all the examples in [8, 26, 30] by using Theorem 5 togetherwith AProVE or MU-TERM to obtain
the automatic proofs of termination ofCSR. Our results, though, donot provide a characterization of
productivity, as witnessed by Examples 9 and 10. In contrastto [8, 30], which deal withorthogonal
(constructor-based) TRSs only, our results apply toleft-linear TRSs and supersede [26] which applies to
non-orthogonal TRSs which are still left-linear.

In the future, we plan to apply other powerful results about completeness ofCSR in (infinitary) nor-
malization and computation of (possibly infinite) values todevelop more general notions of productivity
and apply them to broader classes of programs.

Acknowledgments. I thank the anonymous referees for their comments and suggestions.
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