
Adrian Francalanza, Gordon J. Pace (Eds.): Second International Workshop

on Pre- and Post-Deployment Verification Techniques (PrePost 2017)

EPTCS 254, 2017, pp. 1–14, doi:10.4204/EPTCS.254.1

A Story of Parametric Trace Slicing, Garbage

and Static Analysis

Giles Reger

University of Manchester, Manchester, UK

giles.reger@manchester.ac.uk

This paper presents a proposal (story) of how statically detecting unreachable objects (in Java) could

be used to improve a particular runtime verification approach (for Java), namely parametric trace slic-

ing. Monitoring algorithms for parametric trace slicing depend on garbage collection to (i) cleanup

data-structures storing monitored objects, ensuring they do not become unmanageably large, and (ii)

anticipate the violation of (non-safety) properties that cannot be satisfied as a monitored object can

no longer appear later in the trace. The proposal is that both usages can be improved by making

the unreachability of monitored objects explicit in the parametric property and statically introducing

additional instrumentation points generating related events. The ideas presented in this paper are still

exploratory and the intention is to integrate the described techniques into the MarQ monitoring tool

for quantified event automata.

1 Introduction

This paper explores ideas for improving the performance of runtime verification based on parametric

trace slicing by the static identification of unreachable objects. Runtime verification [8] is the task of

checking whether a given property holds on a given execution of a computational system. Typically

an execution is abstracted as a trace (e.g. a finite sequence of observations called events) and runtime

verification becomes checking whether this trace is in the language defined by the property. Checking

can be online whilst the monitored program is running, or offline after the program has run. In either

case, the monitored system must be instrumented to produce events of interest, either to be immediately

processed by a monitor or to be stored in a log file.

I am particularly concerned with parametric runtime verification for Java programs. The term

parametric refers to the events being observed being annotated with parameters, such as for example

open(readme.txt) or insert(idABC,12). Within the context of monitoring Java programs I will as-

sume that parametric events are generated by method calls with the event name being the method name

and the parameters being a relevant subset of the method parameters and target object1. We can, for

convenience, assume that generation of such events is achieved by the Aspect-Oriented Programming

(AOP) tool AspectJ. The (parametric) properties being checked are then defined in terms of these para-

metric events. Parametric trace slicing is then a method for checking parametric properties that involves

slicing a parametric trace up based on parameter values and then processing each slice in separation.

I will now use a running example (which we will use throughout the paper) to clarify the notion of

parametric property, introduce the technique of parametric trace slicing, and discuss the main ideas of

this paper related to the detection of unreachable objects. I keep the presentation informal here in the

introduction and make things (a little) more formal later. Figure 1 presents a Java method that takes a

1This assumption is not a restriction of the technique, but convenient for this paper.

http://dx.doi.org/10.4204/EPTCS.254.1

2 A Story of Parametric Trace Slicing, Garbage and Static Analysis

p u b l i c s t a t i c void w r i t e T o F i l e (S t r i n g f i leName , C o l l e c t i o n r e c o r d s){
F i l e f i l e = new F i l e (f i l eName) ;

f i l e . open () ;

I t e r a t o r i t e r a t o r = r e c o r d s . i t e r a t o r () ;

wh i le (i t e r a t o r . hasNext ()) {
f i l e . w r i t e (i t e r a t o r . n e x t ()) ;

}
/ / f i l e . c l o s e () ;

r e c o r d s . removeAll () ;

}

Figure 1: Example Java program used as running example.

file name and a collection of records and writes the records to a file with the given name. I will consider

three properties that I might want to check on this method.

• HasNext: For every iterator object i we only call i.next() if a preceding call of i.hasNext()
returned true with no intermediate calls to i.next() or i.hasNext().

• UnsafeIter: For every collection c and iterator object i created from c, the iterator i is not used (e.g.

by calls to i.next()) after c has been updated.

• OpenClose: For every file object f , the file cannot be written to or closed if not opened, cannot be

opened once already open, and must eventually be closed once opened.

The first two represent safety properties whilst the third is a form of response property as the opening

of a file creates an obligation that it is eventually closed. Figure 2 gives state machines for each of

the properties (their semantics with respect to parameters will become clear later) where I make the

assumption that states are closed to failure (to avoid an unnecessary clutter of transitions).

Let us use the HasNext property to illustrate the idea around parametric trace slicing. As the program

is executed various Iterator objects will be created and used. Observing this will produce a trace of such

calls. For example we might observe the trace

hasNextTrue(iter1).next(iter1).hasNextTrue(iter1).hasNextTrue(iter2).next(iter2).next(iter1).

where calls to iter2 are nested within calls to iter1. The idea of parametric trace slicing is to slice this

parametric trace into two propositional traces containing event names only and check these using stan-

dard methods (e.g. using a finite state automaton). Here the trace slice for iter1 is hasNextTrue.next.

hasNextTrue.next and for iter2 it is just hasNextTrue.next and both slices satisfy the property.

These properties play the following role in this paper:

• For the HasNext property we can observe that the iterator object does not escape the above

writeToFile method. This means that we could insert a call to the monitor at the end of the

method indicating that the monitor no longer needs to track this object. This can be helpful to the

monitoring effort as it eagerly reduces the size objects being stored by the monitor.

• The UnsafeIter propery allows us to apply a similar argument within the context of another object

(records) still being potentially live.

G. Reger 3

1 2

3 3

hasNextTrue(i)

next(i)
hasNextTrue(i)

next(i)
hasNextFalse(i)hasNextFalse(i)

next(i),hasNextTrue(i)

1 2 3 4
create(c,i) update(c) use(i)

use(i) update(c)

1 2

3

open(f)

close(f)
write(f)

close(f),write(f)

open(f)

Figure 2: State machines for the three example properties.

• The OpenClose property allows us to discuss anticipation. Normally this property cannot be satis-

fied or violated on a finite prefix of a trace. However, it is common to consider the end of a program

as indicating that no further events occur, which gives us a single infinite extension allowing us

to decide satisfaction or violation. This approach therefore delays this decision to the end of the

program, which has a number of issues. Now we can observe that the file object becomes un-

reachable at the end of this method. A good monitoring approach would detect a violation of this

property when the associated object is garbage collected, as discussed below. However, eagerly de-

tecting this unreachability and statically adding instrumentation alerting the monitor of this, allows

the monitor to detect the violation as early as possible.

Contributions. Whilst this paper does not present an implementation of any of the ideas informally

described above, it does present the background and ideas that form the basis for such an implementa-

tion. In Section 2 I review existing work on static detection of unreachable objects i.e. garbage, and in

Section 3 I introduce parametric trace slicing and discuss the various ways in which information from

this static analysis can help. I finish in Sections 4 and 5 by discussing the expected impact of these ideas

and setting out my agenda for future work in this area.

4 A Story of Parametric Trace Slicing, Garbage and Static Analysis

2 Statically Detecting Unreachable Objects

Here I briefly review various approaches for statically determining the lifetime of an object i.e. points in

the code where we can be certain that an object will become unreachable. The first part discusses general

techniques (these standard techniques can be found in textbooks [13]) whilst the second part focusses on

one particular approach.

2.1 The Intended Result

With respect to the overall idea being put forward by this paper, the actual static analysis techniques

employed do not matter. What matters is the result of the analysis and how this can be used to optimise

the runtime verification approach. Therefore, I will start by discussing what the result should be.

The goal is to perform a code transformation to insert instrumentation points into the program to

record when an object will no longer be observed by the monitor. This should be sound i.e. such instru-

mentation points should only be added where it is certain that the object can no longer be observed. I

introduce this at the (informal) level of instrumentation points as this is also the level at which I introduce

the runtime verification approach later.

At this point I note that in general I assume the previous goal to mean that the object becomes

unreachable in general. However, a stronger analysis would take a monitored property into account and

attempt to identify objects whose use becomes irrelevant to that property. Whilst this might sound like

something we want, it would most likely be prohibitively expensive.

The next two sections will review some existing static analysis approaches and is not meant to be a

contribution, rather a review to establish that the above goal can be met.

2.2 Escape Analysis

Escape analysis [2, 6] is used to determine if an object escapes a method2 usually with the goal of

swapping heap allocation for stack allocation as a compiler optimisation aimed at reducing memory

overhead (and garbage collector load).

This analysis is typically flow-insensitive, meaning that the order of statements in a method is ig-

nored, and intraprocedural, meaning that the analysis operates on a single method at a time. So let’s take

a look at the method of Figure 1. We can identify (via calls to new and the Iterator() factory method3)

two allocated objects file and iterator and extract the lines referring to these objects4.

File file = new File(fileName);

file .open ();

file .write(iterator .next ());

Iterator iterator = records .iterator ();

while(iterator .hasNext ())

file .write(iterator .next ());

It is straightforward to observe that none of these lines cause either object to escape the method.

To check this programatically it is necessary to be able to identify precisely which statements cause an

object to escape. There are three such kinds of statement:

2It is also applied to check if an object escapes a thread with the goal or removing synchronisation information, but this

usage is not of current interest here. Perhaps it would be interesting to explore this later for automatically ‘desynchronising’

monitoring activities.
3Note that this requires us to explicitly identify this method as a factory method. Techniques for this are discussed later.
4Here I will present these ideas at the source-code level but operations could equally (and perhaps more effectively) be

applied at the bytecode level.

G. Reger 5

1. Returning the object from the method

2. Passing the object to another method (including constructors)

3. Creating a reference to this object from another object (which also escapes)

Flow-insensitive analysis as described above provides an over-approximation of the escaping objects

for two reasons. Firstly, it is based on the assumption that all lines in the code are reachable. Detecting

unreachable parts of the code is called dead code analysis. One could imagine combining these analyses

but I suspect that unreachable code is not that common. Secondly, consider the following code where the

file variable is reassigned. The usages of the two files will be conflated in a flow-insensitive analysis,

meaning that some non-escaping objects may not be identified.

...

File file = new File (fileName);

anotherMethod (file);

file = new File (anotherFileName);

...

A simple solution to this issue is to first place the code in static single assignment (SSA) form which

requires every variable to be assigned to exactly once and provides flow sensitivity for local variables.

This is a standard transformation and perhaps assuming that it will be applied is quite reasonable.

The next (standard) challenge is that of aliasing i.e. ensuring that all versions of a single object are

tracked. For example in the following code the fact that file2 does not escape tells us that file1 does

not escape as both variables point to the same object.

...

File file1 = new File (fileName);

File file2 = file ;

anotherMethod (file2);

...

Various pointer analysis methods exist to determine sets of variables that necessarily or possibly point to

the same heap-allocated objects. Once such sets have been computed (discussed further below) then the

previous analysis is lifted to sets of aliasing variables.

Whilst this approach may identify some useful short-lived objects it has some drawbacks. Firstly,

intraprocedural pointer analysis is likely to be prohibitively imprecise. Secondly, flow insensitivity is ad-

equate for detecting escaping objects but for identifying unreachable objects early it is too conservative.

Lastly, the common usage of factory methods and pure methods (e.g. not leaking the input parameter) is

likely to significantly reduce the effectiveness of simple escape analysis for our goal. The next section

introduces some existing ideas to handle these issues.

2.3 Free-Me Analysis

I now introduce some ideas from the free-me analysis introduced by Guyer et al. [9] in 2006 for identi-

fying opportunities for early object reclamation. I am sure other equally interesting work exists (please

feel free to draw my attention to it) but a discussion of this work suffices to convince us that our above

goal is achievable.

Pointer Analysis. The free-me analysis maintains a points to set for each variable (and a transitively-

closed version). These sets are then modified in a flow-insensitive manner using the following rules:

6 A Story of Parametric Trace Slicing, Garbage and Static Analysis

File write(String value , boolean ret){

File file = newTempFile (); // factory

method

file .write(value);

if(ret){ return file ; }

return null ;

}

File file = newTempFile();

file.write(value);

if(ret)

return file;

return null;

1

2

3
4

Figure 3: A small example with control flow graph.

Assignment v1 = v2 points to(v1) ∪= points to(v2)
Field Access v1 = v2. f points to(v1) ∪= points to transitive closure(v2)
Field Assignment v1. f = v2 ∀n ∈ points to(v1) : points to(n) ∪= points to(v2)
Static Field Access v1 =Cls. f points to(v1) ∪= points to(g)
Static Field Assignment Cls. f = v1 points to(g) ∪= points to(v1)

A special fresh variable g is used to represent all globally reachable objects and is used for global vari-

ables, static field accesses and in method summaries (discussed below). The rule for field assignment is

somewhat non-standard but its conservatism allows for simple method summaries.

Method Summaries. A method summary is a set of pairs (p,q) where q is an input parameter and p

is either an input parameter or the special labels global or return. The semantics of (p,q) is that after the

method is called the object pointed to by q is reachable from p. In the above pointer analysis this allows

points to sets to be appropriately updated after method calls (for virtual methods all matching method

summaries are applied). The analysis also identifies factory methods as those whose return object is

always a newly allocated object and includes this information in the summary. In the pointer analysis

factory methods are replaced by new allocation sites.

Liveness Analysis. Consider the method in Figure 3 where the file object possibly escapes the

method but there is one path through the method where it does not. Ideally we would add an instrumen-

tation call just before the final line to indicate that the current version of the file object will become

unreachable. But the escape analysis described above will not achieve this.

The idea is to apply traditional liveness analysis [11] to identify at each program point which vari-

ables contain values that may be needed later. This is applied as a backward analysis on the control flow

graph where liveness is introduced at points where a variable is used and propagated backwards with

unions being taken at merge points. This is applied at the granularity level of single statements (rather

than basic blocks) as the usage is different from that of the traditional analysis.

This information is combined with pointer analysis to give reachability for the objects associated

with each allocation point at each edge in the control flow graph. However, the flow-insensitivity of the

pointer-analysis provides an over-approximation of reachability if, for example, an object eventually be-

comes globally reachable. The analysis introduces a concept of potential liveness restricting the inherited

liveness status from global variables to after the associated assignment. Additionally, objects originating

from factory methods are not marked as globally reachable due to the above approach of replacing such

calls by allocations.

G. Reger 7

The described approach allows us to identify that edge 4 in the small control flow graph of Figure 3

is unreachable for the object pointed to by file. Further details are beyond this review and I invite the

reader to refer to the original text free-me analysis.

Inserting Calls. The above analysis will identify, for each allocation site, a set of program points

(edges in the control flow graph) where the object becomes unreachable. Instrumentation calls can be

inserted at each site but some points will dominate others and the earliest of these should be selected. It

is important to ensure that an object is not flagged as unreachable multiple times; although this is far less

important in our setting than in the setting of the original work. The trick used by the original approach

is to use a temporary variable that is set to null after it is freed and a freeing method that detects and

ignores values set to null.

3 Parametric Trace Slicing, Monitoring, and Garbage

Here we introduce parametric trace slicing and its relation to monitoring whilst also considering how

the garbage information identifiable by the techniques in the previous section can be used to optimise

monitoring. The monitoring approach presented here is based on the original work of Roşu and Chen [5],

which was later adapted by myself and others [1] in the definition of quantified event automata (QEA).

Whilst QEA will feature at the end of this story, most of the ideas here are directly related to the original

work around JavaMOP [12].

3.1 The Underlying Approach

We assume disjoint sets of event names Σ, variables X and values D. A valuation θ is a map (partial

function with finite domain) from variables to values. The submap operator ⊑ and least-upper-bound

operator ⊔ on maps are defined as usual. We write dom(θ) for the domain of θ .

A parametric event signature is a pair consisting of an event name e and a list of variables x1, . . . ,xn

written e(x1, . . . ,xn). A parametric event alphabet is a finite set of parametric event signatures with at

most one signature per event name. For a given parametric event alphabet A, a parametric event is a pair

consisting of an event name e and a valuation θ , written e(θ), such that there exists e(x1, . . . ,xn)∈A such

that {x1, . . . ,xn} = dom(θ). A parametric trace is a finite sequence of parametric events and a proposi-

tional trace is a finite sequence of event names. Let ε be the empty sequence. A parametric property for

a parametric event alphabet A is a predicate over A∗ (parametric traces over A). A propositional property

is a predicate over Σ
∗.

We assume an instrumentation method that extracts events from programs. There is an implicit

assumption that an event name corresponds to a method name and the associated variables correspond

to a subset of method parameters and return value. This is not necessary but standard, particularly in the

early work on parametric trace slicing. We note that assuming that a method call can only correspond

to a single event in the system limits expressiveness, which is dealt with in the QEA work [1] but this

solution complicates matters and we ignore it here.

For the purposes of this paper, a parametric specification is a finite state automaton with a parametric

event alphabet. Let the propositional abstraction of this automaton be the one given by preserving event

names only i.e. with alphabet Σ.

Next we will define how a parametric specification describes a parametric property. The idea is to

use a slicing operator to transform the trace-checking problem for this parametric property into one of

8 A Story of Parametric Trace Slicing, Garbage and Static Analysis

checking a propositional property on a set of propositional traces. The slicing operator is defined as

follows.

Definition 1 (Parametric Trace Slicing) Given valuation θ and parametric trace τ let τ ↓θ be the

propositional trace-slice for θ defined as follows.

ε ↓θ = ε

e(θ ′)τ ↓θ =
e(τ ↓θ) if θ

′ ⊑ θ

(τ ↓θ) otherwise

This preserves those event names where the valuation is relevant to (included in) θ .

Example 1 Given a valuation θ = [c 7→ A, i 7→ B] and parametric trace

τ = use(D) create(A,B) create(A,C) use(B) use(C) update(A) use(B)

the corresponding trace slice for θ is

τ ↓θ= create use update use

The possible valuations used in slicing are dependent on the parametric trace being checked i.e. they

are built from (parts of) those valuations observed at runtime. We define such valuations as follows.

Definition 2 (Induced Valuations) Given a trace τ the valuation θ is induced by τ if (i) there is an

event e(θ ′) ∈ τ such that θ
′ ⊑ θ , and (ii) for every (x 7→ v) ∈ θ there exists an event e(θ ′) ∈ τ such that

(x 7→ v) ∈ θ
′.

Example 2 For the trace τ from Example 1 we have the induced valuations

[c 7→ A, i 7→ B] [c 7→ A, i 7→C] [c 7→ A, i 7→ D]

although the last valuation can be identified as redundant using techniques not described here.

By construction, if a valuation θ is not induced by τ then τ ↓θ= ε . If the initial state of a parametric

specification is accepting then this means that restricting to induced valuations does not alter the next

definition but we do not enforce this restriction.

Finally, we can define the parametric traces accepted by a parametric specification as follows.

Definition 3 (Trace Acceptance) A parametric specification Γ accepts a parametric trace τ if for every

valuation θ induced by τ we have

τ ↓θ∈ L (P)

where L (P) is the language of the propositional abstraction of Γ.

Example 3 Given the valuation θ and trace τ from Example 1 and the parametric specification for the

UnsafeIter proeprty given in Figure 2. We can see that the slice τ ↓θ given in Example 1 is not in the

language of the propositional abstraction as it reaches state 4, which is non-final. Therefore, the trace is

not accepted as there is at least one induced valuation where the given property does not hold.

We have now defined the semantics of our parametric specifications. Note that Figure 2 already

defined three parametric specifications.

To check a trace against a parametric property then requires three steps. The first step is to construct

the set of valuations, which first requires extracting values from the trace. This set is likely to be very

large and theoretically exponential in the length of the trace, although usually much smaller in practice.

The second step is to slice the trace to produce a slice per valuation. The final step is to check each slice

against the underlying property. Clearly separating monitoring into three steps like this is not practical.

The next question is how we efficiently monitor such specifications without separating monitoring into

three separate steps.

G. Reger 9

Algorithm 1 An incremental algorithm for performing parametric trace slicing.

1: Let Lookup be a map from valuations to states initial mapping the empty valuation to the initial state

2: for event e(θ) ∈ τ do

3: for θ
′ in dom(Lookup) from biggest to smallest do

4: if θ is consistent with θ
′ then

5: if θ
′ ⊑ θ then

6: Update Lookup(θ ′) using e

7: else if θ ⊔θ
′ is not in dom(Lookup) then

8: Add θ ⊔θ
′ to Lookup using Lookup(θ ′) updated using e

9: If an entry in Lookup is in a non accepting state then Fail otherwise Accept

3.2 Monitoring Algorithms for Parametric Trace Slicing

The above semantics is non-incremental due to the need to compute induced valuations before perform-

ing slicing. A number of algorithms exist for incremental monitoring [12, 15]. One of the most simple

of these approaches is captured in Algorithm 1. Here trace slices are represented by the state reached in

the (propositional abstraction of the) parametric specification. The idea is to, for each incoming event,

search through existing valuations and (i) update the information for the associated trace slice if the event

is relevant, and (ii) add new valuations if they do not exist. Iterating through existing valuations from

biggest to smallest is necessary to ensure that the valuation storing the most information about a trace

slice is used when adding a new valuation (this idea is called maximality in other work).

I note two things. Firstly, that this algorithm is heavily dependent on the size of Lookup, which in

the given algorithm never shrinks. And secondly, the algorithm is inefficient as each step is linear in

the number of stored valuations, and in the worse case the number of valuations can be exponential in

the length of the trace seen so far e.g. v|τ | where v is the number of variables used in the parametric

specification. Although this assumes heavy reuse of values in the trace and typically the number of

valuations does not grow exponentially, but may still grow super-linearly.

Efficient monitoring approaches relying on complex indexing data structures have been introduced

(see [12, 15]) but these remain super-linearly related to the number of valuations as they employ redun-

dancy to ensure efficient indexing. Whilst this is often a suitable trade-off, there is still a cost associated

with maintaining such structures and access operations remain somewhat proportional to the size of the

structures. The message here is that the number of valuations being tracked directly impacts efficiency.

We Therefore, reducing this number (for example by detecting that objects in a valuation become un-

reachable and relevant events can no longer be observed) will have a positive effect.

3.3 Anticipation

The reader may have noticed a problem with Algorithm 1. Even though the trace is processed incremen-

tally the result of whether the full trace is accepted only comes at the end. It is possible to report on

the acceptance of the current prefix (i.e. what would happen if the trace ended here) but this does not

necessarily relate to the final verdict.

What we want to do is anticipate the final verdict as soon as possible. For the HasNext and UnsafeIter

properties given in Figure 2 this is relatively straightforward as they are safety-properties. As soon as

any entry in Lookup enters a non-accepting state there is no way for the trace to be accepted and final

violation can be reported straight away. For the OpenClose property the safety element can be detected

10 A Story of Parametric Trace Slicing, Garbage and Static Analysis

1 2

3

4

open(f)

close(f)
write(f)

close(f),write(f)

open(f),garbage(f)

garbage(f)

Figure 4: Adding garbage events to the OpenClose automaton..

early but the eventually closing a file part cannot (as it stands).

What is the formal idea here? If the current trace cannot be extended to an accepting trace then it

can be marked as non-accepting. We can capture the notion of possible extensions by reachability in

the finite state automaton. In the HasNext finite state automata failure is captured by the explicit failure

state 3 where, whereas in the UnsafeIter automata there is (in addition to the explicit state 4) an implicit

failure state where, by construction, no accepting states are reachable. In the OpenClose automata state 3

has no reachable accepting states so any entries in Lookup entering this state can report a final violation.

This is the first point where detection of unreachable objects can help. If, for the OpenClose prop-

erty we can detect that a file object becomes unreachable when the associated automaton is in the non-

accepting state 2 then we know that this cannot be remedied later. Instead of adding special code to the

monitoring approach to handle this case5 we can simply modify the automaton for the property and add a

garbage event (produced by the techniques discussed earlier) to the alphabet of the property. Figures 4

and 5 show how this can be done for the OpenClose and UnsafeIter properties respectively. Importantly,

the addition of garbage events can be an automatic transformation applied to automata.

An observation here is that for the UnsafeIter property if c becomes garbage at state 3 it is still

necessary to continue monitoring i as a violation can still occur, however if this occurs earlier then the

property cannot be violated any longer. Furthermore, detecting that i becomes garbage means that the

property can never be violated as the only paths to a non-accepting state involve the i object. Therefore,

the valuation can be removed if i becomes garbage (which is the case in our example from Figure 1) but

not necessarily if c becomes garbage.

3.4 Garbage-Aware Indexing

Indexing structures employed by the monitoring algorithms mentioned above are typically garbage-

aware in the sense that they employ weak references so that once all objects pointed to by a valuation

become unreachable that entry in the data structure can be removed. The initial implementation of this

idea in JavaMOP was incorrect as it did not allow for the anticipation of failure as described above (which

led to missing some property violations), this was fixed later [10].

The usage of weak references is important as it prevents the monitor leaking memory and it keeps

data structures small. However, doing this via garbage collection has a disadvantage as objects are not

collected until space is needed. Therefore, the second usage of static garbage information would be to

eagerly reduce the size of these data structures by directly reporting this garbage.

5Although I note that it is standard to have special monitoring code, along with the usage of weak references, to handle such

cases, as discussed later.

G. Reger 11

1 2 3

2c

2b 3b

5
create(c,i) update(c) use(i)

use(i)
update(c)

use(i)

garbage(c)

garbage(i) garbage(i)

update(c)
update(c)

Figure 5: Adding garbage events to the UnsafeIter property.

However, I note that this may have limited impact as the garbage issues are larger for longer-living

objects whilst the static analysis techniques proposed earlier are more suitable for short-lived objects.

Nevertheless, in situations where many short-lived objects are being monitored at the same time I see

this as potentially having a positive impact.

3.5 Monitoring Representative Objects

This idea is the least mature but also has the potential for having the most impact on monitoring overhead.

My observation is that when we perform static analysis we consider all objects produced by a single

allocation point together. In runtime verification we do not do this; every created object is monitored

separately. This makes sense for long-lived objects with many possible paths through the program but

for short-lived objects it is a large waste of monitoring time.

For example, in the method given in Figure 1 we should only monitor file and iterator once

although this becomes less clear in the presence of the loop. If this method is called frequently then only

monitoring the method once will have a massive impact on overhead.

The proposal is to detect objects that do not escape a method and add flags to indicate whether that

object has been checked on all paths through the method. The reason that escape analysis is a key factor

here is that we want to be able track all paths of a single object and doing this interprocedurally would

be prohibitive. For our example method it is straightforward as there is a single path. For methods with

complex control flow this may be prohibitively complicated. In essence, the proposal is to monitor an

abstraction of observed concrete objects and whilst the idea here is to use an allocation-site abstraction,

this could be further augmented for greater precision.

A related approach was previously proposed by Dwyer et al. in 2010 [7]. The idea there was to

optimise loops to reduce monitoring overhead by detecting repeated iterations that did not differ in their

effect, unrolling them, and only monitoring the first iteration. It appears that Dwyer et al.’s idea is related

to this one and but has not been fully explored.

12 A Story of Parametric Trace Slicing, Garbage and Static Analysis

3.6 Offline Monitoring

A small but sometimes important point is that in implementations of parametric trace slicing the notion

of equality is typically referential. This is reasonable for online monitoring as at any one time only

one object can occupy a particular memory address. However, for offline monitoring where events are

recorded in a log file and then read in later for checking there needs to be a way of unambiguously

recording object identities. Simply printing the identity hash code is insufficient as there is the possibly

of a clash with an object created later. Whilst this sounds improbable, I have experienced this in practice.

The solution is to either add allocation or garbage information to the log file. Allocation information

is not always appropriate as we may only be monitoring a subset of a certain type of object that is used

in a particular way and logging all allocations may increase the size of the trace by orders of magnitude.

Currently, I use a trick that creates objects with a custom finalizer weakly reachable by a moni-

tored object such that collection of this object records unreachability of the monitored object. However

this relies on finalizers, which are not guaranteed to be run, and requires additional objects. Therefore,

static detection and reporting of unreachability is preferable (although sadly not a general solution).

4 Discussion or Will it Work?

The previous section proposed a number of approaches for using static information about unreachable

objects to optimise the runtime verification effort. Here I discuss what impact I might expect these to have

in general. Before doing so it is worth mentioning that tools such as JavaMOP and MarQ depend heavily

on garbage information at runtime and without ideas such as garbage-aware indexing they would struggle

with a real-world trace of any significant length. However, I note that whilst the impact of garbage has

been studied [10], the previous view of representing garbage within the property being monitored is new.

Risks and Limitations. The main limitation of this approach is the scope of applicability. The static

analyses discussed earlier are only applicable to objects that are are short lived and (relatively) local

to a single method. Arguably, in such cases it could be relatively easy to apply static techniques to

completely verify a property. Indeed, the more interesting properties for runtime verification are those

involving objects and events spread out over time and the codebase. Due to realistic language features

(such as reflection and dynamic loading) it is very difficult to make the described static analyses sound

inter-procedurally i.e. many objects will be conservatively marked as reachable rendering the approach

ineffective for non-local properties. Whilst more modern approaches [16, 17] may provide better preci-

sion, this will remain a limitation of the approach (however, see the other side of this below).

A related point to the above is that for such short-lived objects it is highly likely that modern genera-

tional garbage collection will collect objects quickly, providing the desired quick anticipation of liveness

violations. The current use of weak references generally appears adequate and there is a risk that any

advantage provided by static information could be represent a small increment at best.

Perceived Strengths. A counter to the above point about short-lived objects is that this approach can

make use of partial information (where an object is unreachable in some paths only) in situations where

intraprocedural static checking would not apply. Additionally, for properties involving multiple objects,

this approach may only identify that one object becomes unreachable, which would not be usable infor-

mation statically, but could have significant impact dynamically.

G. Reger 13

I expect the idea about monitoring representative objects to be the most fruitful in the long-term.

Whilst the other ideas may decrease overhead per monitored object, this approach has the potential to

remove the need to monitor a large number of objects at all.

5 Conclusion

This paper has explored the idea of statically identifying unreachable objects and then using this infor-

mation to optimise runtime verification using parametric trace slicing by

• anticipating failures of non-safety properties sooner than otherwise possible,

• keeping indexing data structures small,

• reducing the number of objects being monitored (in restricted circumstances), and

• dealing with a known issue with offline monitoring in this setting.

None of these ideas have been implemented yet but the intention is to incorporate them into the MarQ

[15] tool. I note that supporting the additional features of QEA beyond those captured by the parametric

specifications described in this paper may require some extra work. For example, QEA also allow objects

to be captured by so-called free variables that are not involved in slicing and then for transitions to be

guarded by predicates on these variables. This dramatically increases the complexity of the reachability

question as it must consider the satisfiability of these guards.

As a final comment, this work began in [14] by exploring how the typestate analysis techniques

employed by Clara [4, 3] could be applied to QEA. The idea was to utilise pointer analysis information

to statically check non-safety properties. However, I then noticed that the same information could be

used to optimise the runtime activity in different ways. This work looking at typestate analysis for QEA

is also ongoing.

Acknowledgements. I would like to thank the reviewers for their helpful comments that helped im-

prove the text and also provide further ideas to explore.

References

[1] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger & David E. Rydeheard (2012): Quantified

Event Automata: Towards Expressive and Efficient Runtime Monitors. In: FM, pp. 68–84. Available at

http://dx.doi.org/10.1007/978-3-642-32759-9_9.

[2] Bruno Blanchet (1998): Escape Analysis: Correctness Proof, Implementation and Experimental Results. In:

Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’98, ACM, New York, NY, USA, pp. 25–37, doi:10.1145/268946.268949.

[3] Eric Bodden & Laurie J. Hendren (2012): The Clara framework for hybrid typestate analysis. STTT

14(3), pp. 307–326, doi:10.1007/s10009-010-0183-5. Available at https://doi.org/10.1007/

s10009-010-0183-5.

[4] Eric Bodden, Patrick Lam & Laurie Hendren (2010): Clara: A Framework for Partially Evaluating Finite-

state Runtime Monitors Ahead of Time. In: Proceedings of the First International Conference on Runtime Ver-

ification, RV’10, Springer-Verlag, Berlin, Heidelberg, pp. 183–197, doi:10.1007/978-3-642-16612-9_

15.

[5] Feng Chen & Grigore Roşu (2009): Parametric Trace Slicing and Monitoring. In: TACAS ’09, Berlin,

Heidelberg, pp. 246–261, doi:10.1007/978-3-642-00768-2_23.

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1145/268946.268949
http://dx.doi.org/10.1007/s10009-010-0183-5
https://doi.org/10.1007/s10009-010-0183-5
https://doi.org/10.1007/s10009-010-0183-5
http://dx.doi.org/10.1007/978-3-642-16612-9_15
http://dx.doi.org/10.1007/978-3-642-16612-9_15
http://dx.doi.org/10.1007/978-3-642-00768-2_23

14 A Story of Parametric Trace Slicing, Garbage and Static Analysis

[6] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar & Sam Midkiff (1999): Escape

Analysis for Java. SIGPLAN Not. 34(10), pp. 1–19, doi:10.1145/320385.320386.

[7] Matthew B. Dwyer, Rahul Purandare & Suzette Person (2010): Runtime Verification in Context: Can Opti-

mizing Error Detection Improve Fault Diagnosis?, pp. 36–50. Springer Berlin Heidelberg, Berlin, Heidel-

berg, doi:10.1007/978-3-642-16612-9_4.

[8] Y. Falcone, K. Havelund & G. Reger (2013): A Tutorial on Runtime Verification. In Manfred Broy & Doron

Peled, editors: Summer School Marktoberdorf 2012 - Engineering Dependable Software Systems, IOS Press,

doi:10.3233/978-1-61499-207-3-141.

[9] Samuel Z. Guyer, Kathryn S. McKinley & Daniel Frampton (2006): Free-Me: A Static Analysis for Automatic

Individual Object Reclamation. SIGPLAN Not. 41(6), pp. 364–375, doi:10.1145/1133255.1134024.

[10] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith & Grigore Roşu (2011): Garbage Collection for

Monitoring Parametric Properties. In: Proceedings of the 32nd ACM SIGPLAN conference on Programming

Language Design and Implementation (PLDI’11), ACM, pp. 415–424, doi:10.1145/1993498.1993547.

[11] Uday Khedker, Amitabha Sanyal & Bageshri Karkare (2009): Data Flow Analysis: Theory and Practice, 1st

edition. CRC Press, Inc., Boca Raton, FL, USA, doi:10.1201/9780849332517.

[12] Patrick Meredith, Dongyun Jin, Dennis Griffith, Feng Chen & Grigore Roşu (2011): An overview of the MOP

runtime verification framework. J Software Tools for Technology Transfer, pp. 1–41. Available at http://

dx.doi.org/10.1007/s10009-011-0198-6.

[13] Flemming Nielson, Hanne R. Nielson & Chris Hankin (2010): Principles of Program Analysis. Springer

Publishing Company, Incorporated.

[14] Giles Reger (2016): Considering Typestate Verification for Quantified Event Automata. In: 7th Interna-

tional Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2016),

doi:10.1007/978-3-319-23820-3_21.

[15] Giles Reger, Helena Cuenca Cruz & David Rydeheard (2015): MarQ: monitoring at runtime with QEA. In:

Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’15), doi:10.1007/978-3-662-46681-0_55.

[16] Yannis Smaragdakis & George Balatsouras (2015): Pointer Analysis. Found. Trends Program. Lang. 2(1),

pp. 1–69, doi:10.1561/2500000014.

[17] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali & Eric Bodden (2016): Boomerang: Demand-Driven

Flow- and Context-Sensitive Pointer Analysis for Java. In: 30th European Conference on Object-Oriented

Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, pp. 22:1–22:26, doi:10.4230/LIPIcs.ECOOP.

2016.22. Available at https://doi.org/10.4230/LIPIcs.ECOOP.2016.22.

http://dx.doi.org/10.1145/320385.320386
http://dx.doi.org/10.1007/978-3-642-16612-9_4
http://dx.doi.org/10.3233/978-1-61499-207-3-141
http://dx.doi.org/10.1145/1133255.1134024
http://dx.doi.org/10.1145/1993498.1993547
http://dx.doi.org/10.1201/9780849332517
http://dx.doi.org/10.1007/s10009-011-0198-6
http://dx.doi.org/10.1007/s10009-011-0198-6
http://dx.doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1561/2500000014
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.22
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

	1 Introduction
	2 Statically Detecting Unreachable Objects
	2.1 The Intended Result
	2.2 Escape Analysis
	2.3 Free-Me Analysis

	3 Parametric Trace Slicing, Monitoring, and Garbage
	3.1 The Underlying Approach
	3.2 Monitoring Algorithms for Parametric Trace Slicing
	3.3 Anticipation
	3.4 Garbage-Aware Indexing
	3.5 Monitoring Representative Objects
	3.6 Offline Monitoring

	4 Discussion or Will it Work?
	5 Conclusion

