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In this paper we focus on spatial Markov population models, describing the stochastic evolution of
populations of agents, explicitly modelling their spatial distribution, representing space as a discrete,
finite graph. More specifically, we present a heuristic approach to aggregating spatial locations,
which is designed to preserve the dynamical behaviour of the model whilst reducing the computa-
tional cost of analysis. Our approach combines stochastic approximation ideas (moment closure,
linear noise), with computational statistics (spectral clustering) to obtain an efficient aggregation,
which is experimentally shown to be reasonably accurate on two case studies: an instance of epi-
demic spreading and a London bike sharing scenario.

1 Introduction

Population processes are widely used to describe a large variety of systems, including systems in bio-
logical [17], ecology [1], performance engineering [26], smart cities facilities like bike sharing [16, 18],
and the spreading of epidemics [2]. Most of these systems are spatially distributed, and space has to be
explicitly modelled to properly capture the relevant features of their dynamics. For example, interactions
may only be allowed for entities which are co-located or within a certain physical distance of each other,
or space may be segmented in such a way that even physically close entities are unable to communicate
or interact. Furthermore, movement in space can be a crucial aspect of the behaviour of entities within
the system. Epidemic spreading, in which infection can pass only by physical contact, is a clear example
in this sense [2]. Bike sharing is another one, as the geographical location of bike stations influences
the travelling time, and different stations have different demands for acquisition or deposit of bikes at
different times of the day [16, 18].

Population processes are often modelled as Markovian stochastic processes, mostly as a subclass
of continuous-time Markov chains (CTMCs) known as Population CTMCs (PCTMCs). These models
have a very large or even infinite state space, a fact resulting in a lot of work in the computer science
community to craft efficient algorithms for their analysis, ranging from specialised stochastic simulation
to the use of mean-field [6] and moment closure techniques [20, 19]. These methods, in particular,
approximate the large or infinite set of linear Kolmogorov equations by a much smaller set of non-linear
differential equations, capturing the mean, variance, and possibly other higher order moments.

Spatial extensions of PCTMCs typically introduce discrete representations of space in terms of lo-
cality, connecting them in a general topology represented by a (weighted) graph [7]. One of the effects
of explicit modelling of space is the increase of the computational cost of analysis of the system. For
instance, a model with l localities will increase the number of equations for the variance in any moment
closure approach by a factor of O(l2).

However, although space shapes the behaviour of the system, our interest is often in space-free prop-
erties, like the total number of infected individuals in an epidemic scenario, or in localised properties,
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like the number of available bikes in a given station or geographic area. In these cases, a full represen-
tation of space may not be needed to compute such quantities with a reasonable accuracy, and model
simplification and abstraction can be a viable strategy.

In this paper, we pursue this direction by developing an efficient approach to aggregate locations
showing a similar dynamical profile. This operation will preserve the dynamical behaviour of the model,
but lower the computational cost: for instance, if the number of locations decreases from l to k, then the
number of differential equations for the variance is reduced by a factor O(k2/l2). In particular, here we
will focus on the reduced cost of the analysis of the full stochastic model by using standard simulation
algorithms [17], as this is the most expensive but also most informative computational technique (ex-
cluding numerical integration of the Kolmogorov equations, which for PCTMC is unfeasible due to state
space explosion).

Our approach is based on aggregating locations using state-of-the-art spectral clustering approaches,
based on metrics between locations that take the steady state mean or distribution into account. Rather
than working with exact solution or estimations of these quantities by simulation, which would be com-
putationally expensive, we obtain them applying stochastic approximation ideas, either by solving mean-
field equations for the mean or using a linear-noise-like approximation of the distribution, obtaining mean
and variance from moment closure equations. The feasibility, effectiveness, and accuracy of our method
is discussed on two case studies: an epidemic model and a London bike sharing scenario.

The paper is organised as follows: Section 2 introduces the formalism of spatial PCTMCs we will
use afterwards and briefly introduces exact and approximate analysis techniques. Section 3 discusses in
detail our aggregation approach, and Section 4 presents the two case studies. Conclusions are drawn in
Section 5.

2 Spatial PCTMC Models

A Population Continuous Time Markov Chain (PCTMC) is a Markovian stochastic process evolving in
continuous time. It consists of a number of individually indistinguishable interacting agents of different
types which can be in different internal states, so that the state of the system can be described by counting
how many agents of each kind are in the system. Agents’ interactions are described by a set of transitions,
which will change the internal state of one or more agents. In this paper, we specifically consider spatial
PCTMC models in which agents are distributed in a finite set of discrete locations, with interactions
typically happening either in the same location or in neighbouring ones. Formally, a spatial PCTMC can
be expressed as a tuple P = (L ,X,T ):

• L = (`1, ..., `l) is the set of discrete locations in the model, where |L |= l denotes the total number
of locations.

• X = (X@`1, ...,X@`l) ∈ ZN
≥0 is an integer vector representing the agent populations distributed

over all the locations in the model, where |X| = N = l× n is the total number of distinct agent
populations in the model with n representing the number of agent types. X@`i is an sub-vector
with the jth component, X j@`i representing the current population of the agent type j at location
i. We use X0 to denote the initial state of the model.

• T = {τ1, ...,τm} is the set of transitions with size |T |= m, of the form τ = (rτ(X),Dτ), where:

1. rτ(X) ∈R≥ 0 is the rate function, associating with each transition the rate of an exponential
distribution, depending on the global state of the model.
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2. Dτ ∈ ZN is the update vector which gives the net change for each element of X caused by
transition τ . Similarly, we let Dτ@`i denote the update vector of agent populations at location
i.

Transition rules can be easily visualised in the chemical reaction style, as

u1
τ@`1 + . . .+un

τ@`l −→ v1
τ@`1 + . . .+ vn

τ@`l at rate rτ(X)

where the net change of agents of type i in location ` j due to transition τ is given by Di
τ@` j = vi

τ@` j−
ui

τ@` j (1 ≤ i ≤ n, 1 ≤ j ≤ l). This is a general format, encompassing local interactions, interactions
between agents in neighbouring locations, and movement in space. The tuple P contains all the infor-
mation that is needed to build a CTMC on the state space ZN

≥0: its infinitesimal generator Q is given by
Q(x,y) = ∑{rτ(x)|Dτ = y− x}, for x 6= y. Spatial PCTMC can be simulated using standard stochastic
simulation algorithms [17].

2.1 Moment Closure, Mean Field, and Linear Noise

The analysis of the stochastic model underlying a spatial PCTMC is not an easy task. Numerical methods
are hindered by the state space explosion, and even stochastic simulation suffers from the presence of
localities and large populations. Furthermore, it is known that for large populations the behaviour of
the stochastic model becomes deterministic and converges to the solution of a the mean field differential
equation [6, 22], which in the formalism defined above takes the form

Ẋ = F(X), with F(X) = ∑
τ

Dτrτ(X)

If populations in each location are in the order of tens or hundreds of thousands, mean-field equations are
generally very accurate [6]. However, when populations are smaller, in the order of hundreds, stochastic
fluctuations still have an important role, and the linear-noise (central limit) approximation performs better
[22, 21]. The idea behind linear noise is to approximate the original stochastic model by a linearized
Markov process in continuous states, whose solution is a Gaussian process. The distribution of this
process at a given time is thus characterized by solving equations for the mean (incidentally, the mean-
field equations above) and equations for the covariance.

An alternative strategy for the analysis of the spatial PCTMC is to derive equations for the moments
of the population variables [20, 19], up to order k. Due to non-linearities in the rates, there is no exact
closed form of these equations, and the differential equations for moments of order k depend on higher-
order ones. Hence, equations are closed by relying to some heuristic [20, 19]. Typically, moment closure
equations give a better estimation of mean and variance than linear noise, as knowledge of higher-order
moments introduce correction terms in the equations of lower order ones. The first two moments can still
be used to build a Gaussian approximation to the true distribution at a given time t, formally invoking a
maximum entropy argument [3, 9].

3 Aggregation of Locations of Spatial PCTMC

In this section we present the computational methodology to reduce a spatial model by aggregating
locations. The main motivation underlying this approach, as discussed in the introduction, is to reduce
the computational effort in the analysis of the model. This effort, in fact, is proportional to the number
of locations. This is the case for stochastic models, which need to simulate and keep track of the state of
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populations in each location, and for approximate analysis techniques like moment closure. In fact, even
when considering only equations for the second order moments, the number of such equations grows
quadratically with the number of locations. However, if our final goal is to capture the behaviour of the
system at the global level (i.e. to know how many agents of each kind are in the system), then dealing with
the full set of locations may incur excessive work which can be reduced by grouping together locations
having a similar overall behaviour. To achieve this goal while keeping the error low, we propose the
following heuristic scheme, sketched here and detailed in the following subsections.

1. Define distance metrics between locations taking into account the dynamical behaviour of the sys-
tem (Section 3.1). More specifically, we want locations showing a similar steady state behaviour
to be clustered together. We will define two distances, described below in increasing order of
precision:

(a) Mean field distance. We will consider the distance between the mean of populations at steady
state, approximated by first order moment closure, which corresponds to the mean field ab-
straction of the PCTMC model (see Section 2.1).

(b) Linear noise distance. We will consider the distance between a Gaussian approximation of
the steady state distribution, computed from moment closure equations for mean and vari-
ance.

2. Cluster the locations using the previously computed distance (Section 3.2). We will use a spectral
clustering algorithm on graphs, exploiting the eigengap heuristic to identify the number of clusters.

3. Given a clustering of locations, construct the reduced model by suitably aggregating together the
PCTMC transitions and variables (Section 3.3).

3.1 Distance between Locations

We will consider distances between populations of different locations at a given time. The choice of this
time is important, and should not be taken too small, in order to minimise the effect of the initial state
of the model. In fact, if we took information about the whole trajectory into account, different initial
conditions between the populations of two locations would contribute to the distance, often resulting in
a separation between the two locations. However, especially if we consider aggregated quantities, like
the total number of agents of a certain kind across all locations, this difference is not very relevant, and
better results can be obtained by comparing the behaviour after a finite but large time. We will see the
experimental validation of this choice in the next Section. Note that we do not consider steady state
behaviour (though for a very large time steady state would be reached), as we will use mean-field or
linear noise approximations, which do not necessarily converge at steady state. We will consider two
distances between each pair of locations `i and ` j, with increasing levels of accuracy:

1. Mean field distance dE(`i, ` j). This is just the Eucliden distance between the average value of
populations of locations `i and ` j at steady state, i.e. dE(`i, ` j) = ‖µX@`i−µX@` j‖, where µX@` is
the mean of the population (vector) X@` at steady state. To compute this distance efficiently, we
resort to the mean-field approximation or to any first order moment closure, see Section 2.1. This
reduces the problem to the numerical integration of N differential equations (N = n× l), until they
reach equilibrium (or until their temporal average stabilise in case they oscillate).1

1We are implicitly assuming that the mean field or moment closure equations will not show chaotic behaviour, which is
typically the case for models of interacting agents.
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2. Linear noise distance dL(`i, ` j). To capture more accurately the steady state behaviour, we can
consider a distance between the full distributions. To this end, we will resort to the Bhattacharyya
distance dB(Y1,Y2) [4] which measures the distance of the distribution of two one-dimensional vari-
ables Y1,Y2. more specifically, we will compute the Bhattacharyya distance between each popou-
lation k in locations `i and ` j, denoted by dB(Xk@`i,Xk@` j), and aggregate over all populations
by taking the average:

dL(`i, ` j) =
1
n
(dB(X1@`i,X1@` j)+ · · ·+dB(Xn@`i,Xn@` j))

In order to compute dB(Xk@`i,Xk@` j) without the need to estimate the full distribution, we make
a linear noise assumption, i.e. that the steady state distribution is approximately Gaussian, see
Section 2.1. Under this hypothesis, dB(Xk@`i,Xk@` j) can be calculated by the following equation:

DB(Xk@`i,Xk@` j) =
1
4

ln

(
1
4

(
σ2

Xk@`i

σ2
Xk@` j

+
σ2

Xk@` j

σ2
Xk@`i

+2

))
+

1
4

(
(µXk@`i−µXk@` j)

2

σ2
Xk@`i

+σ2
Xk@` j

)
where µX@` and σX@` denote the mean and variance of the population variable X@` at the steady
state. To numerically compute the values of µX@` and σX@`, we resort to the normal moment-
closure approximation of [19], which can be obtained at a much lower computational cost than by
simulating the PCTMC, by integrating O(N2) differential equations.

We observe that the cost of computing dL(`i, ` j) is significantly higher than the cost of computing
dE(`i, ` j), as we need to integrate O(N2) differential equations rather than O(N). However, this cost
is balanced by a higher accuracy in the reduced system, though for certain models (essentially those hav-
ing similar variance for the same agent kind at different locations in a cluster) accuracy is comparable. In
practice, dE should be used when the cost of solving moment closure equations for the variance is very
high due to the very large number of locations. Hence, aggregation with respect to dE can be seen as a
reduction of the number of moment closure equations. When the goal is to reduce the cost of stochastic
simulation, and solving moment closure equations for the variance is cheap, it is better to rely on the
metric dL. In general, our method should be applied when stochastic simulation of the spatial PCTMC
model requires excessive computational time, and computing dE or dL is much cheaper than the cost of
stochastic simulation.

3.2 Spectral Clustering

Spectral clustering methods are common graph-based approaches to (unsupervised) clustering of data
[28]. The dataset is composed of n objects S = s1, . . . ,sn, among which some local symmetric and non-
negative similarity measure Ai, j is defined. Ai j is often obtained from a distance or difference measure
d(si,s j) between the objects. This information is then arranged in a weighted graph G = (S,A). Within
this framework, clustering is translated into a graph partitioning problem. The most common class
of spectral approaches for graph partitioning (in k subsets) is to map the original data into the first k
eigenvectors of some normalized version of the similarity matrix A and then apply a standard clustering
algorithm such as k-means on these new coordinates.

Among the most commonly used spectral clustering algorithms are the unnormalized spectral clus-
tering [28], normalized spectral clustering according to Shi and Malik [25], and normalized spectral
clustering according to Ng, Jordan, and Weiss [24]. The three algorithms are very similar; their main
distinguishing feature is the fact that they use three different graph Laplacians. As an illustration, the



L. Bortolussi & C. Feng 35

normalized spectral clustering algorithm according to Ng, Jordan, and Weiss is given as follows. Given
a set of objects S = s1, . . . ,sn that we want to cluster into k subsets:

1. Form the similarity matrix A ∈ Rn×n defined by Ai j = exp(−d(si−s j)
2

2σ2 ) if i 6= j, and Aii = 0.

2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A’s i-th row, and construct
the normalized Laplacian matrix L = I−D−1/2AD−1/2

3. Find U1,U2, ...,Uk , the first k eigenvectors of L with k smallest eigenvalues, and form the matrix
U = [U1,U2, ...,Uk] ∈ Rn×k by stacking the eigenvectors in columns.

4. Form the matrix Z from U by renormalizing each of U’s rows to have unit length (i.e. Zi j =
Ui j/(∑ j U2

i j)
1/2).

5. Treating each row of Z as a point in Rk , cluster them into k clusters via k-means.

6. Finally, assign the original object si to cluster j if and only if row i of the matrix Z was assigned to
cluster j.

We will use the above algorithm hereafter for the clustering of locations in spatial PCMTCs .

3.2.1 Application to Aggregation of Locations of spatial PCTMC

Given a spatial PCTMC model we wish to aggregate its locations L = (`1, ..., `l). The first step is to
compute one of the two distances dE or dL of the previous section. From this metric, we can derive the
similarity matrix A ∈ Rl×l for the locations L by using Gaussian kernel with width σ :

Ai j = exp
(
−

d?(`i, ` j)
2

2σ2

)
Then, the standard spectral clustering algorithms can be applied to cluster the locations with a specific
choice of the number of clusters k. We will refer to the locations’ clusters by L̂ = ( ˆ̀1, ..., ˆ̀k).

In order to select k, we rely on the eigengap heuristic [23]. Specifically, we choose the number of
clusters k such that all eigenvalues λ1, . . . ,λk are very small, but λk+1 is relatively large. A realisation of
this heuristic will be shown while discussing case studies.

3.3 Model Reduction

In this section, we show how to generate a reduced version of a spatial PCTMC model once the locations
L in the original model have been clustered into the aggregated locations L̂ . Suppose we have clustered
locations in a spatial PCTMC into k subsets. Formally, we want to map the original spatial PCTMC
model P = (L ,X,T ) to a reduced one P̂ = (L̂ , X̂,T̂ ), where |L̂ | = k < l = |L |, |X̂| < |X|, and
|T̂ | ≤ |T |. Hence, we need to construct both the aggregated vector of the populations of agents and the
reduced set of transitions.

3.3.1 Generating the aggregated vector of agent populations

The algorithm for generating the aggregated vector of agent populations is fairly straightforward. The
basic idea is to treat agents of the same type in the same cluster of locations as identical agents. Thus,
we only need to sum up the populations of those identical agents. Algorithm 1 gives the corresponding
pseudo code for generating the aggregated vector of agent populations. Note that in the pseudo code, we
use the same notations for the original spatial PCTMC model as in Section 2.
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Algorithm 1 The Algorithm for generating the aggregated vector of agent populations
Require: X, X̂, L , L̂
Ensure: |X̂|= n× k∧ X̂i@ ˆ̀j = 0 ∀X̂i@ ˆ̀j ∈ X̂ {all elements in X̂ are set to zero initially}

1: for i = 1 to l do
2: for j = 1 to c do
3: if `i belongs to cluster j then
4: let X̂@ ˆ̀j = X̂@ ˆ̀j +X@`i
5: end if
6: end for
7: end for
8: return X̂

3.3.2 Generating the reduced set of transitions

Three steps are taken to generate the reduced set of transitions. The first step is to copy the transitions in
the original spatial PCTMC model to T̂ . Meanwhile, the update of agent populations in the transition
should be replaced by update of corresponding aggregated populations, the agent populations appearing
in the rate function should also be replaced accordingly. The first step may generate many redundant
transitions in which there is no agent population being updated. Thus, the second step is to remove
redundant transitions from T̂ . The last step is de-duplication, in which we combine all transitions with
the same update vector into one transition. Algorithm 2 gives the pseudo code for the three steps, in which
we use | ˆ̀i| to denote the number of locations belonging to cluster ˆ̀i. Note that this construction will
produce an approximate model with respect to the original one, the reason being the treatment of rates.
Approximation stems from the fact that in the rates of the aggregated model we replace all occurrences
of each X@` with X@ ˆ̀/| ˆ̀|, where ` ∈ ˆ̀. Hence we assume that for each `i, ` j ∈ ˆ̀, X@`i = X@` j.
However, the heuristics we use to construct the aggregated model guarantee that this condition should be
roughly satisfied (at steady state).

4 Case Studies

In this section we test our method on two case studies: a benchmark model of epidemic spreading,
Section 4.1, and a realistic model of a portion of the London bike-sharing system, Section 4.2.

4.1 Spatial Epidemic Spreading Model

We first consider a classical epidemiological SIS model of individuals partitioned into m communities,
where individuals move between communities but infections only take place within communities. Each
individual is considered to be susceptible (S) or infected (I) with respect to the disease. A continuous-
time SIS epidemiological model is then applied to this population as follows: each individual, regardless
of susceptible or infected, can move to his/her connected communities with a specific rate (ri j). Each
community is connected with three other randomly chosen communities. Each infected individual can
randomly make contact with a susceptible individual in the same community, and infect her with rate βi

in community i. Finally, infected individuals independently recover to the susceptible state at rate µ .
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Algorithm 2 The Algorithm for generating the reduced set of transitions
Require: L , L̂ , T , T̂
Ensure: |T̂ |= 0

1: for all τ in T do
2: create a new τ̂ , set rτ̂ = rτ , |Dτ̂ |= n× k {all elements in Dτ̂ are set to zero initially}
3: for i = 1 to l do
4: for j = 1 to k do
5: if `i belongs to cluster j then
6: let Dτ̂ @ ˆ̀j = Dτ̂ @ ˆ̀j +Dτ @`i
7: end if
8: end for
9: end for

10: for all X@` appears in rτ̂ do
11: for i = 1 to k do
12: if ` belongs to cluster i then
13: replace X@` with X@ ˆ̀i/| ˆ̀i|
14: end if
15: end for
16: end for
17: end for
18: for all τ̂ in T̂ do
19: if All elements in Dτ̂ equal zero then
20: remove τ̂ from T̂
21: end if
22: end for
23: for all τ̂i, τ̂ j (i 6= j) in T̂ do
24: if Dτ̂i = Dτ̂ j then
25: create a new τ̂ , set Dτ̂ = Dτ̂i and rτ̂ = rτ̂i + rτ̂ j

26: remove τ̂i, τ̂ j from T̂ , add τ̂ to T̂
27: end if
28: end for
29: return T̂

The model can be studied by a spatial PCTMC containing the following transitions:

S(`i)→ I(`i) at βi #(S(`i))#(I(`i)) ∀i ∈ m

I(`i)→ S(`i) at µ #(I(`i)) ∀i ∈ m

S(`i)→ S(` j) at ri j #(S(`i)) ∀i, j ∈ m, `i and ` j are connected

I(`i)→ I(` j) at ri j #(I(`i)) ∀i, j ∈ m, `i and ` j are connected

where S(`i), I(`i) represent a susceptible, infected individual in Community i; βi represents the contact
rate in community i; ri j denotes the rate for an individual to travel from Community i to Community j.

In our experiment, we consider a model with m = 30, βi and ri j to be random values between zero
and one, µ = 0.1. We first report the analysis using the Linear-Noise metric dL. Computing the distance
and running the spectral clustering algorithm, according to the previous section, we obtained the spectre
of the normalized Laplacian matrix shown in Figure 1 (left), for the smallest 10 eigenvalues. As can be
seen from the figure, the first four eigenvalues are very close to zero, and there is a large gap between
the 4th and 5th eigenvalues. Thus, we set the number of clusters to four. Figure 2 (left) shows the
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Figure 1: (left) The smallest 10 eigenvalues of the normalized Laplacian matrix of the SIS model. (right)
The smallest 10 eigenvalues of the normalized Laplacian matrix of the bike-sharing model.

Figure 2: (left) Comparison of the infected populations before and after aggregation for the SIS model,
using the dL distance. (right) Comparison of the infected populations before and after aggregation for
the SIS model, using the dE distance.

trajectories of the infected population generated by stochastic simulation before and after aggregation.
Table 1 compares the number of transitions, simulation time of 1000 runs of the SIS model before and
after aggregation, as well as the average error ratio of the trajectories in Figure 2 (left) after aggregation
compared with the counterpart before aggregation. As can be readily seen, our method considerably
reduced the simulation cost of the model, at the price of a reasonably small loss of accuracy, the relative
error being less than 10% (the average error ratio is computed as the average along the trajectory). In
Figure 2 (right), instead, we show the result of the aggregation when using the mean-field distance dE .
In this case, the spectral clustering identifies 5 clusters, with a comparable overall accuracy with respect
to the linear-noise distance as can be seen in Table 1.

4.2 Public Bike-sharing Model

The second example is a spatial PCTMC which models a public bike-sharing system. Bike-sharing
systems are becoming more and more important for urban transportation. In such systems, users arrive
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SIS model No. of transitions simulation time (1000 runs) Avg error ratio
Before aggregation 240 8.81 mins N/A

After aggregation (dL) 28 59 secs 8.67%
After aggregation (dE) 34 3.67 mins 10.44%

Table 1: Size, simulation cost (including the aggregation cost) of the SIS model before and after aggre-
gation, and error introduced by the aggregation.

Figure 3: The map of bike-sharing stations near Russell Square in London in which red circles repre-
senting bike stations

at a station, pick up a bike, use it for a while, and then return it to another station of their choice.
Recently, PCTMCs have been used to model bike-sharing systems [16, 18]. Here, we consider a map
which consists of N zones. There is one public bike station in each zone. Each station has several bike
slots. The pickup rate of bikes in a station is governed by an exponential distribution. When a user
picks up a bike, the available number of bikes in the station will decrease by one whereas the available
number of slots in that station will increase by one. The user will choose another zone in the city as their
destination. When the user arrives at the destination zone, they will return their bike to the bike station
in that zone. We use a spatial PCTMC containing the following transitions to represent the model:

Bike(`i) → Slot(`i)+BikeTo j(`i) at λi pi
j

BikeTo j(`i)+Slot(` j) → Bike(` j) at #(BikeTo j(`i))µ
i
j

where Bike(`i) and Slot(`i) denote an available bike or slot in the bike station in Zone i, respectively;
BikeTo j(`i) denotes a bike in transit from Zone i to Zone j. λi is the pickup rate of bikes in the bike
station in Zone i, pi

j is the probability to choose Zone j as the destination of a trip when picking up a
bike from Zone i. 1/µ i

j is the mean trip time from Zone i to Zone j.
Specifically, we use the above spatial PCTMC to model 30 bike stations near Russell Square in

London which is illustrated in Figure 3. All the rates in the model are calculated by journey data which
is available online 2.

2https://tfl.gov.uk/info-for/open-data-users/our-feeds?intcmp=3671#on-this-page-4

https://tfl.gov.uk/info-for/open-data-users/our-feeds?intcmp=3671##on-this-page-4
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Bike model No. of transitions simulation time (1000 runs) Avg error ratio
Before aggregation 1800 15.6 mins N/A

After aggregation (dL) 300 2.5 mins 11.94%
After aggregation (dE) 180 1.6 mins 23.06%

Table 2: Size, simulation cost (including the aggregation cost) of the bike-sharing model before and after
aggregation, and error introduced by the aggregation.

We apply our method with the linear noise distance to cluster the 30 bike stations. The smallest 10
eigenvalues of the normalized Laplacian matrix, computed according to the spectral clustering recipe,
are shown in Figure 1 (right). According to the eigengap heuristic, there are 5 well separated clusters.
Figure 4 (left) shows the trajectories of the number of available bikes in the 5 clusters generated by
stochastic simulation before and after aggregation. Table 2 shows the number of transitions, simulation
time of 1000 runs of the bike-sharing model before and after aggregation, as well as the average error
ratio of the trajectories in Figure 4 (left) after aggregation compared with the counterpart before aggre-
gation. In Figure 4 (right), instead, we compare the trajectories of the original model and the reduced
one according to the mean-field metric dE . In this case, we have only three clusters and the accuracy
decreases considerably, as can be numerically seen in Table 2.

Figure 4: (left) Comparison of the available number of bikes before and after aggregation using the dL

distance. (right) Comparison of the available number of bikes before and after aggregation using the dE

distance.

In a bike-sharing scenario, we are often interested in tracking the number of bikes in some specific
locations. This can be achieved in our framework by forcing some locations to be a singleton cluster.
In order to understand the influence of the aggregation of remaining stations on some isolated ones, we
choose, in each experiment, one station from one of the five clusters, and treat that station as a single
cluster. Figure 5 shows the trajectories of the number of available bikes of the five chosen stations in
five different experiments, comparing results of stochastic simulation of the original and the aggregated
model. We can see the population dynamics of available bikes in the five stations still achieve good
accuracy (10.84% average error ratio) even if other bike stations are aggregated.
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Figure 5: Comparison of the trajectories of the number of available bikes in the five chosen stations from
the original and the aggregated model.

Figure 6: Comparison of the available number of bikes before and after aggregation according to physical
position of stations

Additionally, we also apply a naive approach in which we use spectral clustering to cluster the 30
bike stations according to their physical positions on the map. Figure 6 shows the trajectories of the
number of available bikes generated by stochastic simulation before and after aggregation in this case.
The average error ratio for the trajectories is 24.51%. Thus, location clustering according to agents’
population distribution outperforms clustering according to physical positions.

5 Related Work and Conclusion

Spatiality has been shown to be an important factor for modelling different classes of complex systems
[10, 11]. As a result, there has been some effort to study the effects of spatial aggregation on stochastic
models in order to achieve a balance point between model complexity and accuracy. Most of this work
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focuses on how to discretise continuous space or on the effect of compartment size to represent the space,
see for example [13, 12, 5]. Our work can be thought of as above theses approaches, as our goal is to
reduce the number of patches (locations). We show that by clustering locations in a spatial PCTMC
according to linear noise or mean field distance, the size of the model can be significantly reduced
but still retain reasonable accuracy. The experiment on the bike-sharing model shows that our method
outperforms aggregation of locations by their physical distance. Moreover, our recent work shows that
the cost of deriving higher moments based on fluid approximation can be significantly reduced using
correlation heuristics [15]. This means that computing linear noise distance can also be largely reduced,
which makes our method more scalable. In the future, we plan to apply this approach to models in spatial
process algebras, such as PALOMA [14], CARMA [8] and MELA [27].
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