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Dataflow networks have application in various forms of stream processing, for example for parallel
processing of multimedia data. The description of dataflow graphs, including their firing behavior,
is typically non-compositional and not amenable to separate compilation. This article considers a
dataflow language with a type and effect system that capturesthe firing behavior of actors. This
system allows definitions to abstract over actor firing rates, supporting the definition and safe com-
position of actor definitions where firing rates are not instantiated until a dataflow graph is launched.

1 Introduction

Dataflow or stream processing is becoming increasingly important, with the growing prevalence of sig-
nal, video and audio processing, particularly on mobile devices. Dataflow processing is a good match
with multicore and GPGPU parallel architectures that are now prevalent on desktop computers, and
will shortly be available on consumer mobile devices. The data parallelism of such architectures is at
least potentially a good match with the demands of stream processing applications. The synthesis of
these architectures with stream processing may provide a domain-specific solution to the challenge of
programming the new generations of parallel computing architectures.

Our starting point is a computational model similar to that originally proposed by Kahn [11]. This
provides for a network of sequentialactors, each implemented in a conventional sequential language
such as C or Algol. Actors are connected by communication buffers on which they can send and re-
ceive data. A key point is that actors cannot nondeterministically select among inputs on several input
channels, nor can they test input channels for available inputs (so polling cannot be implemented). This
restricts each actor to a completely deterministic semantics. The combination of implicit parallelism and
deterministic execution makes dataflow computation a good fit with some of the current thinking of how
best to successfully exploit the parallelism available in modern multicore and GPGPU architectures, in
those domains where the dataflow paradigm is applicable.

In the embedded systems and digital signal processing community, a very useful class of restricted
Kahn networks has been identified, the so-calledsynchronous dataflow (SDF)[14] networks. SDF net-
works enable static scheduling for multi-rate applications. More recently, domain-specific languages
such as Streamit [15] have been defined, based on the principles of SDF, but also providing support for
compiling programmer code to run on modern parallel architectures.

Sessional dataflow provides a framework for providing compositional descriptions of dataflow net-
works [7]. A type and effect system captures the firing behavior of actor bodies, and this information
is used to ensure that the composition of actors does not deadlock. For simplicity, that simple effect
system did not consider variable firing rates for actors, so for example no communication was possible
within a loop (finite loops were still useful for example for windowing computations). Although actors
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being combined could have different rates, and adaptation of rates was part of the static checking of actor
composition, these rates were hard-coded into the software.

In this article, we consider an approach to incorporating variable actor firing rates into dataflow
descriptions. This allows the description of a dataflow graph to be parameterized by the firing rates of
various actors in the graph. Actors handle variable firing rates by performing communication in loops.
Central to this approach is the introduction of arrays of channels and arrays of actors, and a special form
of comprehension for describing effects with this form of rate information. For example, in the language
described in this paper, the following loop performs downsampling on an input channelin by echoing
every second input to the output channelout (wherei ando are the type-level names for the input and
output channels, respectively):

s : SizeSize(∞)
i : ChannelChannel(0,s)
o : ChannelChannel(0,s)

sz : Size(s)
in : Channel(+, Integer,i)
out : Channel(−, Integer,o)
for (t,x ∈ 1..sz) {
Integer w = in?;
when (2 | x) out!w;
}

In this example,s is a type-level quantity that is used to model firing rates forchannels. There are two
type-level channel names,i ando, whose declarations specify that there are no delays in communication
on those channels, and which have a bound ofs. These channel names are used in the declaration of
channel variablesin andout, respectively. Communication on these channels is modeledat the type
level by input and output events on the corresponding type-level channel names (i ando).

The size parameters is used in the declaration of a value-level parametersz, that specifies the rate
of communication on the channels. For example,sz is used as the bound on the loop where the commu-
nication is performed. The flowstate for this loop is a sequential composition of two comprehensions

{i? | t← 1..s};{o! | t← 1..s,(2 | t)}

where the type-level parameters models the value-level loop boundsz. This can be abbreviated as a
flowstate that just counts the number of communication events on each channel:

s∗i?;(s/2)∗o!.

As a variation on this example, demonstrating the usefulness of event comprehensions, we can have
the code read from an array of channels, combining several paths in a dataflow graph:

i : ChannelChannel(0,1)[s]
in : Channel(+, Integer,i)[s]
for (t,x ∈ 1..sz) {
Integer w = in[x]?;
when (2 | x) out!w;
}
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κ ∈ Kind ::= TypeType | ChannelChannel(b,τlimit) | ChannelChannel(b,τlimit )[τ] | SizeSize(τ)
τ ∈ Simple Type ::= t | n | ∞ | (τ1+ τ2) | (τ1− τ2) | (τ1 ∗ τ2) | (τ1/τ2) |

min(τ1,τ2) | Size(τ) | Index(τ) | Ref(τ) |
(−→τ AS1−−→ τ) | Boolean | Integer

τ ∈ Type ::= τ | Channel(π ,τ,τ0) | Channel(π ,τ,τ0)[τ1]
b∈ Channel Delay Flag ::= 1 | 0

π ∈ Polarity ::= + | - | ±
α ∈ Event ::= t! | t[τ]! | t? | t[τ]?

I ∈ Type Iterator ::= (t← τ1..τ2)
G ∈ Type Guard ::= (τ1 ρ τ2)

ρ ∈ Rel Op ::= . . .

AS∈ Actor Flowstate ::= ε | {α |
−→
I ,
−→
G } | (AS1;AS2)

Γ ∈ Type Env ::= ε | Γ, t : κ
∆ ∈ Value Env ::= ε | ∆,x : τ | ∆,c : τ

FS∈ Proc Flowstate ::= ε | AS | {AS| t← τ1..τ2} | (FS1 ‖ FS2)
NS∈ Network sig ::= Network(Γ,∆✄FS)

Figure 1: Abstract syntax ofSDATA types

The flowstate for this loop is a sequential composition of twocomprehensions

{i[t]? | t← 1..s};(s/2)∗o!.

In typing the code above,t is a type-level witness for the loop indexx. This type witness has the kind
SizeSize(s), reflecting that it bounded by the size parameters, while the loop index has the typeIndex(t).

The distinction at the type level between size and index variables,Size(s) andIndex(t) respectively in
the example above, is crucial to the static analysis of buffer sizes and actor firing rates: sizes are fixed
for the execution of a dataflow graph, while indexes obviously vary dynamically.

We consider a type system for a simple dataflow language with variable firing rates in Sect. 2. We
provide an operational semantics in Sect. 3. Sect. 4 considers related work while Sect. 5 provides our
conclusions.

2 Dataflow Language

In this section we consider a core language to prescribe dataflow computations. We name this kernel
languageSDATA . We describe a type system and an operational semantics for this language. Our “object
language” uses a form of session types for dataflow, that we refer to assessional dataflowto express in
the type system the contracts between producers and consumers who share message-passing channels.

The syntax of types is provided in Fig. 1. We assume Boolean and integer types for base types,
although other types (e.g., floating point) could obviouslybe easily added.

In order to track communication rates, the type system includes type-level namesn for size constants
n, of the form 0, 1, 2, . . . . A type constantn has the kind SizeSize(n). A type parameter will have a kind
of the form SizeSize(τ), for some type-level upper boundτ . In general, the kind of a type-level numeric
quantity records an upper bound on the possible instantiations of a type parameter of that kind, and a
subkinding system allows this bound to be inflated, losing precision in the kinds of type quantities. The
special constant∞ represents the absence of an upper bound (the equivalent of⊤ in a subtyping system).
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We have two types for tracking numeric quantities at the value level.Size(τ) represents a size param-
eter, fixed over the execution of an actor. Typically it is used to parameterize over communication rates,
or fan-in or fan-out at an actor.Index(τ) is the type-level representative for a loop index, which obviously
does vary at execution time. Both types are indexed by a type-level numeric quantity of kindSizeSize(τ).
Our main reason for distinguishing these two types is to prevent a loop index being used as the bound
for another loop, which would be useless for practical applications while complicating the analysis. This
distinction between static and dynamic numeric quantitiessimplifies the extraction of actor firing rates
from behavioral types.

The language includes type-level names for channels and channel arrays. These are represented by
type variablest with kinds of the form ChannelChannel(b,τlimit ) and ChannelChannel(b,τlimit )[τ ], and are used to index
the types of values that are tracked by the type system. So we have a channel typeChannel(π, t,τ),
wheret is the type-level name for the channel (of kindChannelChannel(b,τlimit )), andτ the type of message
payloads that can be exchanged. The polarityπ allows sending or receiving on a channel. A single
actor can only send or receive, but not both, on a channel. In anetwork, these uniplex channels in actor
signatures are instantiated with shared duplex channels that connect different actors. In the channel kind,
the type parameterτlimit represents a type-level bound on the number of messages thatcan be buffered
in the channel. The flagb indicates if messages that should be buffered in the channelat beginning
of execution of the dataflow graph, to remove a cycle in the firing schedule by introducing a delay. If
messages are buffered, the number of messages to be bufferedis given by the channel capacity,τlimit .

Channel array types have the formChannel(π, t,τ)[τ1], wheret is the type-level name for the channel
array (of kind ChannelChannel(b,τlimit )[τ1]), τ the type of message payloads that can be exchanged, andτ1 a
bound on the size of the array.

The language includes procedure types of the form(−→τ )
AS1−−→ τ . A procedure takes a sequence of

value arguments, of type−→τ , and produces a result of typeτ . In addition, the procedure has a latent effect,
reflected by an actor flowstateAS1 that records the communications performed during the execution of
this procedure. For mutable variables, the language includes references, which can be considered as one-
element arrays. These could be straightforwardly generalized ton-element arrays, but we use references
for simplicity in the presentation.

An event has one of four possible forms, two event forms for sending events and two forms for
receiving events. For sending, the three forms arec! (sending on a channel) andc[τ ]! (sending on an
element of a channel array, whereτ is the type-level representative for the index). There are analogous
event types for message receipt:c? andc[τ ]?.

A flowstate for an actorASis a composition of events. In its most general form, an eventin a flowstate
is described by anevent comprehensionof the form

{α | −−−−−−→t← τ1..τ2,
−−−→
τ ′ρτ ′′}

The iterators(t ← τ1..τ2) record loops in which the event occurred, while the guards(τ ′ρτ ′) record
conditions on the occurrence of the events. A guard denotes aconditional communication, and is useful
for applications such as decimation, where an actor discards some of its input (e.g., in a downsampler).
We admit specific forms of this general description of an event:

1. A singleton eventα , that may be a communication on a channel or a channel array element.

2. Iterated and conditional communication over a channel{α |
−→
I ,
−→
G }, whereα has the formc! or

c? for some channelc. The goal of the analysis is to reduce this to a single multiplicity τ for
the communication, folding guards into iterators by modifying the bounds, and combining the



D. Duggan & J. Yao 67

iterators. We sometimes denote{α | t← 1..τ}, where the single iterator variablet does not occur
in α , by τ ∗α . We sometimes useα as shorthand for the flowstate 1∗α .

3. Communication over the elements of a channel array, described by the comprehension{α | t ←
τ1..τ2,

−→
I }, whereα has the formc[t]! or c[t]? for some channel arrayc of sizeτ . The iterators

−→
I

contribute additional multiplicities. Since we can combine the additional iterators, if any, into a
single iterator, we sometimes denote{α | t← τ1..τ2, t0← τ0..τ ′0} by (τ ′0−τ0+1)∗{α | t← τ1..τ2},
wheret0 does not occur free (as a channel array index) in the eventα .

We must place sufficient restrictions on a guard to ensure that it can be easily folded into a loop
bound. For this article, we restrict guard types to be one of the following forms:

G ::= (τ | t) | (t ≤ τ)

The first denotes a predicate asserting that the quantityτ divides the loop indext, while the latter asserts
an upper bound ont. Then we allow the following equivalences on flowstates, that fold these conditions
into iterators:

{α |
−→
I ,(t← τ1..τ2),(τ | t),

−→
G } ≡ {α |

−→
I ,(t← 1..((τ2− τ1+1)/τ),

−→
G }

{α |
−→
I ,(t← τ1..τ2),(t ≤ τ),

−→
G } ≡ {α |

−→
I ,(t← τ1..min(τ ,τ2)),

−→
G }

We only allow conditions on communication in the case where communication is on a channel rather
than a channel array, and in this case the actual range of values of the iteration variable is not important,
since we are only counting number of occurrences of the communication event in a firing.

A dataflow network has anetwork signature NS, which has three parts:

1. A type environmentΓ that binds type-level representatives for channels, channel arrays and sizes.

2. A value environment∆ that captures information about the shared communication channels, using
bindings of the form(c : τ), as well as size parameters for the network description.

3. Theflowstateof a networkFSrecords its expected firing behavior. This is described by the parallel
composition of the flowstates of the actors in the network.

Fig. 2 provides the abstract syntax for programs inSDATA . Values include Booleans (true andfalse)
and integersn. Atomic values also include namesc (for channels and breakpoints), and variablesx. Our
language is a basic expressional language, with functions and call-by-value evaluation. An abstraction,
of the form λ−→x :−→τ .AS1 ⇒ E, abstracts over simple value parameters. For now we disallow value-
level abstraction over type parameters, such as those for singleton types for channels, as well as numeric
quantities, in order to avoid aliasing issues. We allow for abstraction over such parameters in the network
graph as a whole, and the instantiation of the network ensures that no aliases are introduced. The latent
flowstateAS1 for the procedure bodyE (i.e., the communications it offers) is provided as an annotation.
As with the function type, this records the communication performed in the functionAS1. An application
E(
−→
E ) denotes the application of a procedure to value level parameters

−→
E . A let construct, which can be

read as a combination of abstraction and application, bindsa variable in a local context.
A conditional allows dispatching on a Boolean value. The type rules require that both branches in

the conditional have identical flowstates. To record conditional communication in an actor, thewhen
construct relates Boolean conditions to communication events in the flowstate.

The finite loop construct binds two local parameters:x, the index variable for the loop, andt, a
type-level parameter for the loop index. The latter, in combination with channel array references in
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V ∈ Values ::= true | false | n | c | x | size(V)
| index(V) | λ−→x :−→τ .AS1⇒ E

E ∈ Expr ::= λ−→x :−→τ .AS1⇒ E Abstraction
| E(

−→
E ) Application

| let x= E1 in E2 Bind variable
| if E then E1 else E2 Conditional
| when E1 do E2 Cond Comm
| for (t,x∈ n..E) E2 Finite Loop
| ref(E) New reference
| ∗E Dereference
| E1 := E2 Assignment
| size(E) Size constant
| fromSize(E) Size projection
| index(E) Loop index
| fromIndex(E) Index projection
| c?,c[E0]? Receive a message
| c!E, c[E0]!E Send a message

P∈ Proc ::= stop | E | {E | t,x←V1..V2} | (P1 ‖ P2)
N ∈ Network ::= network(Γ,∆ ⊢ FS: P)

Figure 2: Abstract syntax ofSDATA expressions and processes

communication events, is used to record communication behavior in a loop. A parameter of size type
is created by the constructorsize(n) ∈ Size(n), and is deconstructed using the accessorfromSize(E),
providing access to the underlying integer bound. Similar operations are available for constructing loop
index valuesindex(n) ∈ Index(n) and projecting the loop index out of this value,fromIndex(E).

There are two operations for receiving messages, receivingon a channel or on a channel array ele-
ment, and similarly two operations for sending messages. Itis instructive that the channel reference is
always a name and never a variable. In this account, we are notyet considering a facility for transmitting
the ability to send or receive on a channel, as is found in varying degrees in the pi-calculus. The rea-
son is again to avoid issues with channel aliasing, which would subvert flowstate checking on usage of
channels.

The type system is formulated using judgements of the following forms:

⊢ Γ ok Type environment
Γ ⊢ ∆ ok Value environment
Γ ⊢ κ ok Kind
Γ ⊢ τ : κ Type
Γ ⊢ α ok Event
Γ ⊢ AS: FlowstateFlowstate Flowstate
Γ;∆ ⊢ E : τ ::AS Expression
Γ;∆ ⊢ P : FS Process

The type rules for environments, kinds and types are provided in Fig. 3. A “size kind” SizeSize(τ)
is indexed by an upper bound on numeric types of that kind. This in turn gives rise to a subkinding
relationshipΓ ⊢ τ1 ≤ τ1 (that can be read as a synonym forΓ ⊢ τ1 : SizeSize(τ2)), formalized in Fig. 3.
Note that whereas we allow subsumption on size kinds, we do not allow subtyping on size types (of the
form Size(τ) or Index(τ), for some witness of size kindSizeSize( )), because size estimates in types, and
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⊢ ε ok
TYENV EMPTY ⊢ Γ ok Γ ⊢ κ ok

⊢ Γ, t : κ ok
TYENV EXTEND

Γ ⊢ τ : SizeSize( )

Γ ⊢ SizeSize(τ) ok K IND SIZE

⊢ Γ ok Γ ⊢ τlimit : SizeSize( ) Γ ⊢ τinit : SizeSize(τlimit)

Γ ⊢ ChannelChannel(b,τlimit) ok
K IND CHAN

Γ ⊢ τ : SizeSize( ) Γ ⊢ τlimit : SizeSize( ) Γ ⊢ τinit : SizeSize(τlimit)

Γ ⊢ ChannelChannel(b,τlimit)[τ] ok
K IND CHAN ARRAY

Γ ⊢ τ : SizeSize( )
Γ ⊢ τ ≤ τ SIZE REFL

Γ ⊢ τ1 ≤ τ2 Γ ⊢ τ2 ≤ τ3

Γ ⊢ τ1 ≤ τ3
SIZE TRANS

Γ ⊢ τ : SizeSize( )
Γ ⊢ τ ≤ ∞ SIZE INFTY

Γ ⊢ τ : SizeSize(τ0)

Γ ⊢ τ ≤ τ0
SIZE BOUND

⊢ Γ ok m≤ n
Γ ⊢m≤ n

SIZE NUM

⊢ Γ ok

Γ ⊢ n : SizeSize(n)
TY SIZE

⊢ Γ ok (t : κ) ∈ Γ
Γ ⊢ t : κ TY VAR

⊢ Γ ok

Γ ⊢ ∞ : SizeSize(∞)
TY INFTY

Γ ⊢ τ1 : ChannelChannel(b,τlimit ) Γ ⊢ τ2 : TypeType

Γ ⊢ Channel(π ,τ1,τ2) : TypeType
TY CHAN

Γ ⊢ τ1 : ChannelChannel(b,τlimit)[τ3] Γ ⊢ τ2 : TypeType

Γ ⊢ Channel(π ,τ1,τ2)[τ3] : TypeType
TY CHAN ARRAY

Figure 3: Type Environments, Kinds and Types

Γ ⊢ τ : ChannelChannel(b,τlimit)

Γ ⊢ τ! ok
FS SEND

Γ ⊢ τ : ChannelChannel(b,τlimit)

Γ ⊢ τ?ok
FS RECV

Γ ⊢ τ : ChannelChannel(b,τlimit)[τ0] Γ ⊢ τ1 ≤ τ0

Γ ⊢ τ[τ1]! ok
FS ARRAY SEND

Γ ⊢ τ : ChannelChannel(b,τlimit)[τ0] Γ ⊢ τ1≤ τ0

Γ ⊢ τ[τ1]?ok
FS ARRAY RECV

Γ ⊢ τ1 : SizeSize( ) Γ ⊢ τ1 : SizeSize( )
Γ ⊢ t← τ1..τ2 ok

FS ITER
Γ ⊢ τ1 : SizeSize( ) Γ ⊢ τ1 : SizeSize( )

Γ ⊢ (τ1 | τ2) ok
FS GD DIV

Γ ⊢ τ1 : SizeSize( ) Γ ⊢ τ1 : SizeSize( )

Γ ⊢ (τ1 ≤ τ2) ok
FS GD BND

−→
I =

−−−−−−→
t← τ1..τ2 Γ,−→t :

−−−−−→
SizeSize(τ2) ⊢ α ok

−−−−−−→
Γ ⊢I ok

−−−−−→
Γ ⊢ G ok

Γ ⊢ {α |
−→
I ,
−→
G } : FlowstateFlowstate

FS COMP

⊢ Γ ok
Γ ⊢ ε : FlowstateFlowstate

FS EMPTY
Γ ⊢ AS1 : FlowstateFlowstate Γ ⊢ AS2 : FlowstateFlowstate

Γ ⊢ AS1;AS2 : FlowstateFlowstate
FS SEQ

Figure 4: Flowstates

particularly in flowstates, are required to be precise.
Fig. 4 provides formation rules for flowstates, while Fig. 5 provides type rules for value environments

and values.
Fig. 6 and Fig. 7 provide type rules for value-level expressions in the language. The main type rules

for dataflow computation are provided in Fig. 7. Thefor construct is key, since it allows communication
within a loop, as represented by the flowstateAS1 for each iteration. The loop bound has a type-level
witness typeτ1, so the flowstate for the entire loop is({AS1 | t ← 1..τ}). Within the loop, the index
variable has typeIndex(t), wheret is an index type parameter of kindSizeSize(τ1), bounded above by
the loop bound.AS2 is the flowstate for the remaining computation after the loop. Within the loop,
thie remaining flowstate after each iteration represented by the flowstate expression({{t0/t}AS1 | t0←
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⊢ Γ ok
Γ ⊢ ε ok

VAL ENV EMPTY
Γ ⊢ ∆ ok Γ ⊢ τ : TypeType

Γ ⊢ ∆,x : τ ok
VAL ENV EXTEND VAR

Γ ⊢ ∆ ok Γ ⊢ τ : TypeType
Γ ⊢ ∆,c : τ ok

VAL ENV EXTEND NAME
Γ ⊢ ∆ ok Γ ⊢ AS: FlowstateFlowstate

Γ;∆ ⊢ n : Integer::ε VAL INT

Γ ⊢ ∆ ok Γ ⊢ AS: FlowstateFlowstate
Γ;∆ ⊢ true : Boolean::ε VAL TRUE

Γ ⊢ ∆ ok Γ ⊢ AS: FlowstateFlowstate
Γ;∆ ⊢ false : Boolean::ε VAL FALSE

Γ ⊢ ∆ ok (x : τ) ∈ ∆ Γ ⊢ AS: FlowstateFlowstate
Γ;∆ ⊢ x : τ::ε VAL VAR

Figure 5: Value Environments and Values

Γ;∆ ⊢ E1 : τ1::AS1 Γ;(∆,x : τ1) ⊢ E2 : τ2::AS2

Γ;∆ ⊢ (let x= E1 in E2) : τ2::(AS1;AS2)
VAL LET

Γ;∆,−→x :−→τ1 ⊢ E : τ2::AS1

Γ;∆ ⊢ (λ−→x :−→τ1.AS1⇒ E) : (−→τ1
AS1−−→ τ2)::ε

VAL ABS

Γ;∆ ⊢ E0 : ((τ1, . . . ,τk)
AS
−→ τ)::AS0

Γ;∆ ⊢ Ei : τi ::ASi for i = 1, . . . ,k

Γ;∆ ⊢ E(E1, . . . ,Ek) : τ::(AS0;AS1; . . . ;ASk;AS)
VAL APP

Γ;∆ ⊢ E0 : Boolean::AS0

Γ;∆ ⊢ E1 : τ::AS Γ;∆ ⊢ E2 : τ::AS

Γ;∆ ⊢ (if E0 then E1 else E2) : τ::(AS0;AS)
VAL COND

Γ;∆ ⊢ E : τ::AS0

Γ;∆ ⊢ ref(E) : Ref(τ)::AS0
VAL REF

Γ;∆ ⊢ E : Ref(τ)::AS0

Γ;∆ ⊢ ∗E : τ::AS0
VAL DEREF

Γ;∆ ⊢ E1 : Ref(τ)::(AS1 Γ;∆ ⊢ E2 : τ::AS2

Γ;∆ ⊢ E1 := E2 : τ::(AS1;AS2)
VAL ASSIGN

Γ;∆ ⊢ E : τ::AS′1 Γ ⊢ AS1 : FlowstateFlowstate Γ ⊢ AS2 : FlowstateFlowstate
AS1 ≡ AS′1 AS2≡ AS′2

Γ;∆ ⊢ E : τ::AS1
VAL EQ

Figure 6:SDATA : Core Expressions

(t +1)..τ}), wheret0 is a new variable introduced to count the remaining iterations.
The expression{AS| t← τ1..τ2} is a metafunction, generalizing the event comprehension introduced

earlier from events to flowstates, defined by:

{ε | t← τ1..τ2} = ε
{AS1;AS2 | t← τ1..τ2} = {AS1 | t← τ1..τ2};{AS2 | t← τ1..τ2}

{{α |
−→
I ,
−→
G } | t← τ1..τ2} = {α | (

−→
I , t← τ1..τ2),

−→
G }

There is an important assumption in the second case of this definition, where we distribute a flowstate
comprehension over the joining of two flowstates. The assumption is that we are not tracking causality
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Γ;∆ ⊢ E1 : Size(τ1)::AS0

Γ, t : SizeSize(τ1);∆,x : Index(t) ⊢ E2 : τ2::(AS1)

Γ;∆ ⊢ (for (t,x∈ 1..E1) E2) : τ::((AS0;{AS1 | t← 1..τ})) VAL FOR

Γ;∆ ⊢ E1 : τ1::AS1

Γ;∆ ⊢ E2 : τ2::AS2

wfguard(τ1ρτ2) Γ;∆ ⊢ E : τ::(AS3)

Γ;∆ ⊢ (when E1ρE2 do E3) : τ::((AS1;AS2;{AS3 | τ1ρτ2}))
VAL WHEN

Γ ⊢ ∆ ok Γ ⊢ AS: FlowstateFlowstate
Γ;∆ ⊢ size(n) : Size(n)::ε VAL SIZE

Γ;∆ ⊢ E : Size(τ)::AS1

Γ;∆ ⊢ fromSize(E) : Integer::AS1
VAL INT

Γ ⊢ ∆ ok Γ ⊢ AS: FlowstateFlowstate
Γ;∆ ⊢ index(n) : Index(n)::ε VAL INDEX

Γ;∆ ⊢ E : Index(τ)::AS1

Γ;∆ ⊢ fromIndex(E) : Integer::AS1
VAL FROMINDEX

Γ;∆ ⊢ E : τ::AS1 (c : Channel(π ,τ0,τ)) ∈ ∆ π ∈ {-,±}
Γ;∆ ⊢ c!E : τ::(AS1;τ0!)

VAL SEND

Γ ⊢ ∆ ok (c : Channel(π ,τ0,τ)) ∈ ∆ Γ ⊢ AS: FlowstateFlowstate π ∈ {+,±}
Γ;∆ ⊢ c? :τ::τ0?

VAL RECEIVE

(c : Channel(π ,τ1,τ)[τ ′0]) ∈ ∆ π ∈ {-,±}
Γ;∆ ⊢ E0 : Index(τ0)::AS0

Γ;∆ ⊢ E1 : τ1::AS1 Γ ⊢ τ0 ≤ τ ′0
Γ;∆ ⊢ c[E0]!E : τ::(AS0;AS1;τ1[τ0]!)

VAL SEND ARRAY

(c : Channel(π ,τ1,τ)[τ ′0]) ∈ ∆ π ∈ {+,±}
Γ;∆ ⊢ E0 : Index(τ0)::AS0 Γ ⊢ τ0 ≤ τ ′0

Γ;∆ ⊢ c[E0]? :τ::(AS0;τ0[τ1]?)
VAL RECV ARRAY

Figure 7:SDATA : Dataflow Expressions

within an actor, so we are free to reorder communications within that actor. For example a loop that
inputs on one channelc1 and outputs on anotherc2 would have the flowstate{c1?;c2! | t← 1..n}, which
normalizes to({c1?| t← 1..n};{c2! | t← 1..n}), which we abbreviate as(n∗c1?;n∗c2!). The normalized
form loses the causality between a receive and send on a single loop iteration. We rely on a global check
of the composition of the actors to detect any causal cycles in the firing of a dataflow graph, relying on the
fact that we do not have abstraction over the structure of thedataflow graph (beyond the eliding of internal
causality within an actor). A global check stratifies the actors based on communication dependencies,
and ensures there are no cycles where an actor’s inputs depend on its own outputs (unless there is a delay
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Γ;∆ ⊢ stop : ε PROC EMPTY

Γ;∆ ⊢ E : τ::AS
Γ;∆ ⊢ E : AS

PROC EXP

Γ;∆ ⊢V : Size(τ) Γ, t : SizeSize(τ);∆,x : Index(t) ⊢ E : τ::AS

Γ;∆ ⊢ {E | t,x← n..V} : {AS| t← n..τ} PROC COMP

Γ;∆ ⊢ P1 : FS1 Γ;∆ ⊢ P2 : FS2

Γ;∆ ⊢ (P1 ‖ P2) : FS1 ‖ FS2
PROC PAR

Figure 8:SDATA : Processes

in the channel).
The constructs for sizes, that are used to track capacity bounds and communication rates, allow an

integer literal to be wrapped as a valuesize(n) whose typeSize(n) reflects the integer quantity. The
destructorfromSize(E) allows this size parameter to be projected to an integer, with fromSize(size(n))
evaluating ton. Similar constructs are available for dynamic numeric quantities (loop indices).

There are four communication primitives: two for sending and two for receiving. Each sending and
receiving operation has a variant for communicating on a single channel or communicating on an element
of a channel array. Each of these primitives gives rise to oneof the four communication events tracked
by the flowstate:c!, c?,c[τ ]! andc[τ ]?. For example, a loop that outputs one value on each element of a
channel array would have the form:

for (t,x∈ 1..E1) c[x]!E2

AssumeE1 has typeSize(τ), whereτ is some type-level size of kindSizeSize( ), e.g.,n of kind SizeSize(n).
The loop variable has typeIndex(t), where the loop type variablet has kind SizeSize(τ), reflecting the type-
level bound on the number of iterations. Each iteration of the loop has a flowstatec[t]!, and the entire
loop has the flowstate{c[t]! | t← 1..τ}.

Conditional communication is performed using thewhen construct. This tests a condition and adds a
guard to the flowstate for the body of thewhen. The condition is restricted so that it can only be used to
refine static bounds, and not introduce a dependency in computation bounds on dynamic quantities (such
as a loop index). The well-formedness conditionwfguard(τ1ρτ2) on the types of the two values being
compared enforces this restriction, whereτ1 andτ2 are the types of the expressions being compared, and
ρ is the relational operator:

wfguard(τ1 | τ2) ⇐⇒ τ1 = Size( ) andτ1 = Index( )

wfguard(τ1≤ τ2) ⇐⇒ τ1 = Index( ) andτ1 = Size( )

As with iterators, we define a metafunction that distributesguards over flowstates. The expression
{AS| τ1ρτ2} is a metafunction, generalizing the event comprehension introduced earlier from events to
flowstates, defined by:

{ε | τ1ρτ2} = ε
{AS1;AS2 | τ1ρτ2} = {AS1 | τ1ρτ2};{AS2 | τ1ρτ2}

{{α |
−→
I ,
−→
G } | τ1ρτ2} = {α |

−→
I ,(
−→
G ,τ1ρτ2)}
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Γ ⊢ (ε,FS)−→ (ε,FS)
FS PROG EMPTY

Γ ⊢ (FS1,FS3)−→ (FS′1,FS′3)

Γ ⊢ ((FS1 ‖ FS2),FS3)−→ ((FS′1 ‖ FS2),FS′3)
FS PROG PAR

Producer(Γ,α)

Γ ⊢ (({α |
−→
I ,
−→
G };AS),FS)−→ (AS,({α |

−→
I ,
−→
G } ‖ FS))

FS PROG PROD

Consumer(Γ,α)

Γ ⊢ (({α |
−→
I ,
−→
G };AS),({α |

−→
I ,
−→
G } ‖ FS))−→ (AS,FS)

FS PROG CONS

Γ ⊢ (FS′1,FS′2)−→ (FS′3,FS′4) FSi ≡ FS′i for i = 1, . . . ,4

Γ ⊢ (FS1,FS2)−→ (FS3,FS4)
FS PROG CONG

Figure 9: Progress Conditions for Flowstate

A dataflow network N= network(Γ,∆ ⊢ FS: P) is a composition of sequential actors under certain
conditions. The compositionP contains two form of actor bindings:

1. A simple actor binding of the formE.

2. An actor comprehension, an actor array binding of the form{E | t,x← V1..V2}, that represents
an array of actor, all of the same definitionE, and with each actor provided with its index via
the parameterx when it is initialized. This index ranges over the interval{V1, . . . ,V2}. An actor
comprehension is the parallel equivalent of a loop for processing an array of channels.

In order to ensure the well-formedness of a network, we definesome global restrictions based on
the flowstates for the actors. We formulate these restrictions using the following additional judgement
forms:

1. Γ ⊢ (FS1,FS2)−→ (FS′1,FS′2): Determines if it is possible to evolve from an initial flowstateFS1

to a flowstateFS′1, where communications represented byFS2 have already occurred, and leaving
an updated record of communicationsFS′2. The “records of communications” correspond to send
events that are preconditions for receive events (data cannot be read until it written), and in the case
of channels with delays, receive events that are preconditions for send events (data on a channel
with a delay cannot be written until the data written in the previous firing cycle has been read).

2. Γ ⊢ FSdeterministic: Determines that there is a single sending actor and single receiving actor
for each channel (and it is not the same actor sending and receiving on a channel). The rules for
this judgement form are provided in FIg. 10.

The rules for the first judgement form are provided in Fig. 9. These divide events into two broad
categories: “producer” events and “consumer” events, defined by these predicates:

Producer(Γ, t!) ⇐⇒ Γ(t) = ChannelChannel(0,τlimit )

Producer(Γ, t[τ ]!) ⇐⇒ Γ(t) = ChannelChannel(0,τlimit )

Producer(Γ, t?) ⇐⇒ Γ(t) = ChannelChannel(1,τlimit )

Producer(Γ, t[τ ]?) ⇐⇒ Γ(t) = ChannelChannel(1,τlimit )

Consumer(Γ, t!) ⇐⇒ Γ(t) = ChannelChannel(1,τlimit )

Consumer(Γ, t[τ ]!) ⇐⇒ Γ(t) = ChannelChannel(1,τlimit )

Consumer(Γ, t?) ⇐⇒ Γ(t) = ChannelChannel(0,τlimit )

Consumer(Γ, t[τ ]?) ⇐⇒ Γ(t) = ChannelChannel(0,τlimit )
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Γ ⊢ ε deterministic FS DET EMPTY

Γ ⊢ ASdeterministic FS DET ACTOR

Γ ⊢ FS1 deterministic Γ ⊢ FS2 deterministic
inchans(FS1)∩ inchans(FS2) = {} outchans(FS1)∩outchans(FS2) = {}

Γ ⊢ (FS1 ‖ FS2) deterministic
FS DET PAR

Figure 10: Determinism Conditions for Flowstate

In other words,Producer(Γ,α) is true if α corresponds to a communication event that is a pre-
condition for another communication event in this firing cycle (sending on a channel with no delay, or
receiving on a channel with a delay).Consumer(Γ,α) is true ifα corresponds to a communication event
that relied on a preceding communication event in this firingcycle.

In the rules in Fig. 9, the FS PROG PROD rule corresponds to a flowstate event that produces the
communication to enable a subsequent event, e.g., the sending of a message that will later be consumed,
on a channel with no delay:

Γ ⊢ (({α |
−→
I ,
−→
G };AS),FS)−→ (AS,({α |

−→
I ,
−→
G } ‖ FS)).

The FS PROG CONSrule corresponds to a flowstate event that consumes the result of this communication
later in the computation:

Γ ⊢ (({α |
−→
I ,
−→
G };AS),({α |

−→
I ,
−→
G } ‖ FS))−→ (AS,FS).

This latter rule makes use of the notion of thecomplement of an event, defined by:

t! = t?

t[τ ]! = t[τ ]?
t? = t!

t[τ ]? = t[τ ]!

The rules for theΓ ⊢FSdeterministic judgement form are provided in Fig. 10. These rules make use
of metafunctions that extract the input and output channelsthat processes communicate on, as reflected
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in the flowstate:

inchans(t!,
−→
I ,
−→
G ) = {}

inchans(t[τ ]!,
−→
I ,
−→
G ) = {}

inchans(t?,
−→
I ,
−→
G ) = {t}

inchans(t[τ ]?,
−→
I ,
−→
G ) =











{t[k]} if τ = k, somen

{t[m], . . . , t[n]} if ∃t0.τ = t0 and
−→
I = (t0←m..n) and

−→
G = ε

{t[m..t1]} if ∃t0.τ = t0 and
−→
I = (t0←m..t1) and

−→
G = ε

inchans(ε) = {}

inchans({α |
−→
I ,
−→
G }) = inchans(α ,

−→
I ,
−→
G )

inchans(AS1;AS2) = inchans(AS1)∪ inchans(AS2)

inchans(FS1 ‖ FS2) = inchans(FS1)∪ inchans(FS2)

outchans(t!,
−→
I ,
−→
G ) = {t}

outchans(t[τ ]!,
−→
I ,
−→
G ) =











{t[k]} if τ = k, somen

{t[m], . . . , t[n]} if ∃t0.τ = t0 and
−→
I = (t0←m..n) and

−→
G = ε

{t[m..t1]} if ∃t0.τ = t0 and
−→
I = (t0←m..t1) and

−→
G = ε

outchans(t?,
−→
I ,
−→
G ) = {}

outchans(t[τ ]?,
−→
I ,
−→
G ) = {}

outchans(ε) = {}

outchans({α |
−→
I ,
−→
G }) = outchans(α ,

−→
I ,
−→
G )

outchans(AS1;AS2) = outchans(AS1)∪outchans(AS2)

outchans(FS1 ‖ FS2) = outchans(FS1)∪outchans(FS2)

The inchansmetafunction computes the set of channels on which a part of adataflow network per-
forms inputs (as reflected by the flowstate inferred for that network). The obvious complication is that
for channel arrays. In general, we assume an event comprehension of the form

{t[t0]? | (t0←m..τ),
−→
G }

for some filtering conditionsG . We assume that these filtering conditions are empty for communication
on an array of channels: There is communication on every channel in the array. We would expect that
the lower boundm is 1, while the upper boundτ may be a type parameter. However we also use the type
system to type check intermediate configurations in the nextsection, and in this case the lower bound
may be greater than 1. In that case the upper bound will be instantiated to a numbern, and the equivalence
rules allow the comprehension to be unrolled to a collectionof singletonst[k]? for k= m, . . . ,n. We use
heap typing to compute a flowstate that reflects communications that have been performed in this firing
cycle. Then for an event comprehension of the form{t[t0]? | (t0←m..n)}, wherem> 1, the preceding
inputs on channelt0 will be reflected by singleton eventst[k]? for k= 1, . . . ,m−1.

Similar remarks apply for the metafunction that computes the range of channels on which a subnet
performs outputs.

We distinguish two cases when computing the channels on which a subnet performs input or output:
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H ∈Heap ::= ε | l 7→V | c 7→ B | c 7→ 〈
−→
B 〉 | H1⊎H2

HT ∈ Heap Type ::= ε | l : τ | c : τ | HT1⊎HT2

B∈ Buffer ::= εk | [V]k | B1@kB2

CDATA ∈ Config ::= (P,H)

Figure 11: Configurations inSDATA

1. For the case where an agent communicates on an element of anarrayt, at indexk, we represent this
by the array elementt[k]. This corresponds to the case where the upper bound on an event com-
prehension is instantiated to a numbern, and the equivalence rules unroll the event comprehension
to a collection of communications on the elements of the channel array.

2. For the case where an agent communicates on a range of elements of an arrayt, as given by the
iteratort0←m..τ , we have two cases:

(a) If the upper boundτ is instantiated (e.g.n), then we compute the channels that are com-
municated over to be the same as those resulting from the unfolding of the comprehension,
{t[m], . . . , t[n]}

(b) The other case is where the upper bound on an event comprehension is not yet instantiated.
Let this supper bound bet1, then we compute the range of channels ast[m..t1] (wherem= 1
in this case, since no loop unrolling happens before instantiation of the upper bound).

3 Operational Semantics

We provide a heap-based semantics that binds channels to message buffers on the heap. Message buffers
B hold the values transmitted between actors on shared channels. A message buffer is simply a sequence,
ensuring FIFO delivery, where@k is the operation for appending buffers. We assume that buffers
have bounded size, provided by a parameterk in the constructors and in the buffer type; the constructor
operations are undefined for the case where the resulting buffer is larger than the maximum size. We
denote the number of items in a buffer by| B |, and the maximum size of a buffer bysize(B). We write
[V1,V2, . . . ,Vm]k as an abbreviation for[V1]k@k[V2]k@k. . .@k[Vm]k, wherem≤ k. We useV ::k B to denote
[V]k@kB. We useτ [k] to denote the type of a buffer that contains values of typeτ . These buffer types
are not first class, since buffers are handled by the compiler.

There are three types of values stored on the heap: simple values (for reference cells), buffers (for
communication channels), and arrays of buffers (for arraysof communication channels. An array value
is a tuple of the formA= 〈V0, . . . ,Vk−1〉. We denotesize(A) = k. We denote array lookup byA(i) =Vi ,
for 0≤ i < k, and array update byA[i 7→V])( j) = 〈V0, . . . ,V, . . . ,Vk−1〉, replacing theith element of the
array.

In order to reason about correctness, we define typing relations for heaps, using the judgement forms:

Γ;∆ ⊢H : FS Heap
Γ;∆ ⊢ B : FS Buffer

The type system not only ensures that values stored in a buffer have the correct type, but also that the
buffer has sufficient items to satisfy communications between actors sharing that buffer.
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For evaluating expressions, mutable base type variables are bound to locationsl , and these must be
dereferenced. This dereferencing is performed by the operation of applying the heap to a value,H(V),
defined by:

H(l) = V if l 7→V ∈ H

H(c) = B if c 7→ B∈ H

H(c[index(i)]) = Bi if c 7→ 〈
−→
B 〉 ∈H

The semantics is defined using a collection of reduction relations:

Reduction of expressions:(E1,H1)−→ (E2,H2) and

(E1,H1)
∆,α
−−→ (E2,H2)

Reduction of processes:(P1,H1)
a
−−→ (P2,H2) and

(P1,H1)
∆,α
−−→ (P2,H2)

Reduction of flowstates: FS1−→ FS2 and

FS1
α
−−→ FS2

A reduction of expressions of the form(E1,H1) −→ (E2,H2) denotes an internal reduction, while a

reduction of the form(E1,H1)
∆,α
−−→ (E2,H2) denotes a reduction that involves a communication eventα .

We write(E1,H1)
[∆,α ]
−−−→ (E2,H2) to generically denote a reduction that may be either internal or involve

a communication event. Similar remarks hold for reduction of processes.
The reduction relation for flowstates is perhaps surprising, and reflects the use of flowstate: Types

themselves evolve during computation, since they are abstract process descriptions for the underlying
sequential program. The reduction relation for flowstates is defined in Fig. 13.

Our basic result is that evaluation preserves types, in the sense that a type may simulate the commu-
nications performed at the value level:

Theorem 1 (Type Preservation) If Γ;∆⊢P1 : FS1 andΓ;∆ ⊢H1 : FS′1, and(P1,H1)
[∆,α ]
−−−→ (P2,H2), then

Γ;∆ ⊢ P2 : FS2 andΓ;∆ ⊢H2 : FS′2, for some FS2 and FS′2, where FS1
α
−−→ FS2 and one of the following

holds:

1. Either Producer(Γ,α) is true and FS′2≡ (FS′1 ‖ α); or

2. Consumer(Γ,α) is true and FS′1≡ (FS′2 ‖ α).

Our progress result reflects that computation is not deadlocked, provided the initial heap is compati-
ble with the remaining actor computation, as reflected in theflowstate. Note that this result is for a single
firing of the dataflow graph; for simplicity, we do not consider the unrolling of the graph for another
firing.

Theorem 2 (Progress) If Γ;∆ ⊢ P1 : FS1 andΓ;∆ ⊢ H1 : FS′1, andΓ ⊢ (FS1,FS′1)−→ (FS2,FS′2), then

(P1,H1)
[∆,α ]
−−−→ (P2,H2), for some P2, H2 andα .

Our dataflow language elides any compositional constructs for building dataflow graphs “bottom-
up.” Examples of operators that might be used for such compositional constructs are provided elsewhere
[17, 7]. Central to that work is the abstraction of the communication structure of a component dataflow
graph, exposing causal dependencies in communication channels to prevent deadlock during incremental
construction of a dataflow graph. An interesting direction for future research would be to consider how
to combine the parameterized dataflow considered in this report with those causalities.



78 Parameterized Dataflow

m≤ n E′ = (for (t,x∈ (m+1)..n) E)

((for (t,x∈m..size(n)) E),H)−→ (({index(m)/x}E;E′),H)
RED FOR TRUE

m> n
((for (t,x∈m..size(n)) E),H)−→ (0,H)

RED FOR FALSE

V1ρV2

((when V1ρV2 do E),H)−→ (E,H)
RED WHEN TRUE

¬(V1ρV2)

((when V1ρV2 do E),H)−→ (0,H)
RED WHEN FALSE

(fromSize(size(m)),H)−→ (m,H)
RED FROM SIZE

(fromIndex(index(m)),H)−→ (m,H)
RED FROM INDEX

k= size(H(c)) | H(c) |< k H′ = H[c 7→ H(c)@k[V]k]
(c : Channel(π , t,τ)) ∈ ∆

(c!V,H)
∆,t!
−−→ (0,H ′)

RED SEND

H(c) = [V]k@kB H′ = H[c 7→ B] (c : Channel(π , t,τ)) ∈ ∆

(c?,H)
∆,t?
−−→ (V,H ′)

RED RECEIVE

k= size(H(c[V0])) | H(c[V0]) |< k V0 = index(m)
H ′ = H[c[V0] 7→H(c[V0])@k[V]k] (c : Channel(π , t,τ)[τ0]) ∈ ∆

(c[V0]!V,H)
∆,t[m]!
−−−−→ (0,H ′)

RED SEND ARRAY

H(c[V0]) = [V]k@kB H′ = H[c[V0] 7→ B] V0 = index(m)
(c : Channel(π , t,τ)[τ0]) ∈ ∆

(c[V0]?,H)
∆,t[m]?
−−−−→ (V,H ′)

RED RECEIVE ARRAY

Figure 12: Operational Semantics forSDATA : Dataflow Semantics

4 Related Work

The notion of types that describe resource usage largely come out of the realm of linear [19, 10, 8, 3] and
affine [16] type systems for statically checking the safe usage of limited resources. The typical approach
is to provide a linear type system where we are guaranteed exactly one reference to a resource. Two
particularly significant lines of study in the “linear types” field have been the approach oftypestate[4]
and that ofsession types[6]. The current work uses the framework of sessional dataflow, that combines
dataflow with session types.Usage types[12] have a similar motivation to sessional dataflow, statically
preventing the composition of concurrent components that would produce deadlocks. The approach of
session types [6] is commonly motivated by its support for safe Web services. Session types have been
realized in both functional [18] and object-oriented language [1] semantics, with both synchronous and
asynchronous semantics. Dyadic session types have also been generalized to multiparty [9] interactions,
where potentially more than two parties are involved in an interaction. This approach has further been
generalized to a dynamically varying number of participants, based on assigning roles [5] to participants
and describing generic protocols for each participant role.
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FS‖ ε ≡ FS FS1 ‖ FS2≡ FS2 ‖ FS1

(FS1 ‖ FS2) ‖ FS3≡ FS1 ‖ (FS2 ‖ FS3)

FS;ε ≡ FS FS1;FS2≡ FS2;FS1

(FS1;FS2);FS3≡ FS1;(FS2;FS3)

FS1
α
−−→ FS′1

(FS1 ‖ FS2)
α
−−→ (FS′1 ‖ FS2)

FS1
α
−−→ FS′1

(FS1;FS2)
α
−−→ (FS′1;FS2)

m≤ n

{α | (
−→
I , t←m..n),

−→
G } −→ ({m/t}{α |

−→
I ,
−→
G });{α | (

−→
I , t← (m+1)..n),

−→
G }

m> n

{α | (
−→
I , t←m..n),

−→
G } −→ {α |

−→
I ,
−→
G }

mρn

{α |
−→
I ,(
−→
G ,mρn)} −→ {α |

−→
I ,
−→
G }

¬(mρn)

{α |
−→
I ,(
−→
G ,mρn)} −→ ε

α;FS
α
−−→ FS

FS1≡ FS′1 FS′1
α
−−→ FS′2 FS2≡ FS′2

FS1
α
−−→ FS2

Figure 13: Type reduction rules

(V ‖ P)≡ P (P1 ‖ P2)≡ (P2 ‖ P1)

(P1 ‖ (P2 ‖ P3))≡ ((P1 ‖ P2) ‖ P3)

m≤ n
{α | t←m..n} ≡ ({m/t}α ‖ . . . ‖ {n/t}α)

Figure 14: Structural equivalence for processes

Another related line of work is in synchronous languages forreal-time and embedded systems. The
constraints on the synchronous languages preclude any needfor buffering, since all actors operate in
lock step on the same clock1. The theory ofN-synchronous Kahn networks [2] relaxes the synchrony
restriction, allowing different actors to have their own clock rates, and allowing buffering between actors
to match their clock rates. It is therefore related to the approach of synchronous dataflow [13]. While
N-synchronous Kahn networks uses the different clock speedsof the actors to compute the amount of
buffer space required, and to schedule the execution of the actors, SDF is instead using the data rates of

1Lustre and its descendants allow multiple clocks, used by different components, but all clocks have a common base clock.
A true multi-clock synchronous language is the Signal language, but consideration of Signal is outside the scope of the current
work.
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V = (λ−→x :−→τ .AS1⇒ E)

(V(
−→
V ),H)−→ ({

−→
V /−→x }E,H)

RED APP

((let x=V in E),H)−→ ({V/x}E,H)
RED LET

(∗l ,H)−→ (H(l),H)
RED DEREF

H ′ = H[l 7→V]

(l :=V,H)−→ (V,H ′)
RED ASSIGN

((if true then E1 else E2),H)−→ (E1,H)
RED IF TRUE

((if false then E1 else E2),H)−→ (E2,H)
RED IF FALSE

(E1,H)
[∆,α ]
−−−→ (E2,H ′)

(E[E1],H)
[∆,α ]
−−−→ (E[E2],H ′)

RED EXP CONG

(P1,H)
[∆,α ]
−−−→ (P2,H ′)

(P[P1],H)
[∆,α ]
−−−→ (P[P2],H ′)

RED PROC CONG

Figure 15: Operational Semantics forSDATA : Core Semantics

the actors on their input and output channels to compute buffer sizes and perform scheduling.

5 Conclusions

We have described a type and effect system for a dataflow language, that allows the firing rates of ac-
tors to be parameterized in their description, while allowing modular analysis of actor bodies for their
firing behavior. An obvious direction for future research isto consider the combination of this with the
compositional sessional dataflow system described in [7]. The main challenge here is the assumption,
in the system described in this paper, that there are no causal dependencies between communications in
different iterations of a loop.
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