
De Vink and Wiklicky (Eds.): QAPL 2017
EPTCS 250, 2017, pp. 1–14, doi:10.4204/EPTCS.250.1

c© S.Schupp, J.Nellen & E.Ábrahám
This work is licensed under the
Creative Commons Attribution License.

Divide and Conquer: Variable Set Separation in Hybrid
Systems Reachability Analysis∗

Stefan Schupp Johanna Nellen Erika Ábrahám
RWTH Aachen University, Germany

{ stefan.schupp | johanna.nellen | abraham }@cs.rwth-aachen.de

In this paper we propose an improvement for flowpipe-construction-based reachability analysis tech-
niques for hybrid systems. Such methods apply iterative successor computations to pave the reach-
able region of the state space by state sets in an over-approximative manner. As the computational
costs steeply increase with the dimension, in this work we analyse the possibilities for improving
scalability by dividing the search space in sub-spaces and execute reachability computations in the
sub-spaces instead of the global space. We formalise such an algorithm and provide experimental
evaluations to compare the efficiency as well as the precision of our sub-space search to the original
search in the global space.

1 Introduction

The increasing usage of digital control for safety-critical dynamical systems has resulted in an increas-
ing need for formal verification approaches for hybrid systems, i.e., for systems with mixed discrete-
continuous behaviour, which are often modelled as hybrid automata. Due to intensive research, nowa-
days several approaches and tools exist for the reachability analysis of hybrid automata. As the reachabil-
ity problem for hybrid automata is in general undecidable, most approaches compute an over-approxima-
tion of the set of states that are reachable in a given hybrid automaton model. Due to the over-approxima-
tion, these techniques can be used to prove the safety of system models, i.e., the fact that a given set of
unsafe states is not reachable in the model, but they cannot be used to prove unsafety.

In this work we focus on flowpipe-construction-based reachability analysis techniques. These tech-
niques use certain data types to represent state sets, whereas each representation has its strengths and
weaknesses in terms of precision, memory requirements, and efficiency of certain operations on them
which are needed for the reachability computations. The reachability analysis starts from an initial state
set and iteratively over-approximates successors by further state sets. For a given set of states, the suc-
cessors via a discrete computation step (jump) are over-approximated by a single set, the successors via
time evolution (the so-called flowpipe) are covered in an over-approximative manner by a sequence of
state sets.

Unfortunately, these successor computations often lead to either strong over-approximations or high
computational costs. Though state-of-the-art tools like SPACEEX [7], FLOW∗ [4], or HYPRO [19] can
already successfully verify a wide range of challenging applications, they still have problems to anal-
yse large models with complex behaviour. Such models arise for example from applications, where a
physical or chemical plant is controlled by a discrete controller. Our focus is on digital control by pro-
grams running on programmable logic controllers (PLCs). To build a formal model of such a system, the
PLCs, the programs running on them, the dynamic plant behaviour, and the interactions between these

∗This work was partially supported by the German Research Council (DFG) in the context of the HyPro project.

http://dx.doi.org/10.4204/EPTCS.250.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Variable Separation for Hybrid Systems Reachability

components can be modelled by a hybrid automaton, to which available reachability analysis tools can
be applied. For practically relevant systems, however, the size of the resulting composed models often
exceeds the capabilities of state-of-the-art tools.

Whereas general techniques to increase the scalability of reachability analysis are hard to develop,
for dedicated model types there might be some hot spots. Models of PLC-controlled plants have some
specific properties we can exploit: Firstly, they possess a relevant number of discrete variables. Sec-
ondly, some actions are triggered by deadlines, modelled by the values of clocks along with correspond-
ing thresholds. Thirdly, the evolution of some physical quantities might depend on the time linearly,
others not. In standard reachability analysis, these model parts are handled uniquely. In this paper
we propose to split the state space into several sub-spaces, between which the dependence is loose
enough to execute successor computations independently. Though this procedure leads to additional
over-approximation, the error can be reduced. Furthermore, we show on some experiments that this
additional over-approximation is often minor and is well compensated by the reduced computational
requirements.

We are aware of the work [5] that is closely related to the work described in this paper. The authors
of [5] also use variable set separation and computations in sub-spaces, but with two main differences. On
the one hand, the work [5] is more general as they allow also closer dependencies between the sub-spaces
than we can support. On the other hand, their work is restricted to Taylor models, whereas our approach
is applicable to any state set representation type.

Overview After providing some preliminaries in Section 2 and a description of our HYPRO pro-
gramming library in Section 3, in Section 4 we describe our method for the separation of variable dimen-
sions and the modified reachability algorithm. We provide some experimental results in Section 5 before
we conclude the paper in Section 6.

2 Preliminaries

Hybrid automata For a given set X = {x1, . . . ,xd} of variables let PredX be the set of all quantifier-
free arithmetic predicates with free variables from X , using the standard syntax and semantics over the
real domain. We use the notation Ẋ = {ẋ1, . . . , ẋd} to represent first derivatives and X ′ = {x′1, . . . ,x′d} to
represent the result of discrete resets of variable values. Sometimes we also see the variable space as the
d-dimensional real space and use the vector notation x = (x1, . . . ,xd) ∈ Rd .

Definition 1 ([10]). A hybrid automaton H = (Loc,X ,Flow, Inv,Edge, Init) is a tuple specifying

• a finite set Loc of locations or control modes;

• a finite ordered set X = {x1, . . . ,xd} of real-valued variables, where d is the dimension of H ;

• for each location its flow or dynamics by the function Flow : Loc→ PredX∪Ẋ ;

• for each location an invariant by the function Inv : Loc→ PredX ;

• a finite set Edge ⊆ Loc×PredX ×PredX∪X ′ × Loc of discrete transitions or jumps. For a jump
(l1,g,r, l2) ∈ Edge, l1 is its source location, l2 is its target location, g specifies the jump’s guard,
and r its reset function;

• an initial predicate for each location by the function Init : Loc→ PredX .

In this paper we consider only autonomous linear hybrid automata whose initial conditions, invari-
ants and jump guards are linear and can be written in the form Ax ≤ b (where x = (x1, . . . ,xd) are the

S.Schupp, J.Nellen & E.Ábrahám 3

model variables, A is a d× d matrix and b a d-dimensional vector), whose jump resets are also linear
and can be written as x′ = Ax, and whose flows are defined by conjunctions of linear ordinary differ-
ential equations (ODEs), which can be written1 as ẋ = Ax. Note that such automata allow only linear
predicates, whose solutions are convex polytopes.

A state (l,x) ∈ Loc×Rd of a hybrid automaton specifies the location l ∈ Loc in which the control
resides and the current values x ∈ Rd of the variables. For p ⊆ Rd , by (l, p) we denote the state set
{(l,x) | x ∈ p}. An execution (l0,x0)

t0→ (l1,x1)
e1→ (l2,x2)

t2→ . . . of a hybrid automaton starts in an
initial state (l0,x0) such that x0 satisfies Init(l0), and executes a sequence of alternating continuous and
discrete steps. A continuous step (li,xi)

ti→ (li+1,xi+1) with li = li+1 models time evolution: starting from
xi, the variable values evolve according to the flow (ODEs) Flow(li) of the current location for ti time
units, where the location’s invariant must hold during the whole duration of the step. A discrete step
(li,xi)

ei→ (li+1,xi+1) typically models controller execution: if the source of a jump ei is li, the guard of ei

is satisfied by xi, the reset predicate of ei is satisfied by (xi,xi+1), and li+1’s invariant is true for xi+1 then
the jump ei can be taken, moving the control from li to li+1 with resulting variable values xi+1.

A state of a hybrid automaton H is called reachable if there is an execution leading to it. Given a
set T of unsafe states, H is called safe if no state from T is reachable in H .

Hybrid automata can be composed using parallel composition, which we do not define here formally.
Intuitively, jumps in different components can be synchronised (using synchronisation labels) if they
should take place simultaneously, whereas local computation steps can also be executed in isolation;
time evolves simultaneously in all components.

Reachability analysis The reachability problem for hybrid automata is the problem to decide whether
a given state (or any state from a given set) is reachable in a hybrid automaton. As the reachability
problem for hybrid automata is in general undecidable, some approaches aim at computing an over-
approximation of the set of reachable states of a given hybrid automaton. We focus on approaches based
on flowpipe construction, which iteratively over-approximate the set of reachable states by the union of
a set of state sets. To represent a state set, typically either a geometric or a symbolic representation is
used. Geometric representations specify state sets by geometric objects like boxes, (convex) polytopes,
zonotopes, or ellipsoids, whereas symbolic representations use, e.g., support functions or Taylor models.
These representations might have major differences in the precision of the representation (the size of
over-approximation), the memory requirements and the computational effort needed to apply operations
like intersection, union, linear transformation, Minkowski sum or test for emptiness. For example, boxes
perform well in terms of computational effort for set operations, but usually introduce a large over-
approximation error. Thus the choice of the representation is a compromise between the advantages and
disadvantages regarding these measures.

Before the reachability analysis starts, all predicates ϕ ∈ PredX in the respective linear hybrid au-
tomaton (initial predicates, invariants, jump guards) as well as the unsafe state set need to be represented
in some state set representation (usually the same representation for all predicates). Furthermore, the
jump resets need to be formalised as linear transformations.

For a given state set p, flowpipe-construction-based approaches compute the successors of the states
from p by first over-approximating the set of states reachable via time evolution (flowpipe) and afterwards
the set of states reachable from the flowpipe as jump successors. Time evolution is usually restricted to
a time horizon (either per location or for the whole execution), which is divided into smaller time steps.
The states reachable from p via one time step are over-approximated by a state set p1, for which again

1Note that ODEs of the form ẋ = Ax+b can be also encoded without a b component on the cost of new variables with zero
derivatives. A similar approach is possible for jump resets of the form x′ = Ax+b.

4 Variable Separation for Hybrid Systems Reachability

the time successors p2 via one time step are computed. This procedure is repeated until the time horizon
is reached or the successor set gets empty (due to the violation of the current location’s invariant). The
union of the resulting state sets p1, . . . , pk, which are called flowpipe segments, over-approximates the
flowpipe. For each outgoing jump and each of the flowpipe segments the jump successors are computed,
to which the above procedure is applied iteratively until a given upper bound (jump depth) on the number
of jumps is reached or until a fixed point is detected. Thus the reachability computation results in a search
tree with state sets as nodes. In order to reduce the computational effort, clustering and aggregation can
be applied to over-approximate the successors of the flowpipe segments for a given jump by a fewer
number of segments respectively by a single state set.

Programmable logic controllers Programmable logic controllers (PLCs) are digital controllers widely
used in industrial applications, for instance in production chains. A PLC has input and output pins that
are connected with the sensors and the actuators of a plant. Control programs running on a PLC spec-
ify the output of the PLC in dependence of its input. These control programs are executed in a cyclic
manner. First, the PLC reads the current state of the sensors and the actuators of the plant and stores
this information in input registers. Next all programs on the PLC execute in parallel to compute the next
output values based on the last input, and store the results in some output registers. These computations
might use local variables, stored in some local registers. In the last step of the cycle the PLC writes the
computed output values to the output pins that are connected to the actuators of the plant. In contrast to
some implementations that assure a cycle duration within a time interval, for simplicity in this work we
assume a constant cycle time (however, our approach can be easily extended to interval durations).

To model a plant we introduce variable sets Vcont,Vact, and Vsen to represent the state of physical
quantities, the actuators, respectively the sensors (see left of Figure 1). For the modelling of a controller
we use sets Vin, Vout, and Vloc of variables to represent the PLC registers for input, output respectively
local variables. Additionally, we need one variable (clock) per PLC to account for the PLC cycle time.

A schematic overview of the hybrid automaton we use to model PLC-controlled plants is shown
in the right of Figure 1. We could model the system by specifying hybrid automata models for the
plant, the PLC, and the programs running on the PLC, and compose them using label synchronisation to
model synchronous events in the PLC cycle. However, these models allow heavy interleaving between
continuous time evolution and discrete PLC computation steps, leading to models that pose a challenge
for reachability analysis tools. Therefore, we make use of the fact that the PLC execution between
reading the input and writing the output has no influence on the plant’s state: we model the plant evolution
and the concurrent cyclic PLC execution by toggling between a controller model and a plant model,
assuming that all controller actions are executed instantaneously after the input is read, the plant evolves
for the duration of the PLC cycle, and the output is written at the end of the cycle. We refer to [18] for
more information on the modelling of PLC-controlled plants.

3 The HyPro Library

As mentioned before, there are several state set representations that can be used in flowpipe-construction-
based reachability analysis algorithms. Hybrid systems reachability analysis tools like, e.g., CORA [1],
FLOW∗ [4], HYCREATE [11], HYREACH [13], SOAPBOX [9], and SPACEEX [7] implement different
techniques using different geometric or symbolic state set representations, each of them having individual
strengths and weaknesses. For example, SPACEEX uses support functions, whereas FLOW∗ makes use
of Taylor models.

S.Schupp, J.Nellen & E.Ábrahám 5

Actuators
Vact

Sensors
Vsen

Physical
quantities

Vcont

Plant PLC Programs
Input
Vin

Output
Vout

Computation
Vloc

read

write

Controller

Plant

Figure 1: PLC controller: Interface between plant and controller (left) and cyclic execution model (right).

da
ta

st
ru

ct
ur

es

H
yb

ri
d

au
to

m
at

on
Po

in
t

H
al

fs
pa

ce

ut
il

algorithms

re
pr

es
en

ta
tio

nsBox
HPolytope

VPolytope

PPL-Polytope

Zonotope

Support function

Orthogonal polyhedra

Taylor model

GeometricObject

<Interface> Converter

Plotter

Logger

Parser

Reachability
analysis

Optimizer

GLPK SMTRAT Z3 SOPLEX

Figure 2: HYPRO class structure [19].

The implementation of state set representations is tedious and time-consuming, and impedes the
(even prototypical) implementation of new reachability analysis algorithms. To offer assistance for rapid
implementation, we developed a free and open-source C++ programming library HYPRO [19] (see Fig-
ure 2), which we will use in our experiments and which is published at https://github.com/hypro/
hypro. HYPRO contains implementations for several state set representations such as boxes [16], con-
vex polytopes [21], zonotopes [8], support functions [14], orthogonal polyhedra [3], and Taylor models
[4], different operations on them which are needed for the implementation of flowpipe-construction-
based reachability analysis algorithms, and conversions between the different representations. Reduction
techniques can be applied to reduce the representation sizes on the cost of additional over-approximation.

The implemented representations (with the exceptions of orthogonal polyhedra and Taylor models,
depicted grey in Figure 2) share a unified interface to allow the usage of different representations within a
single algorithm. This property is not only important for extensibility with new representations but also,
e.g., for the implementation of counterexample-guided abstraction refinement (CEGAR) algorithms: the
search can start with a low-precision but computationally cheap representation such as boxes, and it can
be refined along paths that are detected to be potentially unsafe by switching to a high-precision but
computationally more expensive representation.

Another important feature of HYPRO is that it is templated in the number type, such that it can be
instantiated both with exact as well as with inexact arithmetic. Linear solver backends such as GLPK

https://github.com/hypro/hypro
https://github.com/hypro/hypro

6 Variable Separation for Hybrid Systems Reachability

[15], SMTRAT [6], SOPLEX [20], and Z3 [17], which are needed for the implementation of different
operations and conversions, can be exchanged by the user by her tool of choice. The library is thread-
safe, thus parallelisation can be exploited by the user. The efficient usage of the library is further eased
by a model parsing module, a plotting engine, and various debugging tools.

In this work we illustrate the advantages of the HYPRO library by proposing an algorithm to reduce
the computational effort of the search on the cost of precision loss. Due to space restriction, we do not
discuss refinement steps in this paper, but mention here that using HYPRO the proposed method can be
embedded into a CEGAR approach: if a potentially unsafe path is detected, more precise analysis can be
used to check safety along those paths.

4 Reachability Analysis based on Variable Set Separation

Variable set separation and projective representation For practically relevant applications, the pre-
viously described modelling approach for PLC-controlled plants by hybrid automata leads to huge mod-
els, even if we exploit the mentioned reduction by restricted interleaving. The most serious problem
is the high dimensionality: the variable set contains variables modelling the plant dynamics, the states
of sensors and actuators, the input and output values of the PLC, the local variables used in program
executions, and clocks for PLC cycle synchronisation. The high dimensionality leads to complex state
set representations, causing heavy memory consumption and computationally expensive applications of
state set operations during the reachability analysis.

To increase scalability and thus to allow the analysis of larger models, we start with some obser-
vations. Firstly, the variables of the PLC are discrete and thus their values do not change dynamically
during time evolution but only upon taking a discrete transition in the controller part of the composed
hybrid automaton. Furthermore, the states of actuators and sensors can be modelled by discrete variables,
as actuator states change discretely (when writing the output) and the sensor values are relevant only at
the beginning of each cycle (read plant state) as depicted in Figure 1. Thus only the physical quantities
and the cycle clocks evolve continuously. Finally, computing flowpipes for clocks and other variables
with constant derivatives can usually be done easier than for dynamics specified by general ODEs.

These observations gave us the idea to divide the variable set X into several disjoint subsets X = X1∪
. . .∪Xn such that variables in the same subset Xi have some common properties relevant for reachability
analysis. Once the variables are classified this way, we could try to modularise the reachability analysis
computation by computing in the sub-spaces defined by the variable subsets, instead of computing in
the global space. However, in order to compute reachability in the sub-spaces, the variables in different
subsets must be independent in the sense that their evolutions do not directly influence each other. To
be more formal, all predicates ϕ ∈ PredX in the hybrid automaton definition must be decomposable to a
conjunction ϕ =ϕ1∧ . . .ϕn of predicates ϕi ∈PredXi over the respective variable subsets Xi, and similarly
for jump resets from PredX∪X ′ and flows from PredX∪Ẋ . If this condition holds then we call the subsets
X1, . . . ,Xn themselves as well as variables from two different subsets syntactically independent.

Such a classification of the variable set X into syntactically independent subsets X1, . . . ,Xn allows
us to represent (global) state sets (l, p) ⊆ Loc×Rd by their projections p ↓Xi= pi ⊆ R|Xi| to the sub-
spaces; we call (l, p1, . . . , pn) the projective representation of (l, p) with respect to the variable separation
X1, . . . ,Xn. Note that the projective representation drops the connection between the sub-spaces and is
therefore over-approximative, i.e., p ⊆ p1× . . .× pn but in general p 6= p1× . . .× pn. One exception
is the state set representation by boxes: the cross product of the projections of a box is the box itself,
therefore the projective representation of boxes is exact.

S.Schupp, J.Nellen & E.Ábrahám 7

Reachability computation based on variable set separation Given a separation of the variable set
X into syntactically independent subsets X1, . . . ,Xn and projective representations based on this separa-
tion, we can over-approximate successors of a state set (l, p) by computing successors of its projective
representation (l, p1, . . . , pn) in each sub-space modularly. As the computational effort for reachability
analysis heavily increases with the dimension, this modular approach will help to reduce the running
time. To explain why we need syntactical independence for sub-space computations, we first need a
more formal description of how successor sets are computed:
(1) Reachability analysis computes for an initial set (l, p) the first flowpipe segment (l,Ω0) that over-
approximates all states reachable from p within a time interval [0,δ] in l as Ω0 = (conv(p∪eδA p)⊕B)∩
Inv(l), where the flow in location l is ẋ = Ax, eδA is the matrix exponential for δA, eδA p are the states
reachable from p at time point δ , conv(·) is the convex hull operator, S1⊕S2 = {a+b | a ∈ S1∧b ∈ S2}
is the Minkowski sum of two sets, the bloating with the box B accounts for the non-linear behaviour
between the time points 0 and δ , and Inv(l) is the invariant for location l.
(2) Flowpipe segments (l,Ωi) over-approximating the flowpipe within the time interval [iδ ,(i+1)δ] for
i > 0 are computed by Ωi = eδAΩi−1∩ Inv(l).
(3) For each jump e with source l, guard g, reset x′ = A′x and target location l′, each flowpipe segment Ωi

is checked for possible successors along e by checking (A′(Ωi∩g))∩ Inv(l′) for emptiness. Non-empty
successors are collected, possibly aggregated, and considered as initial state set(s) for location l′.

For each decomposition of X into syntactically independent variable sets X1, . . . ,Xn, any flow ẋ = Ax
can be decomposed into ∧n

i=1Ẋi = AiXi (where we overload the notation Xi to also denote the sequence of
variables in Xi). Similarly, Inv(l) =∧n

i=1Inv(l)i with Inv(l)i ∈ PredXi . Furthermore, let Bi =B ↓Xi be the

x

y

g

x

y

g

Figure 3: Intersection of a flowpipe seg-
ment with an invariant using global (left)
and separated (right) variable sets.

projection of B to Xi. Let (l, p0, . . . , pn) be the projective
representation of a state set p,

Ω0,i = (conv(pi∪ eδAi pi)⊕Bi)∩ Inv(l)i

and for each j > 0

Ω j,i = (eδAiΩ j−1,i)∩ Inv(l)i .

Then Ω j ⊆Ω j,1× . . .×Ω j,n.
The computations in the sub-spaces are precise as long

as the initial set p is a box and the flowpipe resides inside
the invariant, i.e., if p is a box and Ωm,i ⊆ Inv(l)i for all
1≤ m≤ j and all 1≤ i≤ n then Ω j ↓i= Ω j,i.

However, syntactical independence does not imply semantical independence, as the different di-
mensions are usually still implicitly connected by the passage of time. If one of the projections runs
out of a non-trivial invariant then the intersection with the (projection of the) invariant in a sub-space
does not necessarily affect the computations in the other sub-spaces, thus the result might become over-
approximative (see Figure 3). To increase precision, we can at least incorporate that if the projection of
a flowpipe segment gets empty in one of the sub-spaces then the whole flowpipe segment gets empty:
instead of Ω j,i we use Ω′j,i that is Ω j,i if none of Ω j,k, k = 1, . . . ,n is empty and the empty set otherwise.

For successors along jumps, the reachability computations in the sub-spaces work similarly. Also
here, additional over-approximation might be introduced by intersections with guards and invariants in
target locations, which we try to reduce by the above-described emptiness check.

As we use modular computations in sub-spaces, on the one hand our method speeds up reachability
computations, but on the other hand it introduces additional over-approximations. Therefore, in our ex-
periments we will thoroughly analyse the effect of our approach both to the running time as well as to the

8 Variable Separation for Hybrid Systems Reachability

over-approximation error. Besides the reduced computational effort, our method has further advantages.
For example, state sets in the sub-spaces can be represented independently of each other, using differ-
ent state set representations. We observed that the discrete variables can often be represented by boxes
without serious over-approximation, whereas the plant dynamics requires a more precise representation,
e.g. by support functions. Furthermore, for sub-spaces defined by clocks or by variables with constant
derivatives one could use different, computationally less expensive techniques for computing flowpipes.

The algorithm Our reachability analysis algorithm based on variable set separation is presented in
Algorithm 1. The input is a hybrid automaton H, a parameter δ that specifies the length of a time step
in the flowpipe construction, a global time horizon T and a jump depth D that specify upper bounds on
the total time duration respectively on the total number of jumps in the considered execution paths, and
an aggregation flag that specifies whether aggregation should be applied to the successors of segments
of a flowpipe along a jump. The algorithm outputs a set of flowpipe segments R, where the union of the
segments in R is an over-approximation of the set of states that are reachable in H within the given time
and jump bounds.

In a preprocessing step, we separate the variable set into three syntactically independent subsets of
discrete variables, clocks, and the rest (lines 2-4). We have chosen this variable set separation as it seems
to be practically helpful in our experiments, but other separation criteria could be defined, too. A state set
representation can be chosen for each sub-space independently (line 5); for readability, in the algorithm
we do not distinguish between state sets and their representations syntactically.

The invariant conditions for the initial states are checked for each initial set and each sub-space
independently in the lines 8-13 and if the intersections of the initial sets with the invariants are non-empty
in all sub-spaces then they are added to a set P of state sets, whose successors need to be determined.
Additionally to the location and the projective representation of state sets, we attach to the state sets the
time interval within which the represented states can be reached.

As long as P is not empty, we choose a state set p ∈ P. Before computing its flowpipe, we determine
the set of jumps with p’s location as source. As the values of discrete transitions do not change during
time evolution, we can skip those jumps whose guard is violated by the initial values of the discrete
variables, and store the remaining ones in the set E (line 16). The sets Pe will be used to collect non-
empty successors from different flowpipe segments along the jumps e ∈ E.

Next we compute the segments of p’s flowpipe as explained previously (lines 20-27). Instead of one
single flowpipe of dimension d, our algorithm computes lower-dimensional flowpipes in the sub-spaces
using a common time step size and a global time horizon (line 20) to be able to connect the flowpipe
segments computed in the sub-spaces. The variable isFirst, initialised in line 18, is used to remember
whether the flowpipe segment to be computed next is the first one (as the first one needs special handling).

Once the flowpipe segments are computed, their jump successors are determined and collected in the
sets Pe for each outgoing jump e ∈ E (lines 29-35), if aggregation is activated then they are aggregated
(per jump, line 41), and finally added to P for further iterative successor computation. Note that the flow-
pipe as well as the jump successor computations in the sub-spaces are time-synchronised: if a successor
set gets empty in one of the sub-spaces then the computation is stopped.

5 Experimental Results

All computations were carried out on an Intel Core i7 CPU with 8 cores and 16 GB RAM. We used the
time step size δ = 0.01 and unlimited jump depth. To be able to express a global time horizon, each
model is equipped with a global clock.

S.Schupp, J.Nellen & E.Ábrahám 9

1

Input: Hybrid system model H = (Loc,X ,Flow, Inv,Edge, Init), time step δ ∈ Q≥0, global time horizon
T ∈Q≥0, jump depth D ∈ N≥0, aggregation flag aggregation ∈ {0,1}.

Output: An over-approximation {(l,x)|(l, pdisc, pclock, prest, [t1, t2]) ∈ R ∧ x ∈ pdisc × pclock × prest} of the
states reachable within the given bounds.

2 Xdisc := maximal set of variables from X with derivatives 0 that are syntactically independent from X \Xdisc;
3 Xclock := maximal set of variables from X with derivatives 1 that are syntactically independent from X \Xclock;
4 Xrest := X \ (Xdisc∪Xclock);
5 choose a representation type for each of Xdisc, Xclock, and Xrest;
6 bring each predicate ϕ in H to an equivalent form ϕdisc∧ϕclock∧ϕrest, where each ϕi, i ∈ {disc,clock,rest},

is a predicate from PredXi resp. PredXi∪X ′i (jump resets) resp. PredXi∪Ẋi
(flows);

7 P := /0; R := /0;
8 foreach location l ∈ Loc do
9 let pi := Init(l)i∩ Inv(l)i for each i ∈ {disc,clock,rest};

10 if pdisc 6= /0∧ pclock 6= /0∧ prest 6= /0 then
11 add (l, pdisc, pclock, prest, [0,0]) to P
12 end
13 end
14 while P 6= /0 do
15 choose p = (l, pdisc, pclock, prest, [t1, t2]) ∈ P and remove p from P;
16 E := {(e, pe

disc) | e = (l,g,r, l′) ∈ Edge∧ pe
disc = jump(pdisc,gdisc,rdisc, Inv(l′)disc) 6= /0};

17 isFirst := true; foreach (e, pe
disc) ∈ E do Pe := /0 ;

18 ;
19 while true do

// Compute flowpipe, considering also the invariant of the location

20 if t1 < T then
21 pclock := flow(pclock,Flow(l)clock, Inv(l)clock,δ , isFirst); if pclock = /0 then break;
22 ;
23 prest := flow(prest,Flow(l)rest, Inv(l)rest,δ , isFirst); if prest = /0 then break;
24 ;
25 t2 := t2 +δ ; if ¬isFirst then t1 := t1 +δ ;
26 ;
27 end
28 R := R∪{(l, pdisc, pclock, prest, [t1, t2])};

// Compute jump successors

29 foreach ((l,g,r, l′), pe
disc) ∈ E do

30 pe
clock := jump(pclock,gclock,rclock, Inv(l′)clock); if pe

clock = /0 then continue;
31 ;
32 pe

rest := jump(prest,grest,rrest, Inv(l′)rest); if pe
clock = /0 then continue;

33 ;
34 add (l′, pe

disc, pe
clock, pe

rest, [t1, t2]) to Pe;
35 end
36 isFirst := false; if t1 ≥ T then break;
37 ;
38 end
39 foreach e ∈ E do
40 if Pe 6= /0 then
41 if aggregation then P := P∪{aggregate(Pe)};;
42 else P := P∪Pe;
43 end
44 end
45 end
46 return R
Algorithm 1: Reachability analysis algorithm based on variable set separation for hybrid automata.

10 Variable Separation for Hybrid Systems Reachability

Table 1: Model sizes of the benchmarks.
Benchmark Type #variables #modes #jumps

disc. clocks rest controller plant

Leaking tank

original 0 0 12 8 3 34
timed 0 2 10 8 3 34

discrete 9 0 3 8 3 34
timed & discrete 9 2 1 8 3 34

Two tanks

original 0 0 22 20 14 296
timed 0 3 19 20 14 296

discrete 17 0 5 20 14 296
timed & discrete 17 3 2 20 14 296

Thermostat

original 0 0 8 6 2 18
timed 0 2 6 6 2 18

discrete 5 0 3 6 2 18
timed & discrete 5 2 1 6 2 18

Benchmarks For our experiments we used three well-known benchmarks, which we slightly modi-
fied by adding model components for PLC controllers. Besides increasing the number of modes, these
extensions add variables with discrete behaviour (i.e. with zero derivatives) to model the actuators and
sensors of the plant and the input, output, and local variables of the controller. Furthermore, one clock
variable is added for each introduced PLC controller to model the cycle time, and one discrete variable to
store the controller mode. In our experiments we compare the analysis of the benchmarks without vari-
able separation (“original”) with variable-set-separation-based analysis separating only clocks (“timed”),
only discrete variables (“discrete”), and both (“timed & discrete”). The sizes of the models are shown
in Table 1. The modified versions of the benchmarks are accessible as part of our benchmark collection
[2]. A binary of our implementation can be found at [12].

Leaking tank This benchmark models a water tank which leaks, i.e., it has a constant outflow. The
tank can be refilled from an unlimited external resource with a constant inflow that is larger than the
outflow. The PLC controller triggers refilling (by switching a pump on) if a sensor indicates a low
water level (h ≤ 6). If the water level is high (h ≥ 12) the controller stops refilling (switches the pump
off). Adding the controller introduces two controller input variables for low and high water levels,
variables for the actuator (pump) state in the plant and the controller, and a variable to store the controller
mode. Furthermore, a new clock is added to model the PLC cycle time. Besides the controller we also
model a user which can manually switch the pump on and off as far as the water level allows it. In our
implementation, the user constantly toggles between the pump states on and off. We analyse the system
behaviour over a global time horizon of 40 seconds using a PLC cycle time of 2 seconds.

Two tanks This benchmark models the water levels of two water tanks in a closed system. Each tank
has a constant inflow and a constant outflow. The tanks are connected via pipes, such that the amount
of water outflow of the first tank is equal to the inflow of the second tank and vice versa. One pump per
pipe allows to enable/disable the water flow. We add a controller to the two tank system that controls the
pumps. A pump is switched off if the water level of the source tank is low (h ≤ 8) or if the water level
of the target tank is high (h≥ 32). Each time a pump is switched off by the controller, the other pump is
switched on to balance the water levels in the tanks. The introduction of the controller adds variables to
model sensing low and high water levels of both tanks and variables to model the actuator (pump) states
in the plant and the controller. Moreover, we add a variable to store the controller mode and a new clock

S.Schupp, J.Nellen & E.Ábrahám 11

Table 2: Benchmark results for different separation set-ups. Running times are in seconds, time-out (TO)
was 20 minutes, in brackets we list the number of flowpipes computed.

HYPRO SPACEEX

Benchmark Rep. Agg original timed discrete timed & discrete original

Leaking tank

box agg 2.70 (662) 2.08 (662) 1.06 (662) 1.13 (662) 3.67 (200)
box none 2.62 (662) 2.09 (662) 1.06 (662) 1.13 (662) 3.82 (200)
sf agg TO (18) TO (28) 161.12 (662) 37.03 (662) 448.3 (425)
sf none TO (583) 1044.97 (662) 19.49 (662) 5.84 (662) 444.82 (425)

Two tanks

box agg 4.39 (470) 2.60 (470) 0.97 (470) 1.15 (470) 5.49 (195)
box none 4.46 (470) 2.68 (470) 1.02 (470) 1.16 (470) 5.53 (195)
sf agg TO (4) TO (4) 900.11 (470) 329.80 (470) TO (171)
sf none TO (54) TO (64) 35.04 (470) 14.64 (470) TO (172)

Thermostat

box agg 0.07 (95) 0.09 (95) 0.06 (95) 0.06 (95) 0.57 (95)
box none 0.11 (95) 0.09 (95) 0.06 (95) 0.06 (95) 0.57 (95)
sf agg 35.87 (95) 22.69 (95) 1.17 (95) 0.29 (95) 9.89 (84)
sf none 30.41 (95) 20.19 (95) 1.18 (95) 0.30 (95) 9.91 (84)

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 23 23.5 24 24.5 25

HyPro oct timed
HyPro oct discrete

SpaceEx oct.

Figure 4: SPACEEX and HYPRO results on the leaking tank benchmark with support function representa-
tion (using a regular octagonal (oct) template for evaluation), when HYPRO separates either only clocks
or only discrete variables.

to model the PLC cycle time. Again, we model a user which switches the pumps manually on or off as
far as the water levels allow it. We implemented a user that toggles the state of each pump in each PLC
cycle. The global time horizon and a PLC cycle time were set to 20 seconds respectively 1 second.

Thermostat In this benchmark a heater with a thermostat controller is modelled. Initially, the tempera-
ture is T = 20◦C and the heater is on. The controller keeps the temperature T between 16◦C and 24◦C.
The heater is switched off if the temperature rises above 23◦C and it is switched on at a temperature
below 18◦C. Adding a controller to the model introduces new variables for the low and high temperature
sensors in the controller, a variable for the actuator (heater) state in the plant and the controller, and a
variable to store the controller mode. Additionally, we introduce a new clock for the cycle time of the
PLC. The global time horizon is 10 seconds and the PLC cycle time is 0.5 seconds.

Results We implemented our algorithm using the HYPRO library and evaluated it on the above bench-
marks. Table 2 shows results from our tool and SPACEEX version 0.9.8f. In our tool we used boxes
and support functions (evaluated in 8 directions) to represent state sets, whereas in SPACEEX we used
support functions with 4 and 8 directions, as SPACEEX does not support explicit box representations.

12 Variable Separation for Hybrid Systems Reachability

The HYPRO and SPACEEX results are not fully comparable because SPACEEX implements a fixed-
point detection algorithm but HYPRO does not. The leaking tank benchmark as well as the two tank
benchmark both cause branching in the execution paths which are merged later (see Figure 4). Our
implementation does not recognise the merging of these paths and fully computes each branch inde-
pendently. Thus HYPRO needs to compute a higher number of flowpipes (given in brackets behind the
running times in Table 2) than SPACEEX. Another difference is that in HYPRO we varied the state set
representation for the continuous sets between boxes and support functions (similarly to SPACEEX) but
used boxes for the discrete and the clock variable sets in all settings.

 16

 17

 18

 19

 20

 21

 22

 23

 24

 0 2 4 6 8 10

HyPro oct. timed discrete
HyPro oct.

SpaceEx oct.

Figure 5: SPACEEX and HYPRO results on the ther-
mostat benchmark with support function represen-
tation (using an octagonal (oct) template for eval-
uation), when HYPRO separates clocks as well as
discrete variables.

Using variable separation clearly improves the
running times, due to computations in lower-
dimensional sub-spaces. However, we can also
observe on the Figures 4 and 5, which show plots
for the detected reachable regions for the leak-
ing tank and the thermostat, that separating the
clock variables (which measure the cycle time
and the global time) introduces a slight over-
approximation.

The influence of the discrete variable separa-
tion is in general larger than the influence of a
clock separation, probably because in our bench-
marks the discrete variables outnumber the clocks.
Nonetheless a separation of clocks already shows
a speed-up of about 30%. As mentioned before,
we used boxes as a state set representation for the
set of discrete variables, which does not introduce
any further over-approximation error, as the discrete variables themselves are all syntactically indepen-
dent. We can observe that using boxes as a state set representation, our implementation outperforms
SPACEEX (even when a lot more flowpipes are computed), which is expected, as boxes in general re-
quire less computational effort than support functions (evaluated in 4 directions) in reachability analysis.

In HYPRO, aggregation causes longer running times because in the current implementation aggre-
gation is realised by a conversion of the single sets (which are to be aggregated) to polytopes, which is
computationally expensive, especially in higher dimensions.

6 Conclusion

In this paper we presented an approach to reduce the computational effort in the reachability analysis
of hybrid systems for certain applications. Our experimental results indicate that even state-of-the art
reachability analysis tools struggle to analyse high-dimensional models with relatively simple dynamics,
which are common in the application area of controlled plants.

In general controlled plants are composed of many single components such as the set of controllers
or the physical quantities of the plant. A naive approach models each of these components and the
full model is the result of a parallel composition of the single components. Even the relatively simple
examples used in Section 5 yield large models which put state-of-the-art reachability analysis tools to
their limits. To increase scalability, domain-specific knowledge helps to create more sophisticated and
smaller models. For example knowing that PLC computation as well as the plant’s behaviour do not

S.Schupp, J.Nellen & E.Ábrahám 13

interfere during a PLC cycle already allows to prohibit arbitrary switching between the controller and
the plant, which reduces the model complexity.

In contrast to common benchmarks for hybrid systems, our plant models exhibit a large number of
discrete variables accounting for the controller’s behaviour. Currently available tools do not distinguish
between the different dynamics of variables, thus discrete variables usually are treated as continuous
variables and unnecessarily increase the dimension of the state space.

Our approach allows to split variable sets according to their dynamics, which has a positive effect on
the running times, as reachability analysis algorithms can be protected from working in high-dimensional
spaces. We can observe that the distribution of variables to the different sets has a high influence on the
computation time. We expect that splitting the set of continuous variables (if applicable) into multiple,
independent sets with fewer variables each will result in the best results regarding computation time.
Furthermore in applications with several PLC controllers, each control program operates independently,
which allows to build separate variable sets for each controller. Depending on the dimension of the
individual sets and the associated dynamics for the contained variables, utilizing individual state set
representations can be beneficial. As state sets for independent discrete variables are always hyper-
rectangles, using boxes instead of other, computationally more expensive state set representations has
shown great improvements in terms of runtime. For higher dimensional state sets support functions can
be expected to perform better than other state set representations.

In our application scenario, syntactically independent variable sets are directly given. In general, this
is not necessarily the case for hybrid system models. Transforming the state space can help to identify
independent variable sets and allows to apply the presented approach to systems where the independent
variable sets are not obvious.

As to future work, we will improve our implementation by adding fixed-point detection and a more
sophisticated implementation for state set aggregation. Second, we will embed the presented approach
into a CEGAR framework to refine potentially unsafe paths. Finally, we also work on parallelisation
approaches for flowpipe computations.

References

[1] Matthias Althoff & John M. Dolan (2014): Online verification of automated road vehicles using reachability
analysis. IEEE Transaction on Robotics 30(4), pp. 903–918, doi:10.1109/TRO.2014.2312453.

[2] Benchmarks of continuous and hybrid systems. Available at http://ths.rwth-aachen.de/research/
projects/hypro/benchmarks-of-continuous-and-hybrid-systems/.

[3] Olivier Bournez, Oded Maler & Amir Pnueli (1999): Orthogonal polyhedra: Representation and computa-
tion. In: Proc. HSCC’99, LNCS 1569, Springer, pp. 46–60, doi:10.1007/3-540-48983-5 8.

[4] Xin Chen, Erika Ábrahám & Sriram Sankaranarayanan (2013): Flow*: An analyzer for non-linear hybrid
systems. In: Proc. CAV’13, LNCS 8044, Springer, pp. 258–263, doi:10.1007/978-3-642-39799-8 18.

[5] Xin Chen & Sriram Sankaranarayanan (2016): Decomposed reachability analysis for nonlinear systems. In:
Proc. RTSS’16, IEEE Computer Society Press, pp. 13–24, doi:10.1109/RTSS.2016.011.

[6] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp & Erika Ábrahám (2015): SMT-RAT: An
open source C++ toolbox for strategic and parallel SMT solving. In: Proc. SAT’15, LNCS 9340, Springer,
pp. 360–368, doi:10.1007/978-3-319-24318-4 26.

[7] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine
Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable verification of hybrid systems. In: Proc.
CAV’11, LNCS 6806, Springer, pp. 379–395, doi:10.1007/978-3-642-22110-1 30.

http://dx.doi.org/10.1109/TRO.2014.2312453
http://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://dx.doi.org/10.1007/3-540-48983-5_8
http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1109/RTSS.2016.011
http://dx.doi.org/10.1007/978-3-319-24318-4_26
http://dx.doi.org/10.1007/978-3-642-22110-1_30

14 Variable Separation for Hybrid Systems Reachability

[8] Antoine Girard (2005): Reachability of uncertain linear systems using zonotopes. In: Proc. HSCC’05, LNCS
3414, Springer, pp. 291–305, doi:10.1007/978-3-540-31954-2 19.

[9] Willem Hagemann, Eike Möhlmann & Astrid Rakow (2014): Verifying a PI controller using SoapBox and
Stabhyli: Experiences on establishing properties for a steering controller. In: Proc. ARCH’14, EPiC Series
in Computer Science 34, EasyChair, pp. 115–125.

[10] Thomas A. Henzinger (1996): The theory of hybrid automata. In: Proc. LICS’96, IEEE Computer Society
Press, pp. 278–292, doi:10.1007/978-3-642-59615-5 13.

[11] HyCreate. Available at http://stanleybak.com/projects/hycreate/hycreate.html.
[12] HyPro Project website. Available at http://ths.rwth-aachen.de/research/projects/hypro/.
[13] HYREACH. Available at https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach.
[14] Colas Le Guernic & Antoine Girard (2010): Reachability analysis of linear systems using support functions.

Nonlinear Analysis: Hybrid Systems 4(2), pp. 250–262, doi:10.1016/j.nahs.2009.03.002.
[15] Andrew Makhorin: GNU Linear Programming Kit home page. Available at http://www.gnu.org/

software/glpk/glpk.html.
[16] Ramon E. Moore, Ralph Baker Kearfott & Michael J. Cloud (2009): Introduction to interval analysis. SIAM,

doi:10.1137/1.9780898717716.
[17] Leonardo M. de Moura & Nikolaj Bjørner (2008): Z3: An efficient SMT solver. In: Proc. TACAS’08, LNCS

4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3 24.
[18] Johanna Nellen (2016): Analysis and synthesis of hybrid systems in engineering applications. Ph.D. thesis,

RWTH Aachen University, Aachen. Available at https://publications.rwth-aachen.de/record/
680323.

[19] Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf & Stefan Kowalewski (2017): HyPro: A C++
library for state set representations for hybrid systems reachability analysis. In: Proc. NFM’17, LNCS
10227, Springer, pp. 288–294, doi:10.1007/978-3-319-57288-8 20.

[20] Roland Wunderling (1996): Paralleler und objektorientierter simplex-algorithmus. Ph.D. thesis, Technische
Universität Berlin.

[21] Günter M. Ziegler (1995): Lectures on polytopes. 152, Springer, doi:10.1007/978-1-4613-8431-1.

http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://dx.doi.org/10.1007/978-3-642-59615-5_13
http://stanleybak.com/projects/hycreate/hycreate.html
http://ths.rwth-aachen.de/research/projects/hypro/
https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach
http://dx.doi.org/10.1016/j.nahs.2009.03.002
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://dx.doi.org/10.1137/1.9780898717716
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://publications.rwth-aachen.de/record/680323
https://publications.rwth-aachen.de/record/680323
http://dx.doi.org/10.1007/978-3-319-57288-8_20
http://dx.doi.org/10.1007/978-1-4613-8431-1

	1 Introduction
	2 Preliminaries
	3 The HyPro Library
	4 Reachability Analysis based on Variable Set Separation
	5 Experimental Results
	6 Conclusion

